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Dry lakes covered with a salt crust organised into beautifully patterned networks of narrow
ridges are common in arid regions. Here, we consider the initial instability and the ultimate
fate of buoyancy-driven convection that could lead to such patterns. Specifically, we look
at convection in a deep porous medium with a constant throughflow boundary condition
on a horizontal surface, which resembles the situation found below an evaporating salt
lake. The system is scaled to have only one free parameter, the Rayleigh number, which
characterises the relative driving force for convection. We then solve the resulting linear
stability problem for the onset of convection. Further exploring the nonlinear regime of this
model with pseudo-spectral numerical methods, we demonstrate how the growth of small
downwelling plumes is itself unstable to coarsening, as the system develops into a dynamic
steady state. In this mature state we show how the typical speeds and length scales of the
convective plumes scale with forcing conditions, and the Rayleigh number. Interestingly, a
robust length scale emerges for the pattern wavelength, which is largely independent of the
driving parameters. Finally, we introduce a spatially inhomogeneous boundary condition
– a modulated evaporation rate – to mimic any feedback between a growing salt crust and
the evaporation over the dry salt lake. We show how this boundary condition can introduce
phase locking of the downwelling plumes below sites of low evaporation, such as at the
ridges of salt polygons.
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(a) (c)

(b) (d )

Figure 1. Typical salt polygon patterns at (a,b) Badwater Basin in Death Valley and (c,d) Owens Lake, both
in California. (Image (a) courtesy Photographersnature (2012), CC BY-SA 3.0.)

1. Introduction

This study of convection in a porous medium is motivated by the patterns shown in
figure 1. The examples shown there are of dry salt lakes, or playa (Briere 2000), which
are amongst the most inhospitable places on the surface of the earth. Dry lakes typically
develop in arid environments, where evaporation outweighs precipitation and where
mineral-rich groundwater is refreshed by inflow from surrounding regions of higher
altitude (Lowenstein & Hardie 1985; Gill 1996; Briere 2000). The heat fluxes through the
surface of such salt deserts are important to understanding the water and energy balances
in arid regions (Bryant & Rainey 2002). Additionally, salt deserts are responsible for a
significant part of the global emission of atmospheric dust (Gill 1996; Prospero 2002;
Washington et al. 2003). However, despite the extreme conditions that prevail above
ground, the water table of dry lakes often remains very near to the surface (Gill 1996;
Briere 2000; Bryant 2003; Nield et al. 2015), allowing for active patterns of fluid flows
within the pore spaces of the soil (e.g. Tyler et al. 1997; Wooding, Tyler & White 1997;
Stevens et al. 2009; Van Dam et al. 2009). As evaporation rates are high (Tyler et al.
1997; DeMeo et al. 2003; Brunner et al. 2004; Groeneveld, Huntington & Barz 2010),
soluble salts accumulate in such regions, and precipitate into a solid salt crust covering
the desert floor. We have argued that these two processes, of subsurface flows and surface
crust growth, are coupled (Lasser 2019; Lasser et al. 2019). In the main body of the present
study we will focus on analysing the instabilities of the subsurface flow. Subsequently, we
will discuss how this flow might support and interact with preferential precipitation of salt
in certain areas on the surface.

Within the crust of a dry lake, captivating and beautiful patterns can emerge, developing
into a network of polygons, as shown in figure 1. Around the world – from Owens Lake
and Badwater Basin in California (Lasser et al. 2019; Lasser, Nield & Goehring 2020)
or the Salt Lake Desert of Utah (Christiansen 1963) to the Great Salt Desert of Iran
(Krinsley 1970), Salar de Uyuni in Bolivia and the Sua Pan of Botswana (Nield et al.
2015) – these salt polygons are usually expressed with a diameter of a couple metres,
individually bounded by ridges a few centimetres high. These regular patterns immediately
draw the eye of an observer and the question of their origin arises. The raised structures of
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Convection in dry salt lakes
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Figure 2. Sketch of the proposed buoyancy-driven flows in the soil beneath a polygon: water evaporates at the
salt crust (arrows at surface) allowing the dissolved salt content to build up in the fluid-saturated porous medium
below. When the salt-rich boundary layer becomes unstable, plumes of high salinity start sinking downwards
below the salt ridges while fresh water rises in the middle of the polygon (red arrows).

polygonal ridge patterns in salt deserts also contribute to surface roughness (Nield et al.
2015). Under the effect of the often strong winds which blow over a desert’s surface, dust is
emitted from salt pans and is carried into the atmosphere. The surface roughness, alongside
the salt chemistry and other crust characteristics, influences the uncertainty in modelling
dust emission from desert landscapes (Raupach, Gillette & Leys 1993; Marticorena &
Bergametti 1995). Christiansen (1963) and Krinsley (1970) attempted to explain the growth
of salt polygons in dry lakes by the folding and cracking of the salt crust, respectively.
However, neither of these explanations is sufficient to explain the emerging polygonal
shapes and, in particular, the robust length scale observed in nature around the world.
Specifically, both models would predict that the pattern wavelength is proportional to
the thickness of the salt crust. However, this wavelength is consistently 1–3 m, in crusts
ranging from sub-centimetre to several metres thick (Krinsley 1970; Lowenstein & Hardie
1985; Lokier 2012; Lasser et al. 2019). Recently, buoyancy-driven convection, taking place
within the wet porous sand below the salt crusts, was brought forward as an alternative
candidate for a driving mechanism for pattern formation (Lasser et al. 2019). Here, we will
model the onset of this mechanism as well as the maturation and scaling of the dynamics
of buoyancy-driven convection that can occur below the surface of a dry salt lake.

Specifically, we will present a study of a model of solutal convection in a porous
medium, as illustrated in figure 2. The porous medium can be interpreted as the sediment
below the salt crust of a dry salt lake, and the solute as the salt dissolved in the groundwater
that fills the porous medium. The salty groundwater is re-supplied by an influx of
cleaner water from far below. Evaporation of water is enhanced both by wind and high
temperatures, causing the precipitation of salt and growth of the crust at the surface. Due
to the accumulation of salt near the surface the salinity, and thereby the density, of the
water is higher there than it is further below. If the resulting density imbalance is large
enough, this configuration is unstable, leading to buoyancy-driven convective motion.

