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Abstract. In the following a method is presented for computing the internal structure of nonspherical 
stars assuming that the force per gram causing the deviation from spherical symmetry is conservative. 
The method has the advantage that in a normal (spherical) stellar structure code only slight changes 
have to be made in order to obtain nonspherical stellar models. The method can be applied as well to 
rotating stars as to stars distorted by tidal effects. Although it is similar to that of Faulkner et ai. (1968) 
in the case of purely rotating stars, it is not necessary to use the division into two zones, where either 
slow rotation or negligible contribution to the gravitional potential is assumed. 

1. Mathematical Definitions 

We consider a potential function ¥(x, y, z). The equipotential surfaces then are 
denned by f = const. We assume them to be topologically equivalent to spheres. The 
volume enclosed by a surface W = const, may be Vy, the surface area ô *. 

For any function/(x, y, z) we define the mean value over an equipotential surface 
W = const, by 

f = ±- f fda, (1) 
f = const. 

where dcr is the surface element of the surface f = const. By definition 

Sr = f do-. (2) 
f = const. 

The mean value/can be determined for each equipotential; it therefore is a function 
of f o n l y , / = / ( f ) . The distance dn between two neighboring equipotential surfaces 
f = const, and W + d¥ = const, is in general not constant. We define a function 
g{x,y,z) by 

g = dYjdn . (3) 

From the function g the mean values g and g 1, both being functions of f, can be 
determined. One then gets for the volume dVv between the surfaces ¥ and ¥ +d¥ 

dn 
dVv = dn da = d f do = g~1SvdV. (4) 

dW 
¥ = const. f = const. 

In analogy to the sphere we define a 'radius' rr by 

47t 
Vv = -r%. (5) 
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The new quantity rv is a function of *F. The surface area ST in general is not equal to 
4nr£; we therefore define a new quantity u by 

u = SyiAnry, (6) 

where again u is a function of f only, « = w(f). If the surfaces "P = const. are spheres, 
u is equal to 1. We define by Mw the mass enclosed by the surface f = const. If *P 
defines the mechanical potential of a vector field g: 

g = - V f , (7) 

we can define the two functions 

_ 4 -^GMV 

GMV rfj, 

where G is the gravitational constant. If the function W is the gravitational potential 
of a selfgravitating sphere the surfaces f = const, are spheres (u=l ) , and 

g = GMr/4 (9) 

is constant on these spheres and therefore v and w are constant and equal to 1. 
The Equations (l)-(8) are pure mathematical definitions. We will apply them to 

gravitational potential fields distorted by perturbing forces. It is worth mentioning 
that the Equations (l)-(8) do not contain any simplifying assumptions. 

2. Stellar Structure Equations 

A star may be distorted by centrifugal or tidal forces. The perturbing acceleration 
may be conservative. The potential of the total (i.e. gravitational plus perturbing) 
acceleration may be W. In the following we assume the function W(x, y, z) to be 
known. We then derive the stellar structure equations for nonspherical stars, the non-
sphericity being defined by the nonspherical equipotential surfaces. We start with 
spherical stars and use the well-known fact that P, Q in hydrostatic equilibrium are 
constant on equipotentials. The mass &MV between two equipotentials "P and f +dW 
is according to (5) 

dMv = Q(Y)dVY = 4nr$,QQP)drv. (10) 

We therefore get 

drvldMv = IjAnrlQ. (11) 

From (4), (10) we get 

/ d V T 1 (dVv\~
ldMv dMv , N 

d V = dVv = ( — ) — * = = J L . (12) 

and with (6), (8) 

GMvdMw , , 
d ^ = ^ r - (13) 
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The condition for hydrostatic equilibrium, dP/d*F = —Q, can now be written with (13) 
in the form 

where 

dP GMV 

dMp 4nr£ 

1 4nr% 

uw GMVSV 

1 

Tr1 

(14) 

(15) 

The factor fP is a function of ¥. If ¥ is known the equipotential surfaces can be 
determined, and with them Sv, rv, g, and g ~1 for each surface simply from the geo
metry of the equipotentials. The mass Mv depends on the density distribution Q(V) 
and in principle can be determined from (10) by integration. 

