LATTICE ISOMORPHIC SOLVABLE LIE ALGEBRAS

R. C. GLAESER and B. KOLMAN¹

(Received 6 February 1968; revised 9 August 1968)

Introduction

Let L be a Lie algebra over a field k of any characteristic, and consider the lattice $\mathscr{L}(L)$ of all subalgebras of L. In this paper we prove that if L and M are lattice isomorphic Lie algebras, over a field of any characteristic, and L' and M' are nilpotent, then the difference between the orders of solvability of L and M differs by at most one.

1. Full intervals

DEFINITION. An (n+1)-dimensional $(n \ge 1)$ Lie algebra is called almost abelian if it has a basis e_0, e_1, \dots, e_n such that $e_0e_i = e_i$ for $i \ge 1$ and $e_ie_j = 0$ for $i, j \ge 1$ (cf. [3] p. 150).

Let *L* be a Lie algebra and *A* and *B* subalgebras of *L* such that $A \subseteq B$. We shall denote the lattice of all subalgebras *C* of *L* such that $A \subseteq C \subseteq B$ by $\mathscr{L}(B \div A)$.

DEFINITION. We call a lattice $\mathscr{L}(L)$ projective if it is isomorphic to the lattice of all subspaces of a projective geometry.

DEFINITION. An interval $\mathscr{L}(B \div A)$ of a Lie algebra L is called *full* if every subspace U of L, $A \subseteq U \subseteq B$, is a subalgebra.

Clearly, if L is a Lie algebra, then $\mathscr{L}(L)$ is projective if and only if $\mathscr{L}(L \div 0)$ is full.

In this paper we denote the derived algebra of a Lie algebra L by L'and the derived algebra of $L^{(r-1)}$ by $L^{(r)}$. We use the symbol \cup to denote the join in the lattice of subalgebras. Also, $\langle S \rangle$ is the subspace spanned by the set S and $\langle U, V \rangle$ is the subspace spanned by the subsets U and V.

PROPOSITION 1. For a Lie algebra L, $\mathscr{L}(L)$ is projective if and only if L is abelian or almost abelian.

PROOF. If L is abelian or almost abelian, then clearly $\mathscr{L}(L \div O)$ is full.

 1 The authors wish to thank the referee for his suggestions, which resulted in shortening several of the proofs.

266

Conversely, suppose that $\mathscr{L}(L \div O)$ is full and that L is not abelian. Then there exists a two dimensional non-abelian subalgebra of L. Hence, there exist $e, x \in L$ such that $ex = x \neq o$. Now suppose that e, x and y are linearly independent. Then $ey = \lambda e + \mu y$ for some λ, μ in the field, and

$$e(x+y) = x + \lambda e + \mu y \in \langle e, x+y \rangle.$$

It then follows that $\mu = 1$ and that e(ey) = ey. Thus, $L = \langle e, eL \rangle$. Since eL is a subalgebra we conclude that L' = eL.

Now $(e+x)x = x \neq o$, and so by the above (e+x)L = L' and (e+x)y = y for all $y \in L'$. But ey = y for $y \in L'$, and thus xy = 0. It then follows that L is almost abelian. This completes the proof.

It is well known that in a nilpotent Lie algebra $L, L' = \Phi(L)$, the Frattini subalgebra. If $\mathscr{L}(L \div A)$ is full, then A is an intersection of maximal subalgebras, and hence $A \supseteq \Phi(L) = L'$. Therefore, a nilpotent Lie algebra L is abelian if and only if $\mathscr{L}(L)$ is projective. Also, if L is a nilpotent Lie algebra with subalgebras A and B, $A \subseteq B$, and if $\mathscr{L}(B \div A)$ is full then $B' \subseteq A$.

LEMMA 1. Let L and M be solvable Lie algebras and let $\varphi : \mathcal{L}(L) \to \mathcal{L}(M)$ be a lattice isomorphism. If A and B are subalgebras of L such that $A \subseteq B$ and $\mathcal{L}(B \div A)$ is full then $\mathcal{L}(\varphi(B) \div \varphi(A))$ is full.