We model this problem in an idealised and simple two-dimensional geometry, whose
domain is deep compared with the dynamics that can arise near the surface. The domain
has an upper boundary that is only permeable to fluid and which accounts for fluid
loss through evaporation. The lower boundary provides for the recharge of fluid from a
reservoir of fixed salt concentration. This model is investigated through a linear stability
analysis, as well as with numerical simulations. In the latter case we use periodic boundary
conditions in the horizontal direction, and a lower boundary with a constant flux condition.
Both situations are given an initial condition in the form of a boundary layer of high
salinity, formed just below the top boundary, in which salt diffusion is balanced by an
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upward advection of fluid. This set-up is designed to mirror the conditions found below an
evaporating salt lake, such as Owens Lake or Badwater Basin. We investigate the onset of
convective motion in the system at Rayleigh numbers Ra close to the critical value, Rac, as
well as the behaviour at higher Rayleigh numbers. Here, once the system is appropriately
scaled, Ra is the only free parameter and can be interpreted as the dimensionless ratio
between buoyancy forces and viscous dissipation. As the motivation for this work lies
in the connection to pattern-forming processes in salt deserts, we also investigate the
length scales and time scales of the resulting dynamics. We also consider the effects of a
modulated, non-uniform top boundary condition, which serves as a connection to surface
feedback processes in nature.

More broadly, we note that the situation of buoyancy-driven convection occurring below
an evaporating salt lake is also closely related to the convective overturning of CO2,
dissolved in a porous medium filled with brine. This mechanism has become known for
its importance to the sequestration of CO2 in underground aquifers (e.g. Metz et al. 2005;
Neufeld et al. 2010; Slim & Ramakrishnan 2010; Slim et al. 2013; Slim 2014; Thomas,
Dehaeck & De Wit 2018; Hewitt, Peng & Lister 2020) to help mitigate the anthropogenic
impact of CO2 in the atmosphere. The similarity of models is such that an exchange of
methods, insights and results is possible, in both directions. In this context, our study
relates to a variation on one-sided convection (Hewitt 2020). For example, analogously to
the study by Slim (2014), we numerically investigate the time-dependence of the dynamics
of solutal convection in a porous medium, driven from one side, and we find similar
regimes of behaviour, ranging from initiation to coarsening and eventually a dynamic
steady state.

The dynamics of thermally driven convection in porous media has also been extensively
investigated in the past, for a variety of boundary conditions, and the equations are
equivalent to the solutal-driven convection discussed here (see e.g. a recent review by
Hewitt 2020). Of special interest has been the critical value of the Rayleigh number, Rac,
above which a system is unstable to convective motion, for a variety of situations. For
example, a more well-studied case is where convection is driven from two sides, across
a domain of fixed height but large width. Here, when two perfectly conducting boundary
conditions are chosen, similar to the set-up of Rayleigh–Bénard convection, then transport
of heat across the system is purely conductive for Ra < 4π2 (Horton & Rogers 1945;
Lapwood 1948). At higher Ra, first steady and then perturbed convective rolls occur (Busse
& Joseph 1972; Graham & Steen 1994). For Ra � 1300, the dynamics enters a chaotic
regime (Otero et al. 2004; Hewitt, Neufeld & Lister 2012).

There are also certain details already known about the onset of convection in the set
of equations and one-sided boundary conditions that we study, which we will briefly
summarise. For a constant throughflow boundary condition – a situation that resembles
a fluid-filled porous medium with surface evaporation – the onset of instability has
been found to be at Rac ≈ 14.35 (Wooding 1960; Homsy & Sherwood 1976; van Duijn
et al. 2002) with a critical wavenumber of kc ≈ 0.76 (Wooding 1960). Finite amplitude
perturbations in the range of 8.59 < Ra < 14.35 were also observed to grow in simulations
and experiments (Wooding et al. 1997; van Duijn et al. 2002). In the slightly different case
of a constant pressure boundary condition at the surface, a situation that resembles an
evaporating salt lake covered with brine, the critical values of Rac ≈ 6.95 and kc ≈ 0.43
are smaller and thus the system is unstable for a greater range of parameters (Wooding
1960). A linear stability analysis (Wooding 1960) as well as an energy minimisation
method (van Duijn et al. 2002) were also used to calculate the neutral stability curves for
both problems and to determine what range of wavenumbers are unstable at any given Ra.
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Convection in dry salt lakes

In what follows we start by reproducing these theoretical results using an approach that
develops particularly from the work of Wooding (1960). We are then able to complement
the existing analysis by determining the most unstable mode for both constant pressure
and constant throughflow boundary conditions, as well as solving for the growth rate of an
arbitrary mode. This is followed by a numerical study of the ultimate fate of this instability,
including a discussion of how the resulting convection coarsens and scales in the highly
nonlinear regime.

2. Governing equations

The dynamics considered is that of fluid flow in the water-saturated porous soil of a dry
salt lake and is described by the mass conservation of water and salt, as well as a detailed
momentum balance. The governing equations are those of incompressible flow, the mass
conservation of salt with advection and diffusion and Darcy’s law in the presence of
gravity and are, respectively,

∇ · q = 0, (2.1)

ϕ
∂S
∂t

+ q · ∇S = ϕD∇2S, (2.2)

q = − κ
μ
(∇p + ρgẑ). (2.3)

These equations describe a fluid of superficial velocity, or flux q and viscosity μ passing
through a porous medium of porosity ϕ and permeability κ and carrying with it a dissolved
salt of diffusivity D and relative salinity S. Flows are driven by a pressure p and by
buoyancy effects due to a gravitational acceleration, −gẑ, and evolve over time t. This
system of equations has been studied in a wide variety of contexts, including geysers
(Wooding 1960), analogues of Rayleigh–Bénard convection (e.g. Horton & Rogers 1945;
Lapwood 1948; Elder 1967; Hewitt et al. 2012), solutal convection (Wooding et al. 1997;
Boufadel, Suidan & Venosa 1999) and carbon sequestration applications (e.g. Hewitt,
Neufeld & Lister 2014; Loodts, Rongy & De Wit 2014). For example, Hewitt (2020) gives
a recent review of their applications to vigorous convection in porous media.

