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THE SPACE OF HARMONIC MAPS
FROM THE 2-SPHERE

TO THE COMPLEX PROJECTIVE PLANE

T. ARLEIGH CRAWFORD

ABSTRACT. In this paper we study the topology of the space of harmonic maps from
S2 to CP2. We prove that the subspaces consisting of maps of a fixed degree and energy
are path connected. By a result of Guest and Ohnita it follows that the same is true for
the space of harmonic maps to CPn for n ½ 2. We show that the components of maps
to CP2 are complex manifolds.

1. Introduction. Harmonic maps from the Riemann sphere to complex projective
space are critical points of the energy functional

E: C1(S2,CPn) �! [0,1)

defined on the space of smooth maps. As solutions of a classical variational problem
harmonic maps have been studied extensively, especially with regard to questions of ex-
istence, uniqueness, regularity, etc. It is now well known that all of the harmonic maps
from the Riemann sphere to complex projective space can be constructed from holo-
morphic maps. In this paper we study some global topological properties of the solution
space.

Holomorphic (and anti-holomorphic) maps are the absolute minima of E in each path
component of C1(S2,CPn). A holomorphic map f : S2 ! CP2 is called full if its image is
not contained in any projective line. The following theorem is the starting point for this
paper:

THEOREM 1.1 [EW2]. The set of all non-minimal harmonic maps û: S2 ! CP2 is in
1–1 correspondence with the set of full holomorphic maps f : S2 ! CP2.

This is, in fact, a specific case of a more general theorem which describes how to
construct all harmonic maps to CPn set theoretically. It is due originally to Din and Za-
krzewski [DZ] and Glaser and Stora [GS]. The paper [EW2] of Eells and Wood gives
an excellent description for a mathematical audience and we refer to the construction
as the Eells-Wood construction. The reader is also directed to [Bu], [G], [La] for other
descriptions. With the Eells-Wood construction in hand it is possible to study the global,
topological properties of the space of harmonic maps. Much is, in fact already known.
Holomorphic and anti-holomorphic maps are local minima of E and the topology of these

Research partially supported by NSERC fellowship.
Received by the editors January 4, 1996; revised April 9, 1996.
AMS subject classification: Primary: 58E20; secondary: 58D27.
c Canadian Mathematical Society 1997.

285

https://doi.org/10.4153/CMB-1997-035-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-035-4


286 T. ARLEIGH CRAWFORD

components is very well understood (see [S], [CCMM], [CS], [H]). In [C] we studied the
subspaces of full holomorphic maps. Some results have also been obtained for spaces of
harmonic maps of S2 into other Riemannian manifolds (see [A], [FGKO], [K], [V], [Lo]).

Let Harm(CPn) be the space of harmonic maps S2 ! CPn with the topology it inherits
as a subset of the space Map(S2,CPn) of all continuous maps. Map(S2,CPn) has con-
nected components, Mapk(S2,CPn), indexed by the degree k of the individual maps. The
critical values of E are discrete so Harm(CPn) is a disjoint union of the sets Harmk,E(CPn)
consisting of maps of degree k and energy E. Let Holk(CPn) denote the space of holo-
morphic maps of degree k when k ½ 0 and anti-holomorphic maps of degree k when
k Ú 0. We normalize the energy functional so that E(f ) ≥ k for a holomorphic map f of
degree k.

Guest and Ohnita [GO] have conjectured that the spaces Harmk,E(CPn) are connected.
They show that, for n ½ 3, any harmonic mapû: S2 ! CPn can be continuously deformed
through harmonic maps to a map whose image lies in CPn�1 ² CPn. Thus to prove the
conjecture it suffices to prove it in the case where n ≥ 2. The main result of this paper is
the following theorem, which affirms this conjecture:

THEOREM 1.2. The path components of Harm(CP2) are the minimal sets, Holk(CP2),
and the non-minimal critical sets, Harmk,Er(CP

2), where the critical energy values are
Er ≥ 3jkj + 2r + 4 indexed by a non-negative integer r. Moreover these non-minimal
components can be given the structure of complex manifolds of complex dimension 3jkj+
r + 8.