If Ly is the energy which passes per second through the equipotential f = const, in 
the outward direction, then the increase dLw of Lr between the equipotential surfaces 
W and f + d f is given by 

dLT = edMT (16) 

where e is the nuclear energy generation per gram per sec. For chemically homogeneous 
stars e depends only on Q and T and is therefore constant on equipotential surfaces 

dL^/dMp = e. (17) 

In these energy equations we neglected an additional term which contains the time 
derivative of the entropy. This may be permitted as long as we consider variations in 
time which are slow compared to the Kelvin-Helmholtz time scale. 

For the case of energy transport by radiation we have 

4acT3 dT 4 a c T 3 dT 
F- — = g-~. (18) 

3KQ dn 3KQ d f 

This equation contains the well-known fact that the radiative flux F varies on an 
equipotential surface proportionally to g. With Equation (13) we obtain 

4acT3 dT uw4nr$ 
F-= g . (19) 

3K dMv GMW 

In order to get Lv we integrate Equation (19) over the equipotential f = const, and 
obtain 

l6nacT3 dT uwrt 
Fda = gSy • - —j-, (20) 

3K dMv GMV 

l-tu/ — 

V = const. 

and 
64n2acT34 . dT 

? UVWJ7T> (2V> 

3K dMv 
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or 

with 

dT 3/cLy, 

dAV ~ ~ 64K2acT3'4 T' ( ' 

1 /47irix 2 

/ T = - 2 — = - ^ - ^ - (23) 

Equations (11), (14), (17), (22) become the four well-known stellar structure equations 
for the case of spherical configurations, for which/P = / 7 = 1. In the nonspherical case 
we assume t h a t / p , / r are known as functions of Mv. We can then solve the stellar 
structure equations. But in order to get a consistent solution one has to check, whether 
the equipotential surfaces and the functions/P,/ r are consistent with this model. For 
instance, that part (j) of V, which corresponds to the self-gravitation, must satisfy the 
Poisson equation A(j> = 4nGQ. 

3. The Uniformly Rotating Star 

In order to solve the stellar structure equations one has to know the correction 
factors fP and/Tas functions of />. They are pure geometrical quantities, depending 
only on the form of the equipotential surfaces. In principle it is necessary to solve the 
Poisson equation simultaneously with the stellar structure equations. In our method 
we approximate the potential simply by the dimensionless expression (the 'geometry 
function') 

«* = --+ x2(l - A * 2 ) (24) 
x 2 

with 
x = (co2IGM)Ui r, /i = cos9. (25) 

We also redefine v and w as 

v = (d¥ldn)l(lly2), w = (d"P/d/i)-]/y2 (26) 
with 

y = (w2/GM)1/3Av (27) 

instead of using Equations (8). Although in Equations (8) Mv and rw appear simulta
neously, the mass Mw does not appear any more in the definition of v and w. The 
reason is that the geometry function is only used to describe the deviations from spher
icity of the equipotentials. 

Although our •? is identical with the normalized Roche potential the models com
puted by the method described are realistic stellar models with finite central density 
and not Roche models. This can immediately be seen if one applies the method to the 
limiting case of a nonrotating star. The equipotential surfaces are spheres; therefore 
fp =fr = 1 a n d o n e gets the normal stellar structure equations and not spherical 
Roche models. The fact that stellar models are regular in the center although a geometry 
function is used which is singular there is a major advantage of our method. 
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Fig. 1. The correction factors/p and fa as functions of y = (co2/GM) vs w for the case of pure solid 
body rotation. The ratio of the two functions is plotted in order to show the behavior near the surface. 

Once the function W is specified and 

f = const. 

Vv= f dt, 
0 

ST = da, 

f = const. 

d¥ 1 C d<P 
— = — — ( 
dn S<p _ J dn 

f = const. 