Our aim is to determine the main length scales and time scales that emerge from this
model of an evaporating salt lake. The connection of the subsurface flow patterns to the
surface crust can be seen in the form of (2.2), from which the salinity flux into the crust
follows as E − ϕD∂zS, evaluated at Z = 0. We will return to the interactions of crust and
flows in § 5, after we describe how downwelling (low ∂zS, so higher salinity flux into crust)
and upwelling (high ∂zS and lower salinity flux) structures arise and scale in this system.

The relative salinity S of the pore fluid depends on its density ρ and the boundary
conditions. In our system, fluid enters from below (z → −∞) at a background density ρ0
and evaporates as a saturated solution, of density ρ1, from the surface at z = 0. Between
these limits

S = ρ − ρ0

ρ1 − ρ0
= ρ − ρ0

�ρ
, (2.4)

where �ρ = ρ1 − ρ0. Thus, the salt-saturated fluid in contact with a solid salt crust has a
relative salinity of S = 1, whereas the fluid feeding into the soil from some distant reservoir
(which will still contain some dissolved salts) has S = 0.

The formulation of (2.1)–(2.4) has a number of implicit assumptions that deserve
mention. First, it assumes a Boussinesq flow, such that density variations only affect
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the buoyancy term of Darcy’s law. It also neglects the effect of salt concentration on
fluid viscosity: Wooding (1960) has discussed this approximation, and shows how a more
realistic salinity-dependent viscosity will produce a small stabilising effect; a similar
result was obtained by Boufadel et al. (1999), who showed that including a variable
viscosity can slightly shift the balance of stability between competing modes of similar
wavelengths. Furthermore, the model treats the diffusivity D as a constant, and thus
ignores any velocity-induced dispersion (i.e. Taylor dispersion, Taylor 1953). Wooding
et al. (1997) show how to consider such effects, but for the field conditions measured
at the salt playa of Owens Lake (Lasser et al. 2019, 2020) dispersive effects should be
negligibly small. Additionally, the equations treat the porosity and permeability of the soil
as constant in space and time. For exemplary research on the types of effects that might
be expected in systems with heterogeneous permeability or porosity, see Chen & Meiburg
(1998b), Sharp & Shi (2009), Li et al. (2019), Hewitt et al. (2020) and Harfash (2013).
Finally, it neglects thermal contributions to density changes, as being small compared
with solutal effects. This is justified by the relative magnitudes of these contributions:
at Owens Lake, for example, we measured density changes due to salt content to be
approximately 200 kg m−3 (Lasser & Goehring 2020; Lasser et al. 2020), whereas a 10 ◦C
day–night temperature change would change the density of water by only approximately
1–2 kg m−3. The buoyancy ratio, N, which gives the ratio of the solutal to thermal density
differences, is thus of order N � 100. Effectively, this means that we neglect phenomena
like double-diffusive convection, since the driving forces and typical speeds of such flows
will be reduced by a factor of 1/N, compared with solute-driven flows (see e.g. Mojtabi &
Charrier-Mojtabi (2005) for a detailed review of such effects).

The non-dimensionalisation of our problem requires choosing a characteristic length L
and velocity (i.e. flux) V . A natural time scale then follows as T = ϕL/V . Generally, for
problems of convection in a porous medium, scaling results in one of two clear choices for
dimensionless groups, as (2.2) and (2.3) become

∂S
∂τ

+ U · ∇S = ϕD
LV ∇2S, (2.5)

U = −∇P − κ�ρg
μV SẐ , (2.6)

where U = q/V , τ = t/T , Z = z/L and where P is an appropriately rescaled pressure. For
example, applications in carbon sequestration often use the limiting speed at which a dense
parcel of fluid falls, VB = κ�ρg/μ, as a natural velocity scale (e.g. Hewitt et al. 2014; Slim
2014; Hewitt 2020). Similarly, in many cases a slab geometry of fixed height is modelled,
where a scaling based on the layer thickness can be made (Ruith & Meiburg 2000; Riaz
& Meiburg 2003; Hewitt 2020). We will instead follow a scheme where ϕD/LV = 1 and
where the group in (2.6) reduces to the Rayleigh number, Ra.

For this, we focus on the situation of a solid salt crust through which there is a constant
and uniform evaporation; the more complex case of a modulated evaporation rate will be
explored in § 5. As a boundary condition at the surface the upward fluid flux there must
balance evaporation, such that the velocity component qz = E at z = 0. This will also give
the average vertical flux of the pore fluid anywhere within the soil. Now, the governing
equations allow for a simple stationary solution,

S(z) = ezE/ϕD, (2.7)

which represents a dense boundary layer of fluid near the crust. For the one-dimensional
problem, involving depth only, this is an attractive solution towards which transients will
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Convection in dry salt lakes

relax (see e.g. Wooding et al. 1997). Following Wooding (1960), we therefore use L =
ϕD/E as the characteristic thickness of the heavy boundary layer which can potentially
develop. This natural length scale is also the distance over which advective and diffusive
effects will be of comparable magnitude. The natural time scale T = ϕ2D/E2 is then the
time fluid takes to cross the boundary layer, in this stationary state, and the characteristic
speed V = E. Applying these transformations results in the following non-dimensional
formulation of (2.1)–(2.3),

∇ · U = 0, (2.8)

∂S
∂τ

+ U · ∇S = ∇2S, (2.9)

U = −∇P − Ra SẐ , (2.10)

which is controlled by the Rayleigh number

Ra = κ�ρg
μE

. (2.11)

Here, Ra = VB/E also represents the ratio of the characteristic speeds of a fluid parcel due
to buoyancy and evaporation. The dimensionless salinity flux into the surface, affecting
crust growth, is simply 1 − ∂ZS. Finally, we note that the rescaled pressure,

P = κ

ϕμD
( p + ρ0gz), (2.12)

is now defined to include a contribution from the background fluid density.
In the rescaled system the boundary conditions are UZ = S = 1 at Z = 0 (where Ui are

the components of U), with the salinity approaching the limit of S = 0 at large depths.
These conditions are analogous to the thermal problem studied by Wooding (1960) and
Homsy & Sherwood (1976). They are appropriate to a dry salt lake as long as there is no
significant ponding of surface water (Wooding et al. 1997; van Duijn et al. 2002), although
we will address the modifications to the model needed for ponding at the end of § 3.1. The
stationary solution has U = (0, 0, 1) everywhere, a salinity boundary layer given by S =
eZ and a corresponding pressure P = Ra(1 − eZ)− Z. In the following section we will
investigate the stability of this solution, along with a time-dependent solution representing
the growth of this boundary layer from an initially homogeneous lake.