REMARK. In a recent preprint [LW] Lemaire and Wood show that Harmk,Er(CP
2) is,

in fact, a smooth submanifold of the space of smooth maps.
The proof follows from an examination of the Eells-Wood construction. The set-

theoretic assignment of Theorem 1.1 cannot be continuous. To see this recall that a map
f : S2 ! CP2 is ramified at x 2 S2 if dfx ≥ 0. If f is holomorphic and non-constant the
set of points at which f is ramified is finite and the ramification index of f is the number
of ramification points, counting multiplicities. Let r be the ramification index of a map
f , then r � 2k � 2 and, unless the image of f lies in a projective line, r � 1

2 (3k � 6).
The harmonic map corresponding to f , in Theorem 1.1, has degree k� 2� r and energy
3k � 2 � r. However there are plenty of maps with the same degree and different ram-
ification indices so the connected space of all full maps of degree k is mapped by this
correspondence to a number of different, disjoint pieces of Harm(CP2).

The first result of this paper is the following lemma which says that these are the only
discontinuities. Let Holk,r(CP2) ² Holk(CP2) be the subspace of maps with ramification
index r. Using the Eells-Wood construction we prove the following:

LEMMA 1.3. For 0 � r � k � 2 there is a homeomorphism

Φk,r: Holk,r(CP
2) ¾≥ Harmk�2�r,3k�2�r(CP

2).
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Note that for r Ú 1
2 (3k � 6) Holk,r(CP2) consists of full maps and that for E Ù jkj

Harmk,E(CP2) consists of full maps so that Theorem 1.1 applies in the range of k and r
considered in the lemma.

To get the results about connectedness and smoothness we prove:

THEOREM 1.4. For r � k�2, Holk,r(CP2) is smooth connected complex submanifold
of Holk(CP2) of complex dimension 3k � 2r + 2.

For the non-negative degree components Theorem 1.2 follows from Theorem 1.4 and
Lemma 1.3. Using the fact that the involution z 7! z̄ induces a homeomorphism

Harmk(CP2) ¾≥ Harm�k(CP2)

which preserves energy we obtain the result for all cases.
The paper is organized as follows: in section two we recall the construction of har-

monic maps from holomorphic maps which lies at the heart of the proof of Theorem 1.1.
We prove that, when restricted to Holk,r(CP2), this construction produces a continuous
map and prove Lemma 1.3. In section three we describe the geometry of the spaces
Holk,r(CP2) and prove Theorem 1.4. In the final section we give concrete descriptions of
some of the simpler components and, where possible, compute their cohomology groups.
The research for this paper was conducted at the University of New Mexico while I was
a Ph.D. candidate and at McGill University where I held an NSERC Post-Doctoral Fel-
lowship. The final version of this paper was prepared while I was a Post-Doctoral Fellow
at the Fields Institute for Research in Mathematical Sciences and a temporary visitor at
the University of Toronto. I would like to thank all these institutions for their hospitality
and support. I would like to thank my thesis advisor, Ben Mann, for suggesting the prob-
lem and for his guidance. I also benefited from conversations with Jacques Hurtubise and
Martin Guest. I am indebted to the referee as well as to two referees of earlier versions
of this paper for extensive and useful comments and corrections. Finally I would like
to thank John Wood for pointing out a serious gap in the proof of an earlier version of
Theorem 1.4.

2. The Construction of harmonic maps. In this section we describe the Eells-
Wood construction and show that it restricts to a continuous, proper map on the subsets
of holomorphic maps with fixed degree and ramification index. A number of descriptions
of this construction exist in the literature. The one we use below is closest in spirit to [Bu]
or [EW2]. For brevity let Holk ≥ Holk(CP2) and Holk,r ≥ Holk,r(CP2).