/dfy1 i 
\dn) ~ Sy . 

/• 

onst 

da , 

©"•* 
are computed, fP and fT can be determined (Figure 1). 

In the case of a corotating star in a close binary system 

? = - + - + i^(l - / ) (1 + «) - i« (2 + - i -

(28) 

(29) 

(30) 

(31) 

(32) 
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can be used as a geometry function, with 

2 . 2q q2 

ui = x H x cos<p sin S + . r̂  , (33) 
l+q (!• + «) 

, , 2 1 
u2 — x x cos cp sin 9 + ; ^, (34) 

\+q ( l + « ) 

q = M2/Ml, x = r/d, (35) 

where for the angular velocity 

to2 = G{M, + M2)/d
3 (36) 

is taken according to Kepler's law (d= distance between the two components). The 
origin of the system of polar coordinates r, 9, cp is in the center of mass of the binary 
system. 

In principle the geometry function can be adjusted to the problem to be solved. If, 
for instance, the angular velocity is much higher near the axis of rotation, the equi-
potentials will have a stronger oblateness for x in the neighborhood of zero, an effect 
which in principle can be taken into account by adding to the geometry function a 
term which represents the potential of a quadrupole-like symmetry. 

0 0.25 0.5 0.75 w>» 1 

Fig. 2. Luminosity as a function of co2 for uniformly rotating zero age main sequence stars of 1,5, 
and 10 MQ with a chemical composition of A"=0.739, Z = 0.021. The units used are: maximum 
angular velocities comax for the abscissa, and luminosities of the nonrotating models Lnr for the 

ordinate. The values of these units are: 
\ MQ 5MQ 10 M 0 

tomax/sec"1 5.124 x IO-4 2.635 x 10^* 1.493 x 10^4 

logi„ r /L 0 -0.1204 2.6558 3.6724 

https://doi.org/10.1017/S0252921100027007 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100027007


26 R. KIPPENHAHN AND H.-C. THOMAS 

X - 0739 

Z-0.021 

Fig. 3. Mean radius Ry as a function of w2 for uniformly rotating zero age main sequence stars of 
1,5, and 10 MQ. Units for the abscissa are the same as in Figure 2; for the ordinate the radii Rnv of 

the nonrotating models were used. The values of these radii are 

i?nr/cm 6.320 x 1010 

5A/Q 

7.767 x 101 

10 MQ 

2.655 x 10u 

One can imagine an iterative procedure, starting with a given geometry function, 
in which one solves the stellar structure equations and uses the density distribution 
obtained to improve the geometry function via the Poisson equation. 

4. Applications 

A. UNIFORMLY ROTATING MAIN SEQUENCE MODELS 

Sets of models of different angular velocities have been computed for 1, 5, and 10MG 

using the geometry function (24). The tabulated correction factors were built into a 
normal stellar structure code based on the Henyey method. Starting with nonrotating 
models only a few iterations in the Henyey method were necessary to obtain the rotat
ing models, even in the case of models rotating with the maximum possible angular 
velocity. Figures 2 and 3 give the results. The results agree well with those obtained 
by Faulkner et al. (1968) and by Sackmann and Anand (1969); our values are only 
slightly smaller. The only remarkable difference is the change in the mean radius for 
the 1 M0-model. 

B. UNIFORMLY ROTATING HELIUM MAIN SEQUENCE STARS 

For 1, 5, and 1OM0, helium stars, on the helium main sequence, have been computed 
for different angular velocities. The results are given in Figures 4 and 5. 
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0.9 

0.85 

0.25 0.5 0.75 
%L 1 

Fig. 4. Luminosity as a function of co2 for uniformly rotating helium stars on the helium main 
sequence with masses 1,5, and 10 MQ and a chemical composition of Y = 0.979, Z = 0.021. Units are 

defined as in Figure 2, their values being: 