3. Linear stability analysis

Here, we perform a linear stability analysis of our model for small perturbations around an
initially unpatterned state. The methods used are inspired by those of Wooding (1960) and
extend the range of his results to include an analytic series solution to the linear stability
problem, along with predictions of the most unstable mode and first unstable mode. For
a base state we will focus on the stationary solution of a well-developed boundary layer,
but will also consider the instabilities of a more general time-dependent solution. In § 4
we will confirm these results with a numerical implementation of our model of convection
below a dry salt lake and further explore how they are modified at larger amplitudes, in
other words in the nonlinear regime of the dynamics.

As set up in § 2, we consider an infinite half-space (Z ≤ 0) of a three-dimensional
porous medium saturated with water, which evaporates at the top boundary with a
constant evaporation rate E and which is recharged from below by a reservoir of
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constant-salinity water. To investigate the stability of a horizontally homogeneous base
state, we add perturbations Ũ , S̃, P̃ to its velocity, salinity and pressure fields, respectively.
The magnitudes of these perturbations are taken to be proportional to a small parameter,
ε0. To leading order in ε0 (specifically, ignoring the Ũ · ∇S̃ term, which is of order ε2

0) the
perturbations will grow or decay according to

∇ · Ũ = 0, (3.1)

∂ S̃
∂τ

+ ∂ S̃
∂Z

+ ŨZ
∂S0

∂Z
− ∇2S̃ = 0, (3.2)

Ũ + ∇P̃ + Ra S̃Ẑ = 0. (3.3)

Here, the only remaining term related to the base state is the base salinity S0 = S0(Z, τ ),
which arises from the nonlinear aspects of the material derivative in (2.9). The pressure
term can be eliminated by taking the curl of (3.3), as ∇ × (∇P̃) = 0. By applying the curl
twice, simplifying with (3.1) and considering the Z-component of the result, one finds that
(3.3) implies that

∇2ŨZ + Ra(∂2
X + ∂2

Y)S̃ = 0. (3.4)

Solving for the dynamics of the perturbations requires providing for the appropriate
boundary conditions. In order to respect the original boundary conditions, ŨZ = S̃ = 0
at Z = 0. As a second velocity condition, we assume a steady flow far from the unstable
surface layer, such that the vertical perturbation to the velocity must decay to zero as
Z → −∞. Then, rearranging (3.2) gives

ŨZ = ∂S0/∂Z

(
∇2S̃ − ∂ S̃

∂Z
− ∂ S̃
∂τ

)
, (3.5)

which implies that

1
∂S0/∂Z

∂ S̃
∂Z

→ 0 for Z → −∞. (3.6)

Now, we can look at the evolution of the salinity perturbation, S̃. For this we follow
the approach of Pellew & Southwell (1940) as well as Wooding (1960) and assume a
separation of variables, such that

S̃(X, Y, Z, τ ) = F(Z)Φ(X, Y) eατ , (3.7)

where Φ is a harmonic function satisfying (∂2
X + ∂2

Y + k2)Φ = 0. Here, k is the
characteristic wavenumber of the perturbation in the horizontal directions and α is its
growth rate. For α > 0 the amplitude of the perturbation increases and the system is
unstable, whereas for α < 0 the perturbation decays and the system is stable; the α = 0
case will give the neutral stability curve. Substituting (3.7) into (3.4) and using (3.5) to
simplify the result leads to the following eigenvalue equation for the height-dependent
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function F(Z),

(∂2
Z − k2)

[
1

∂S0/∂Z
(∂2

Z − ∂Z − k2 − α)F
]

= Ra k2F. (3.8)

At this point, following the structure of (3.5) and (3.8), we will also introduce

G(Z, τ ) := 1
∂S0/∂Z

(∂2
Z − ∂Z − k2 − α)F(Z). (3.9)

At Z = 0 the boundary conditions of F = G = 0 follow from the fact that ŨZ = S̃ = 0
there, and from (3.5). In § 3.1 we will solve this problem for the stationary base state of
S0 = eZ , whereas in § 3.2 we will explore instabilities of the time-dependent case of a
boundary layer developing from an initially homogeneous salinity field.

3.1. Instabilities of the stationary base state
Using DSolve in Mathematica we obtained an analytical solution of the differential
equation (3.8) operating on F(Z), for the stationary base state S0 = eZ . Wooding (1960)
solved a similar problem for the special case of neutral stability (α = 0), whereas we
show a more general solution. This solution is potentially a superposition of up to four
independent infinite series. Specifically, we first factor (3.8) such that

c0/1 = 1 ± k, (3.10)

c2/3 = 1 ±
√

1 + 4(k2 + α)

2
= 1

2
(1 ± Ψ ), (3.11)

where Ψ =
√

1 + 4(k2 + α). The solutions then read

Fi(Z) = (−k2 Ra eZ)ci Hi(Z) for i ∈ {1 . . . 4}, (3.12)

where Hi(Z) is defined by

H0/1(Z) = 0F3(; {2c0/1 − 1, c0/1 + c2, c0/1 + c3};−k2 Ra eZ), (3.13)

H2/3(Z) = 0F3(; {2c2/3, c2/3 + k, c2/3 − k};−k2 Ra eZ). (3.14)

These are hypergeometric functions of the form rFs with r = 0 and s = 3 (Koekoek &
Swarttouw 1998; Askey & Daalhuis 2010). They can be evaluated as series, for example,

H0(Z) =
∞∑

n=0

[
(−k2 Ra eZ)n

n!(2c0 − 1)n(c0 + c2)n(c0 + c3)n

]
, (3.15)

where (a)n = a(a + 1)(a + 2) · · · (a + n − 1) is the Pochhammer symbol for the rising
factorial. Since r < s + 1 these series will always converge, except in the special cases
where one of the terms in the denominator is 0 (Koekoek & Swarttouw 1998, p. 12); these
exceptions occur when a term in the rising factorial sequence is 0. For example, H0 is
convergent except where 3/2 − Ψ/2 + k = 0,−1,−2 . . ., while H2 will converge unless
the same condition holds for 1/2 + Ψ/2 − k. Hence, the solutions form a dense set in the
(α, k) space.