A holomorphic map f : S2 ! CP2 may be defined by letting

f (z) ≥ [p0(z), p1(z), p2(z)],

where z is a complex coordinate on C ¾≥ S2 n f1g and [u0, u1, u2] are homogeneous
coordinates on CP2. The pi are polynomials which share no common zero. The topolog-
ical degree of f is the maximum of the degrees of the pi. Taking coefficients of the pi
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as homogeneous coordinates gives an embedding Holk ² CPN as an open submanifold,
where N ≥ 3k + 2. Let p:C ! C3 be the polynomial function

p(z) ≥
�
p0(z), p1(z), p2(z)

�
.

This is just a lift of f to C3 over the coordinate patch. We will often write [p0, p1, p2] or
even [p] for f .

If f 2 Holk then p(z) and p0(z) will be linearly independent for all but a finite number
of points. The map h ≥ p ^ p0, given by

h(z) ≥ p(z) ^ p0(z) 2
^2

C3,

is also polynomial. That is, identifying
V2 C3 ¾≥ C3, we can write

h(z) ≥
�
h0(z), h1(z), h2(z)

�
,

where the hi are polynomials of degree less than or equal to 2k � 2. If f is unramified
then the hi have no common zeros and [h] is holomorphic map to P(

V2 C3) ¾≥ G2(C3) of
degree 2k�2. Here G2(C3) denotes the Grassmanian of 2-planes in C3. If f is ramified at z
then h(z) ≥ 0, and if f is ramified at1 then the hi will have degree strictly less than 2k�2.
We may write hi ≥ bqi, for i ≥ 1, 2, 3, where b is a greatest common divisor of the hi.
Let 2k�2�r be the maximum of the degrees of the qi and let q(z) ≥

�
q0(z), q1(z), q2(z)

�
,

then f1 ≥ [q] is a well-defined holomorphic map to G2(C3) of degree 2k � 2 � r. The
integer r is the ramification index of f . The map f1 is called the first associated curve of
f .

The line f (z) is contained in the plane f1(z) with complex codimension 1. Thus we can
define a map

û1: S2 ! CP2

by taking
û1(z) ≥ f1(z) \ f?(z).

The map û1 is harmonic and the assignment f 7! û1 is the correspondence of Theo-
rem 1.1. This assignment, restricted to a fixed degree k and ramification index r, defines
the map

Φk,r: Holk,r �! Harmk�2�r,3k�2�r(CP
2).

We will prove Lemma 1.3 by showing that Φk,r is continuous and proper.
Let Vd ² C[z] be the subspace of polynomials of degree less than or equal to d. We

can stratify the projective spacePV 3
k by taking the subsets Sr of points [p0, p1, p2] 2 PV 3

k

such that if b is a greatest common divisor of the pi, and we write pi ≥ bqi, then k� r is
the maximum of the degrees of the qi. Note that S0

¾≥ Holk. In fact, the assignment

([b], [q0, . . . , qn]) 7! [bq0, . . . , bqn]

defines an embedding
ò:PVr ðHolk�r ! PV 3

k
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which shows that for 0 � r Ú k, Sr is a submanifold of PV 3
k . Note also that the closure

of Sr is contained in the union of the strata Sr0 for r0 ½ r.
Note that Holk,r is just the inverse image of Sr under the map

Ψ: Holk ! PV 3
2k�2

given by [p] 7! [p ^ p0] where p is a 3-tuple of polynomials. It follows that the first as-
sociated curve f1 2 Hol2k�2�r

�
G2(C3)

�
depends continuously on f ≥ [p]. The remainder

of the construction is manifestly continuous and it follows that Φk,r is continuous. We
also remark that the first factor, [b] 2 PVr, of ò�1

�
Ψ(f )

�
also depends continuously on

f . This is the ramification divisor of f and we denote it by R (f ).