O m a x / s e C - 1 

log LBT/LQ 

1 Ma 5 Mr 

4.106 x 10"2 

2.3727 
1 .699x l0 - 2 

4.4647 

10 MQ 

1.268 x 10"2 

5.1374 

Fig. 5. Mean radius Rv as a function of co2 for uniformly rotating helium stars on the helium main 
sequence with masses 1, 5, and 10 A / 0 . Units are defined as above, their values being: 

1 Ma 5Mr 10 Mr. 

Rnr/cm 1.363 x 1010 4.136 x 1010 6.219 x 1010 
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TABLE I 
Comparison of a nonrotating and a fully rotating cooling white dwarf of the same central temperature 

log L/LQ 

-2 .4285 
-2 .6110 

L,jL/nr 

l 
0.657 

log Rv 

9.2099 
9.2794 

Rv/R nr 

I 
1.174 

logPo 

21.6534 
21.5761 

logTc 

7.0371 
7.0371 

Fig. 6. The close binary system of 10 + 5 M Q in the plane of symmetry vertical to the rotation axis. 
Both stars are in the zero age stage. The numbers give distances in solar radii. 

TABLE II 
A zero age main sequence star of 10Mo {X= 0.739, Z = 0.021) filling its critical lobe in a close binary 
system of 10 + 5 MQ. For comparison, results for a nonrotating star of 10 A/Q (line 2), a star rigidly 
rotating with the same angular velocity as the primary of the binary system (line 3), and a star rigidly 
rotating with the maximum angular velocity possible (line 4) are given. The value for omax = 

1.493 xlO"4 sec"1. 

C02/o2max 

0.3655 
0 
0.3655 
1 

log L/LQ 

3.6632 
3.6724 
3.6632 
3.6463 

L/Lnv 

0.979 
1 
0.979 
0.942 

log Rv 

11.4414 
11.4240 
11.4392 
11.5028 

Ryi/RjiT 

1.041 
1 
1.036 
1.200 

C. A FULLY ROTATING WHITE DWARF MODEL 

A nonrotating white dwarf model of 0.23 M0 consisting of a helium core with an 
inactive hydrogen rich envelope has been taken from the computations of Kippenhahn 
et al. (1968) and compared with a fully rotating white dwarf model of the same central 
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temperature and the same chemical structure. The latter again was computed with 
the method described above. Table I gives the comparisons. 

D. A COROTATING CLOSE BINARY SYSTEM 

The method has been applied to a system of 10 + 5MG. The distance has been chosen 
in such a way that in the zero age stage the primary just fills its critical lobe (Figure 6). 
For both models the geometry function (32) has been used. While the secondary is 
only slightly distorted the primary shows the maximum effects due to tidal distortion. 
Table II gives the comparison between a spherical model for the primary, the nonspher-
ical model derived by our method, and the model of a rotating star, rotating with 
the angular velocity of the binary system. One can see that within an accuracy of 10 - 4 

the change in luminosity is caused by the rotation of the corotating binary system 
while the effect of the tidal forces can only be seen in a somewhat larger increase of 
the mean radius compared with the purely rotating stellar model. Similar conclusions 
were reached by Jackson (1970), who extended the method of Faulkner, Roxburgh, 
and Strittmatter by including tidal effects from a companion in a close binary system. 
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Discussion 

Jordahl: Please specify more fully the variation in angular velocity with radius and why it was 
chosen. 

Thomas: It was chosen such that co2 = cos
2 •( Mr/M), <as being the angular velocity at the surface, in 

order to simplify the geometry function. u> starts decreasing only when/p and / r are already close to 
1, so the error will be negligible. 

Ostriker: Can the change in sign you found (for the one solar mass model) in the quantity d rwl 
d (w2) be due to a change from primarily CNO cycle to PP chain as the central temperature decreases 
with increasing rotation? 

Thomas: No, because in our 1 MQ model the contribution of the CNO-cycle to nuclear energy 
production is small, even in the spherical model. 
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