From (3.6) it follows that F(Z) has to decay faster than eZ for Z → −∞ (Wooding
1960). Therefore, of the four possible series described above, only those with ci > 1
are allowed, since Fi ∝ eZci . As k ≥ 0, this condition eliminates the c1 = 1 − k case,
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whereas c0 = 1 + k always leads to a valid solution. Similarly, as long as k2 + α > 0,
then c3 < 1 and c2 > 1. Thus, a general solution under these conditions (which include all
unstable cases) can be given by F(Z) = C0F0(Z)+ C2F2(Z), for some real constants C0
and C2.

For our model, as mentioned earlier, the top boundary conditions are satisfied if and
only if F(0) = G(0) = 0. Using (3.9) this condition can be written as F(0) = C0F0(0)+
C2F2(0) = 0 and G(0) = C0G0(0)+ C2G2(0) = 0. Consequently, we know that either
C0 = C2 = 0 or

∣∣∣∣F0(Z) F2(Z)
G0(Z) G2(Z)

∣∣∣∣
Z=0

= F0(0)G2(0)− F2(0)G0(0) = 0. (3.16)

Since only the non-trivial solution is physically relevant, applying this constraint gives a
relationship between Ra, k and α and allows one of these parameters to be determined
by fixing the other two. For example, as in figure 3(a), we can use Newton’s method to
find the roots of the determinant given in (3.16) for some particular values of k and α,
and hence find the smallest Ra > 0 satisfying the boundary conditions (e.g. for the neutral
stability curve, α = 0). Finally, we note that Wooding (1960) applied slightly different
upper boundary conditions to his model, which here would correspond to constant salinity,
S = 1, but with a fixed surface pressure instead of a constant surface throughflow. This
could simulate a shallow layer of salt-saturated water at the surface, for example, or a
water-logged crust. For the fixed pressure case there would be no horizontal flows along the
surface (i.e. it would act as a no-slip boundary), and the incompressibility condition (3.1)
then implies that ∂ZŨZ = 0 there. For that scenario the arguments and solutions presented
above remain valid, but require the modified boundary conditions of F = ∂ZG = 0
at Z = 0. The determinant in (3.16) is similarly revised, to read F0(0)∂ZG2(0)−
F2(0)∂ZG0(0) = 0.

Some results from the solutions to our linear stability problem are given in figure 3 and
table 1. In figure 3(a) we show the neutral stability curve and most unstable mode for
both types of boundary conditions: results for constant evaporative flux are shown in blue
and constant pressure in red. We also indicate the critical points for both cases and details
of the critical Rayleigh number, Rac, and its corresponding critical wavenumber, kc, are
given numerically in table 1. For the constant pressure case the neutral stability curve and
critical point are consistent with the results of Wooding (1960). For the constant flux case,
the corresponding results are consistent with Homsy & Sherwood (1976) and van Duijn
et al. (2002). The most unstable mode calculations provide additional predictions, which
we will use to validate our numerical model of convection.

The eigenfunctions, F(Z), corresponding to the most unstable modes of scenarios of
different Ra are shown in figure 3(b). These have been normalised to have a maximum
value of 1. In all cases the general shape of F(Z) is similar to the solution sketched by
Wooding (1960) for constant pressure conditions and at the critical point. Furthermore, the
eigenmodes do not undergo any significant qualitative changes as Ra increases, but rather
the peak gradually narrows and shifts to shallower depths, reflecting the k-dependence of
(3.12).

In figure 3(c) we show the growth rate α for various modes and conditions just above the
critical point (alongside corresponding results from our numerical model, for purposes of
validation). These are consistent with a type-I (finite wavenumber, see Cross & Greenside
2009) instability. In the following section we will confirm these results with a numerical
implementation of our model of convection below a dry salt lake and further explore
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Figure 3. Linear stability analysis and behaviour of numerical simulations near the critical point. (a) Neutral
stability curves (solid lines), critical points at Rac, kc (filled circles) and the most unstable mode (dashed
lines), according to the linear stability analysis for a constant salinity at the upper surface and either uniform
vertical flow (blue) or constant pressure (red) there. For all subsequent panels, only the uniform flow problem
is considered. (b) Normalised eigenfunctions, F(Z), for the most unstable mode, calculated at various Ra. (c)
Theoretical prediction of growth rates α as a function of wavenumber k for a selection of Ra close to the onset of
instability (solid lines). Their maximum values, αm, are indicated as red triangles. Measurements of the growth
rates of single-mode perturbations (αfit) in the corresponding simulations are indicated as crosses, as discussed
in appendix A (see figure 13). (d) Theoretical values for the growth rate of the most unstable mode, αm, for
different conditions. Near the critical point, where ε = (Ra − Rac)/Rac, the growth rate follows a power-law
scaling, αm = εγ , but begins to deviate from γ = 1 when ε � 0 (see inset).

Boundary condition Rac kc

Uniform flow rate 14.35 0.7585
Constant pressure 6.954 0.429

Table 1. Critical Rayleigh number, Rac, and wavenumber, kc, from linear stability analysis.

how they are modified at larger amplitudes, in other words in the nonlinear regime of
the dynamics.