LEMMA 2.2. Φk,r is proper.

PROOF. The proof follows the proof of Lemma 3.3 in [FGKO]. Suppose we have
a sequence fûng converging to û in Φk,r(Holk,r) ² Harmk�2�r,3k�2�r(CP2) and suppose
ffng ² Holk,r is such that ûn ≥ Φk,r(fn) for each n ½ 0. It will suffice to find a convergent
subsequence of ffng. We have Holk,r ² PV 3

k . Since the latter space is compact there is a
subsequence which converges to a point in [p] 2 PV 3

k . We must show that [p] 2 Holk,r.
Suppose [p] is in the stratum Sm for m ½ 0. Then we can write [p] ≥ [bq0, bq1, bq2]
where the qi have no common zero. Thus [q] ≥ [q0, q1, q2] 2 Hol(k�m).

Similarly, by choosing a further subsequence if necessary, we can assume that Ψ(fn)
converges to some point [s] 2 PV 3

2k�2. Since Ψ(fn) 2 Sr we must have [s] 2 Sr0

with r0 ½ r. Write [s] ≥ [dt0, dt1, dt2] with the ti coprime. So [t] ≥ [t0, t1, t2] is in
Hol2k�2�r0

�
G2(Cn+1)

�
.

Let Z ² S2 be the set of zeros of b and d and include the point at infinity if either
deg b Ú m or deg d Ú r0. The line [q(z)] is contained in the plane represented by [t(z)]
for all z so let

†(z) ≥ [t(z)] \ [q(z)]?.

† is a harmonic map which agrees with û on S2 n Z. So, by the unique continuation
property of harmonic maps, we must have † ≥ û. But

E(†) ≥ (2k � 2� r0) + (k �m) ≥ 3k � 2 � r0 �m

deg† ≥ (2k � 2 � r0) � (k �m) ≥ k � 2 � r0 + m.

Requiring E(†) ≥ E(û) and deg† ≥ degû we must have m ≥ 0 and r0 ≥ r. Thus
[p] 2 Holk,r.

3. The desingularizing variety. In this section we study the geometry of the strata
Holk,r. We start by constructing a filtration

Holk ≥ F0 ¦ F1 ¦ Ð Ð Ð ¦ ;

by closed subsets. The strata are the differences of successive elements in this filtration.
We construct varieties which sit over the Fr and show that these varieties are smooth.
This is sufficient to show that Holk,r is smooth and connected.
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To define the filtration let

Fr ≥ ff 2 Holk j f has ramification index ½ rg.

Then Holk,r ≥ Fr n Fr+1. It is useful to think of the ramification divisor R (f ) 2 PVr as
being in the symmetric product SPr(S2) ≥ (S2)rÛSr where Sr is the symmetric group on
r letters. An explicit homeomorphism SPr(S2) ¾≥ PVr is given by mapping an unordered
r-tuple hx1, . . . , xri to the equivalence class of a polynomial whose zeros are precisely
those points xi which are not equal to 1. We will say that hx1, . . . , xsi 2 SPs(S2) divides
R (f ) if R (f ) ≥ hx1, . . . , xs, ys+1, . . . , yri for some yr+1, . . . , yr. If all the points xi are finite
then this is just the usual notion of polynomial division.

Let
Xr ≥ f([a], f ) 2 PVr ðHolk j [a] divides R (f )g.

By projecting onto the second factor we get a quotient map pr: Xr ! Fr. The inverse
image p�1

r (f ) counts the (finite) number of elements [a] which divide R (f ). For maps
with ramification index exactly r there is only one point in the inverse image and pr

restricts to a homeomorphism Xr n p�1
r (Fr+1) ¾≥ Fr n Fr+1 ≥ Holk,r. We will prove the

following:

LEMMA 3.1. For r � k � 2 the spaces Xr are path-connected complex manifolds of
complex dimension 3k � 2r + 2.