PROOF. Let V be a subspace of M such that $\varphi(A) \subseteq V \subseteq \varphi(B)$. Let $x, y \in V$, we show that $xy \in V$. Since $\langle x \rangle$, $\langle y \rangle$ are subalgebras of M, there exist $x_0, y_0 \in L$ such that $\varphi(\langle x_0 \rangle) = \langle x \rangle$ and $\varphi(\langle y_0 \rangle) = \langle y \rangle$. Let $U = \langle x_0, y_0, A \rangle$. Then $A \subseteq U \subseteq B$ and so by assumption U is a subalgebra of L. Thus, $U = \langle x_0 \rangle \cup \langle y_0 \rangle \cup A$. Since L and M are solvable, φ preserves dimensions. From dim $A = \dim \varphi(A)$ it follows that

 $\dim \langle x_0, y_0, A \rangle = \dim \langle x, y, \varphi(A) \rangle.$

But dim $U = \dim \varphi(U)$ and therefore $\varphi(U) = \langle x, y, \varphi(A) \rangle \subseteq V$. Thus, $xy \in V$.

2. Order of solvability

THEOREM 1. If L and M are lattice isomorphic nilpotent Lie algebras, then L and M have the same order of solvability.

PROOF. Since L/L' is abelian, we have that $\mathscr{L}(L/L')$ is projective, which implies that $\mathscr{L}(L \div L')$ is full. If φ is the lattice isomorphism between $\mathscr{L}(L)$ and $\mathscr{L}(M)$ we then have that $\mathscr{L}(M \div \varphi(L'))$ is full and hence $\varphi(L') \supseteq M'$. Similarly, $\varphi^{-1}(M') \supseteq L'$. Thus, $M' = \varphi(L')$. By induction, $M^{(k)} = \varphi(L^{(k)})$, which implies that L and M have the same order of solvability. REMARK. We also note that Theorem 1 follows from Corollaries 1' and 2' on pages 458 and 459 of [2].

THEOREM 2. Let L and M be lattice isomorphic Lie algebras, with L' and M' nilpotent. Then the orders of solvability of L and M differ by at most one.

PROOF. Let φ be the lattice isomorphism between $\mathscr{L}(L)$ and $\mathscr{L}(M)$. Now $\varphi(L')/\varphi(L') \cap M'$ is abelian for it is isomorphic to $\varphi(L') \cup M'/M'$. Therefore, $\mathscr{L}(\varphi(L') \div \varphi(L') \cap M')$ is full. By Lemma 1,

$$\mathscr{L}(L' \div L' \cap \varphi^{-1}(M'))$$

is full. Since L' is nilpotent,

$$L^{\prime\prime} \subseteq L^{\prime} \cap \varphi^{-1}(M^{\prime}) \subseteq L^{\prime}.$$

Similarly,

$$M^{\prime\prime} \subseteq M^{\prime} \cap \varphi(L^{\prime}) \subseteq M^{\prime}.$$

Now $L' \cap \varphi^{-1}(M')$ and $\varphi(L') \cap M'$ are lattice isomorphic. By Theorem 1 they have the same order of solvability, say r. We then have

and

$$L^{(\mathbf{r})} = (L')^{(\mathbf{r}-1)} \supseteq (L' \cap \varphi^{-1}(M'))^{(\mathbf{r}-1)} \neq 0,$$

$$L^{(r+2)} \subseteq (L' \cap \varphi^{-1}(M'))^{(r)} = 0.$$

Thus, the order of solvability of L is either r+1 or r+2. Similarly, we find that $M^{(r)} \neq 0$ and $M^{(r+2)} = 0$, which implies that the order of solvability of M is either r+1 or r+2. This completes the proof.

COROLLARY 1. If L and M are lattice isomorphic solvable Lie algebras over a field of characteristic zero, then the orders of solvability of L and M differ by at most one.

References

- Barnes, D. W., 'Lattice Isomorphisms of Lie Algebras', J. Austral. Math. Soc. 4 (1964), 470-475.
- [2] Barnes, D. W., and Wall, G. E., 'On Normalizer Preserving Lattice Isomorphisms Between Nilpotent Groups', J. Austral. Math. Soc. 4 (1964), 454-69.
- Kolman, B., 'Semi-modular Lie Algebras', J. Sci. Hiroshima Univ. Ser. A-I 29 (1965), 149-63.

Temple University, Philadelphia, Pa. Drexel Institute of Technology, Philadelphia, Pa.