Finally, and introducing ε = (Ra − Rac)/Rac to describe the proximity of the system to
the critical point, figure 3(d) shows that the growth rate of the most unstable mode, αm,
scales linearly with ε near the critical point, as expected for a type-I instability (Cross &
Greenside 2009). Given this relationship, when we make quantitative comparisons of e.g.
velocities at different Ra in what follows, we will often find it convenient to re-scale time,
and thus define τ̂ = τε.
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Figure 4. Linear stability analysis of time-dependent solution. (a) For the case of an evaporating salt lake with
an initially constant salinity everywhere (S = 0), and where the surface conditions are changed to S = 1 at τ =
0, a time-dependent boundary layer will develop (dashed lines). This layer will relax to the stationary base state
eZ over a time scale τ ∼ 1. (b) The linear stability of this boundary layer was evaluated to determine the first
moment of instability (right y-axis), along with the first unstable mode (left y-axis). The most unstable mode
of the stationary base state (from figure 3c, corresponding to late-time solution) is included for comparison.
For (c) Ra = 20 and (d) Ra = 40 we show how the growth rates of the spectrum of unstable modes depend on
time.

3.2. Instabilities of a transitory base state
Before proceeding to a full numerical simulation of the salt playa problem, we will
consider how instabilities would arise for the case of a transient initial condition.
This analysis is inspired by that of Slim & Ramakrishnan (2010), who presented a
time-dependent linear stability analysis of the related problem of convection without
throughflow, but including the case of a permeable upper surface. Specifically, we will
consider the situation where the initial salinity everywhere is equal to that of the reservoir,
S = 0, and where the S = 1 boundary condition is suddenly applied to the surface at
τ = 0. This could describe the situation of a rapid change in conditions, such as the abrupt
flooding of a surface by brine, for example, or the rise of a buried water table to the surface,
which could reactivate crust growth.

For this initial condition, the system has the transient solution (Wooding et al. 1997)

S0(Z, τ ) = eZ/2
[

1
2

eZ/2 erfc
(−Z − τ

2
√
τ

)
+ 1

2
e−Z/2 erfc

(−Z + τ

2
√
τ

)]
. (3.17)

As shown in figure 4(a), this solution relaxes to the stationary base state, eZ , over a time
scale of τ ∼ 1. The question now is whether the instabilities that can occur during such a
transient phase will be consistent with those of the stationary base state, or whether they
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Convection in dry salt lakes

will allow for additional behaviours. We will show that the potential instabilities during
the diffusive growth of the boundary layer are broadly similar to the instabilities of the
well-developed boundary layer given in § 3.1.

Equation (3.8) can be rearranged into an eigenvalue equation of the form AF = αBF,

(
(∂2

Z − k2)

[
1

∂S0/∂Z
(∂2

Z − ∂Z − k2)

]
− Rak2

)
F = α(∂2

Z − k2)

[
1

∂S0/∂Z

]
F. (3.18)

The largest eigenvalue here gives the growth rate of the most unstable perturbation for any
particular mode k at any instant τ and Rayleigh number Ra. We solved this eigenvalue
problem numerically, using a Chebyshev differentiation matrix (Trefethen 2000) for the
differential operators, ∂Z , acting on F and S0, the base state given in (3.17), and on a
domain of a finite height h. The lower boundary has a constant flux UZ = 1 of water with
relative salinity S = 0, as will be used throughout § 4. The late-time (τ = 100) solutions
were used to validate the method against the results shown in figure 3(b,c), and agreed
well for domains with a height of at least h � 5. Since large h can introduce issues with
numerical precision, due to the very rapid decay of (3.17) with depth, we therefore used
h = 7.5 in what follows.

For the eigenvalue analysis of the transient base state we used Newton’s method to
search for the time that the first mode went unstable, for any given Ra. In figure 4(b) we
show how the time of the first instability, and the value of the first unstable mode, depend
on Ra. For comparison, we also include the most unstable mode of the stationary base
state, from figure 3(a). The first unstable mode is similar to the most unstable mode, but
consistently slightly higher. The instability sets in rapidly, suggesting that for these initial
conditions there will be competition between the growth of the boundary layer, and the
growth of the instability. In § 4.4 we will explore this competition further, using fully
nonlinear numerical simulations.

To investigate how the spectrum of unstable modes evolves through time, as the
boundary layer fills up, we also calculated the growth rate for a grid of different τ and
k. Examples are shown in figure 4(c,d) for the cases of Ra = 20 and 40, respectively. We
find that the range of unstable modes does not change dramatically over time. Rather,
once a mode becomes unstable, it generally remains so. For example, for Ra = 40,
modes between k = 0.212 and 3.412 are unstable at τ = 10, and this range is effectively
coincident with the range of unstable modes as τ → ∞ (namely, from k = 0.211 to 3.406).
The exception to this behaviour is a range of wavenumbers at the highest end of the
unstable spectrum. Continuing our example for Ra = 40, the wavenumbers from k = 3.41
to 4.09 are stable to small perturbations at long times, but unstable for some period of
the transient. Note that this behaviour is different from the case of the time-dependent
diffusion into a finite porous layer without throughflow (for either an impermeable or
permeable surface, Slim & Ramakrishnan 2010), where all modes eventually return to a
stable situation.

Finally, we note that a more comprehensive analysis of the time-dependent stability
problem could be made by non-modal stability theory, as has been done for the related
problem of solutal convection without throughflow (see e.g. Rapaka et al. 2008; Slim &
Ramakrishnan 2010). Alternatively, we will return to present numerical simulations with a
time-dependent base state in § 4.4. What we can conclude here, however, is that the range
of unstable modes does not change significantly throughout a transient phase, and that the
first unstable mode for the time-dependent case is close to the most unstable mode found
in § 3.1, for the stationary base state.
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4. Scaling relationships in the nonlinear regime

For our model of subsurface convection in a dry salt lake the linear stability analysis
predicts that a salt-rich boundary layer is unstable to convective rolls above a Rayleigh
number of approximately 10, depending on the exact nature of the boundary conditions.
Now we focus on the longer-time behaviour of the model and on the scaling of the
convective dynamics as the system matures towards a dynamic steady state. To this end, we
numerically solved the governing equations, (2.8) to (2.10), on rectangular domains with
periodic boundary conditions in the horizontal direction. The deep aquifer is modelled as
a lower boundary at a fixed background salt concentration, such that S = 0, and a constant
recharge rate, UZ = 1. As an initial condition, we focus on the S = eZ time-independent
solution of a well-developed diffusive boundary layer; different initial conditions will be
explored in § 4.4. Details of the implementation of the numerical simulation, which follow
the pseudo-spectral approach of Riaz & Meiburg (2003), Ruith & Meiburg (2000) and
Chen & Meiburg (1998a), are given in appendix A and the code itself is available on a
public repository (Lasser & Ernst 2020).