This will imply Theorem 1.4. First of all, it identifies Holk,r with an open submani-
fold of a complex manifold of the correct dimension. Second, Holk,r is connected since
p�1

r (Fr+1) is a proper algebraic subset and cannot disconnect a smooth variety.
In order to study the geometry of Xr we need to characterize the condition that [a]

divide R (f ). Let f ≥ [p0, p1, p2]. Recall that in Section 2 we saw that we could write
Ψ(f ) ≥ [bq0, bq1, bq2] where [b] ≥ R (f ). The polynomial factors of Ψ(f ) are of the
form pip0j � p0ipj, for i Ú j. If deg a ≥ r then [a] divides R (f ) if a divides pip0j � p0ipj for
all 0 � i Ú j � 2. These conditions are not independent: Suppose p0 and a are coprime
and that a divides p0p0i � p00pi, for i ≥ 1, 2. Now

p1(p0p02 � p00p2)� p2(p0p01 � p00p1) ≥ p0(p1p02 � p01p2)

and if a divides both terms on the lefthand side it must also divide p1p02 � p01p2.
Let X0r ² Xr be the subset of pairs ([a], [p0, p1, p2]) such that deg a ≥ r, and a and p0

are coprime. Lemma 3.1 will follow from the next two lemmas.

LEMMA 3.2. Every point in Xr is contained in a neighbourhood biholomorphically
equivalent to X0

r.

PROOF. By a change of complex coordinate on S2 we may assume that the configu-
ration associated to [a] does not include the point at infinity, so deg a ≥ r.

Now PGL(3,C) acts on CP2 by complex, linear biholomorphisms. Thus it acts by
composition on Holk leaving the subspaces Holk,r invariant. In fact, for A 2 PGL(3,C),
R (A Ð f ) ≥ R (f ). Write f ≥ [p0, p1, p2]. It suffices to find è0, è1, è2 2 C so that è0p0 +
è1p1 + è2p2 is prime to a. Since no zero of a can be a zero of all the pi this condition is
satisfied by a generic choice of èi.

https://doi.org/10.4153/CMB-1997-035-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-035-4


THE SPACE OF HARMONIC MAPS 291

LEMMA 3.3. For r � k� 2 the spaces X0r are complex manifolds of complex dimen-
sion 3k � 2r + 2.

PROOF. We will prove the lemma by giving an explicit description of the space as
a smooth pullback. Let V +

d denote the set of monic polynomials in Vd. Let Z be the
set of pairs (a, p) 2 V +

r ð Vk such that a and p are coprime. Let Mat(s, t) be the space
of s ð t complex matrices. For s � t, let MatŁ(s, t) be the open subset of matrices with
rank s. We may identify MatŁ(s, t) with the Stiefel manifold Vs(Ct) of s-frames in Ct by
thinking of the s linearly independent rows of a matrix as a frame. Now define a map
L: Z ! Mat(r, k + 1) as follows: Given (a, p) 2 Z we can construct a linear map

L(a, p) 2 HomC(Vk, Vr�1) ¾≥ Mat(r, k + 1)

by L(a, p)Ðu ≥ [pu0�p0u]a where, for any polynomial q, we write [q]a for the congruence
class of q mod a.

Next consider the space

E ≥ f(A; u1, u2, u3)) 2 Mat(r, k + 1) ð V3(Ck+1) j ui 2 ker A, i ≥ 1, 2, 3g.

Projection onto the second factor E ! V3(Ck+1) makes E a vector bundle. To see this
first note that the condition that each of the ui be in ker A is equivalent to requiring that
each of the rows of A be in the kernel of the matrix with rows u1, u2 and u3. So, if we
map

V3(Ck+1) �! Gk�2(Ck+1)

by associating to each 3-frame a 3ð (k + 1) matrix which we map to its kernel, then E is
the pullback of the r-fold Whitney sum of the canonical Ck�2-bundle over Gk�2(Ck+1).