The simulations were first validated against the theoretical predictions of growth
rates. Specifically, for Ra between 15 and 40 we added small perturbations of a single
wavenumber to the initial conditions. The growth rate of this mode, αfit(k,Ra), was
measured by a fit to half the peak-to-peak amplitude of the perturbation in the linear growth
regime (see validation section and figure 13 in appendix A). As shown by the crosses in
figure 3(c), the simulated αfit agree with the results of the linear stability analysis.

More generally, we added low levels of random noise, at all k, to the initial conditions.
We then performed simulations for a selection of Rayleigh numbers ranging from 15 to
2000. The spatial resolution of the simulations increased with increasing Ra, so as to be
able to resolve all important features of the dynamics. Consequently, the system sizes
were adjusted (smaller width W and height H for higher Ra) to keep the computational
cost of the simulations manageable. Spatial resolutions and domain dimensions are listed
in Appendix A. Furthermore, in what follows, all uncertainty ranges given represent the
standard deviations of properties measured in ensembles of 5 to 10 runs for each set
of conditions: they are intended to showcase the variability seen between simulations.
Snapshots of an example simulation at Ra = 100 and at different times τ are displayed
in figure 5. Supplementary movies S1, S2 and S3 available at https://doi.org/10.1017/jfm.
2021.225, also give the results of three example simulations at Ra = 30, Ra = 100 and
Ra = 1000, respectively.

As the simulations proceed they pass through several distinct regimes of dynamics,
which can be related to those given by Slim (2014) for a similar problem motivated by
one-sided convection beneath a CO2 pool (in other words, without the evaporative flux of
our model). At early times, as shown in figure 5(b,c), we observe a regime of the linear
growth of high-salinity plumes, at a wavelength corresponding to the most unstable mode
of the linear instability. This is followed by a flux-growth regime, where the downwelling
plumes strip the boundary layer of its heavy burden of solute. Such a thinning of the
boundary layer can be seen in figure 5(d,e). The next regime is the merging regime, during
which time the plumes begin to influence each other via long-range interactions in the
horizontal velocity field. As a result, nearby plumes are attracted to each other and merge
together to form larger plumes, as is happening in figure 5( f,g). Once enough plumes have
merged, the high-salinity boundary layer feeding the plumes begins to grow again, and
it thickens until small proto-plumes start emerging at the top boundary and we enter a
re-initiation regime, as shown in figure 5(h). These proto-plumes are typically attracted to
and then swept into the larger pre-existing plumes. After this time the system settles into

917 A14-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.225
https://doi.org/10.1017/jfm.2021.225
https://doi.org/10.1017/jfm.2021.225


Convection in dry salt lakes

0

–2

–4

–6

–8

0 0.25 0.50 0.75 1.00
0 0.5 1.0

0

–1

–2

–3

–4

5 L

Salinity S

Z

Z

〈S〉

τ = 0.01
τ = 0.1
τ = 0.2
τ = 0.3

(a)
( f )

(g)

(h)

(i)

(b)

(c)

(d )

(e)

Figure 5. Snapshots of the relative salinity S at different times τ for a simulation with Ra = 100. Panels show
(a) the initial salinity distribution at τ = 0.01, the linear growth regime at (b) τ = 0.1 and (c) τ = 0.2, the
flux-growth regime at (d) τ = 0.3 and (e) τ = 0.5, the merging regime at ( f ) τ = 0.75 and (g) τ = 1 and
the re-initiation regime at (h) τ = 3. Panel (i) shows the horizontally averaged salinity distributions for the
snapshots (a–d). The domain size of the simulation was 40 L × 40 L, and only part of the domain is shown in
each case. The scale is the same for all snapshots, and given in panel (e).

a long dynamic steady state period, which lasts until the deepest plumes start interacting
with the lower boundary, after which point we typically stop the simulation.

It is worth noting that these simulations start with a well-developed boundary layer, in
which upwards advection and diffusion back down the concentration gradient balance.
As such, they do not show a clearly defined diffusive regime, which would correspond
to the initial growth of this layer, up to the first moment of instability, starting from a
homogeneous solute distribution as initial condition (i.e. the dynamics shown in figure 4a).
Instead, at early times the boundary layer is deformed by the growth of the unstable modes.
To illustrate this, in figure 5(i) we show the horizontally averaged salinity distributions
for the simulation snapshots displayed in panels (a–d). A diffusive regime, analogous to
the first regime reported by Slim (2014), would be expected for a homogeneous initial
condition. Indeed, for such an initial condition, the time of the first unstable mode, reported
in figure 4(b) shows how the duration of the diffusive regime would depend on Ra.
Similarly, we see a diffusive regime in simulations (see § 4.4) started with a less-developed
boundary layer.

We also do not observe a clear shut-down regime, since our boundary conditions allow
for a throughflow of solute (rather than a constant build-up of salt that would be seen for
impermeable boundary conditions). Indeed, we argue that the variations in salt flux to the
surface, caused by the presence of the plumes, are important for the surface patterning
seen in dry salt lakes (Lasser et al. 2019).

4.1. Scaling of the plume velocity
The convective dynamics seen in the simulations tends to become more vigorous at higher
Rayleigh numbers. This reflects the interpretation of Ra as the ratio of the natural speeds
of flows driven by buoyancy and evaporation. To quantify this relationship we measured
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the maximum speed of the plumes relative to the background flow by calculating V(τ ) =
max(|UZ − 1|) over the entire numerical domain at each time step of various simulations.