We are now in a position to describe X0r. Consider the diagram

E??y†

Z û
�! Mat(r, k + 1)ð Ck+1

where † is the projection (A; u1, u2, u3) 7! (A, u1) and û sends (a, p) 7! (L(a, p), p). The
pullback of this diagram can be described as the set of points (a, p0, p1, p2) 2 V +

r ð

V 3
k with (a, p0) 2 Z and pi 2 ker L(a, p0) for i ≥ 1, 2. It is clear that d† maps onto

T Mat(r, k + 1) and dû maps onto TCk+1 so † and û are transversal and the pullback
is a manifold. Finally we projectivise by identifying (a, p0, p1, p2) ¾ (a,ïp0,ïp1,ïp2).
Then we can equate X0r with the open submanifold comprised of equivalence classes
for which p0, p1, p2 have no common zeros so that they define a holomorphic map. To
compute the dimension of X0r note that the dimension of the pullback is dim Z + dim E�
dim

�
Mat(r, k +1)ðCk+1

�
≥ 3k�2r +3. After projectivising we get the stated dimension

for X0r.
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4. Appendix: some examples. With the description of the strata Holk,r, for r �

k�2, developedin the previous section it is possible to obtain explicit geometrical models
for the first few strata. In this section we describe some examples. Let G ≥ GL(3,C)ÛZ
where Z ¾≥ CŁ is the centre. This is the automorphism group of CP3 and so it acts on
Holk. The condition that the image not lie in any CP1 means that G acts freely on on
the subspace of full maps in Holk. Moreover it fixes the strata Holk,r which, for r �

k� 2 consist of full maps. Thus the components Harmk,E(CP2) have free G-actions. The
construction in the last section can be modified slightly to describe these components as
pullbacks of canonical principal G-bundles. We use the machinery of algebraic topology
to make calculations of some of the cohomology groups. This section assumes some
background in algebraic topology.

The first non-trivial case is degree 2. Consider a triple of degree 2 polynomials
(p0, p1, p2). In order to define a full map the pi must be linearly independent in the space
of polynomials, V2. This condition would be violated if the pi had a common zero. For
the same reason the map they define must be unramified. We may use the coefficients
of the three polynomials to form a matrix in GL(3,C), defined up to multiplication by a
non-zero scalar. Thus Hol2,0

¾≥ G. This result, for based maps, appears in [C].
The group G has the homotopy type of PU(3) ≥ U(3)ÛS1. The cohomology of PU(3)

is known [BB]. For p Â≥ 3

HŁ
�
PU(3);ZÛp

�
≥ HŁ

�
SU(3);ZÛp

�
≥ Λ[e3, e5].

For p ≥ 3

HŁ
�
PU(3);ZÛ3

�
≥ Λ[e1, e3] 
 ZÛ3[x2]Ûx3

2 ≥ 0.

Where Λ[ai, . . .] and ZÛ3[bi, . . .] denote an exterior algebra and a polynomial algebra on
the given generators. The subscripts denote the dimensions of the generators.

In degree k ≥ 3 we can have r ≥ 0, or 1 and we may again describe a full map by
three linearly independent polynomials. Consider the condition that

(4. 1) ñpi(z) ≥ ïp0i(z), i ≥ 1, 2, 3

for some z 2 C. If ï Â≥ 0 this corresponds to ramification at z. If ï ≥ 0 then the pi all
vanish at z. In this way we see the possible ramifications at z being parameterized by
ñ 2 C with the extreme case, ñ ≥ 1, corresponding to the simultaneous vanishing of
all three polynomials.

To see what happens as z ! 1 we change coordinates to ò ≥ z�1. We look at new
polynomials qi defined by requiring qi(ò) ≥ ò3pi(ò�1) for ò Â≥ 0. And a new condi-
tion for ramification corresponding to 4.1: óqi(ò) ≥ çq0i(ò). Gluing these two pictures
together along the overlap C n f0gwe obtain an bundle over S2 with fibre S2. We denote
the total space of this bundle by X. It is useful to think of X as a line bundle, Y, com-
pactified by adding a section at infinity. The finite part of the fibre over z gives the data
for ramifications at z, and the extra point at infinity corresponds to the condition that all
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three polynomials vanish at z. An explicit calculation of the transition functions shows
that c1(Y) ≥ 2.

To obtain a description of the strata Hol3,1 we use the ramification data to construct a
pullback bundle. This is essentially the same construction used in the last section. Matters
are considerably simplified by the fact that, in degree 3, L maps Z into MatŁ(r, 4) the full-
rank matrices. So the kernel of L(a, p) has constant dimension and E is the pull back over
ker: MatŁ(r, 4) ! G4�r(C4) of a principal GL(3,C)-bundle. Another way of putting this
is that condition 4.1 is always non-degenerate and defines a 3-dimensional subspace of
the space of polynomials V3

¾≥ C4. This extends over the fibre at infinity to give a map
û: X !̈ G3(V3) ¾≥ G3(C4) ¾≥ CP3.

Since Y parameterizes the ramification data we can write

Hol3,1 ≥ f(y, [p0, p1, p2]) 2 Y ð PV 3
3 j pi are linearly independent and span û(y)g.

Let V3(C4) be the Stiefel manifold of 3 frames in C4 and let PV3(C4) ≥ V3(C4)ÛCŁ.
Then the canonical GL(3,C)-bundle projection is CŁ-invariant and we obtain a principal
G-bundle

ô:PV3(C4) ! G3(C4) ¾≥ CP3

And so Hol3,1 is the total space of the pullback of ô over

Y ² X
û
�! CP3.

By Corollary 1 this gives us a description of Harm0,6(CP2). We can compute the coho-
mology of this space. A straightforward calculation shows that û restricted to the zero
section in Y has degree 3 and so the first Chern class pulls back to three times a gener-
ator in H2(Y). We need to know the cohomology of PV3(C4) and the differentials in the
Serre spectral sequence for the bundle ô. The cohomology calculation is a straightfor-
ward application of Baum’s results regarding the Eilenberg-Moore spectral sequence for
the cohomology of a homogeneous space [Ba] and from this we can deduce the necessary
differentials. The E2 term is

E2(ô)Ł,Ł ≥ HŁ(CP3;ZÛp)
 HŁ
�
PU(3);ZÛp

�
.

We can describe the differentials in terms of the generators for the cohomology of the
fibre given above. Let b be the mod p reduction of the first Chern class. There are three
cases: For p ≥ 2 there are no non-trivial differentials. For p ≥ 3 there is only one non-
trivial differential generated by d2(e1) ≥ b. For p Ù 3 the only non-trivial differentials
are generated by d4(e3) ≥ b2. This is sufficient to determine the differentials in the
spectral sequence for cohomology with ZÛp coefficients of the pullback bundle

PU(3) ! Hol3,1 ! Y.

Since the base has the homotopy type of S2 the only possible differentials are at E2. For
p Â≥ 3 there are no non-trivial differentials in E2(ô). For p ≥ 3, b pulls back to zero so
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the only possible differential is zero. In either case the spectral sequence collapses at E2

and

HŁ
�
Harm0,6(CP2);ZÛp

�
¾≥ HŁ(S2;ZÛp) 
HŁ

�
PU(3);ZÛp

�
.

The spectral sequence does not completely determine the cup products so this need not
be an algebra isomorphism.

We can also describe Hol3,0. It is the restriction of the bundle ô to CP3 n û(X). This
gives a geometric description of Harm1,7(CP2), the first non-minimal critical level in
the degree 1 component, as a principal G-bundle over the compliment of X in CP3. This
compliment is not simply connected and so using the Serre spectral sequence to compute
cohomology groups will involve understanding the system of local coefficients.
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