In figure 6(a) the time development of V is given for a range of Rayleigh numbers.
There are initially small fluctuations in this speed, as the dominant unstable modes are
selected from our broad-spectrum perturbation. After this brief initial transient the plume
speed, characterising convection, increases until it reaches a peak and then plateaus at
an essentially constant value. For Ra > 100 the initial peak can overshoot its plateau
value significantly, as can be seen in figure 6(b) for a simulation at Ra = 1000. In all
these simulations the initial variations in V correspond to the linear growth, flux-growth
and merging regimes whereas the plateau corresponds to the re-initiation regime, which
behaves as a dynamic steady state. Again, if we instead used homogeneous initial
conditions we would also expect an initial diffusive regime to precede the linear growth
phase (i.e. up to the time of first instability given in figure 4b). At very long times the
plumes start to interact with the lower boundary and the convection starts to weaken,
hence V decreases.

For every simulation we identified the peak speed, Vp = max(V(τ )), as shown for
example by the blue dot in figure 6(b). We also estimated the beginning of the subsequent
dynamic steady state, τstst, as the time after which ∂V/∂τ < 0.1. This is found to be,
empirically, a good measure of the time (e.g. grey dashed line in figure 6b) after which
the relative plume speed is no longer systematically changing, although it continues
to fluctuate randomly after this point. As shown in figure 6(c), this time to develop a
steady state approaches a value of τstst ≈ 2.5/ε (or, alternatively, τ̂stst ≈ 2.5), for large
enough ε. This can be explained by the time the perturbations need to grow, since the
initial amplitude of the perturbations to the salinity field is independent of Ra, whereas the
growth rate of the most unstable mode is proportional to ε. Although the time needed for
the disturbances to saturate will depend on the initial amplitude of these perturbations, the
scaling of τstst demonstrates that ε remains a useful characterisation of the relative vigour
of the convective process well into the nonlinear regimes.

To emphasise the scaling of the system times and speeds with ε, we also calculated a
steady state speed, Vstst, as the average of V in the time window between τstst and τstst + 7ε.
This window was chosen to be as wide as possible, so as to provide a stable average value,
while still avoiding the start of the shut-down regime for the largest Ra in our study, where
the shut down of convection also approaches fastest. For example, for the Ra = 1000 case
this time window and Vstst are indicated as the grey shaded area and the red dashed line
in figure 6(b), respectively. In figure 6(d) we show how both Vp and Vstst vary with ε,
and hence Ra. This shows that the characteristic plume speed in the steady state, i.e. the
re-initiation regime, increases linearly with ε. It also shows how the overshoot of the plume
speeds becomes more significant at larger Ra, when the system starts out in a more unstable
initial configuration.

Finally, we note that the use of a maximum speed to characterise the rate of convection
has the potential to lead to overestimates. As such, we confirmed the scaling of the plume
speed by considering the average speed of all downwelling plumes at a depth of Z = −1
and at the moment where the first plume tip reached a depth of Z = −2 (specifically,
when S = 0.5 was first exceeded there). The results of this measurement are consistent
with those otherwise presented here, in that the average plume speed scales linearly with ε
(Ernst 2017). Similarly computing the average upwelling speed at this time and depth gives
the same scaling. Thus, for a number of different metrics, the plume velocity in the system
is an indicator of how fast the dynamics passes through the different regimes, and shows
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Figure 6. Development of the maximum plume speed, V , for different driving conditions and where ε =
(Ra − Rac)/Rac. (a) Evolution of the plume speeds in simulations at different Ra show an initial transient,
followed by a peak in velocity as the first plumes grow and merge and a subsequent steady state condition.
(b) For the case of Ra = 1000 we show results from a single simulation as a solid line, while the standard
deviation within the corresponding ensemble is given by the shaded area. The blue dot, horizontal red dashed
line, vertical grey dashed line and the grey rectangle indicate the measured peak speed Vp, the dynamic steady
state speed Vstst, the beginning of the dynamic steady state τ̂stst and the time period used to calculate Vstst,
respectively. (c) The time taken until the system reaches a steady state, τ̂stst = τststε, settles down to a constant
value of τ̂stst ≈ 2.5 for large enough Ra and ε. (d) Development of Vp and Vstst with ε, showing how the plume
velocity in the steady state scales linearly with the proximity to the critical conditions, ε, whereas the initial
overshoot of the plume speeds becomes more apparent at larger Ra.

a simple linear scaling with ε. This can be readily understood, given that Ra = VB/E
represents the ratio of the characteristic speeds of buoyancy and evaporation.

4.2. Scaling of the plume wavelength
As the buoyancy-driven convection in our model evolves away from its initial instability,
the number and spacing of the salt plumes can change. Already, in figure 5, we showed
that the pattern has a tendency to coarsen during the merging regime, before a steady
state develops where plume merging and re-initiation balance each other. Thus, the most
unstable mode calculated by the linear stability analysis is unlikely to be representative of
the long-term pattern that would be seen for examples of this convective process occurring
in nature. In the following, we will quantify this coarsening behaviour with the aim of
determining the spatial scale of convection expected in systems that are in a dynamic
steady state, and long after their onset in time.
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To characterise the spatial structure of the dynamics in a simulation at any given depth Z
and time τ̂ = τε, we measured the effective wavelength Λ = W/N of the plumes, where
W is the width of the simulated domain and N is the number of downwelling plumes
of high salinity. For this, the positions of the plumes are identified as the maxima in
the salinity along a horizontal profile of depth Z. We then take k = 2π/Λ to be the
corresponding wavenumber of the plumes.

In figure 7(a) we show the time development of the plume wavenumber k, as measured
at different depths for a simulation run at Ra = 100. The various regimes of the dynamics,
described earlier, are reflected in the development of this wavenumber. The growth,
merging and re-initiation of plumes are also apparent in the corresponding space–time
diagram displayed in figure 7(b), measured at a depth of Z = −1. At first, both these
panels show the linear and flux-growth regimes, with closely spaced plumes of large k
and small wavelength. Choosing a shallow depth of Z = −1 and early time of τ̂ = 1 to
characterise the initial response, we find that the wavenumber of k = 3.55 ± 0.54 seen at
that time is similar to the most unstable mode of the linear stability analysis, k = 3.01.

After the first plumes have more fully formed, at intermediate times the wavenumber
of the simulations declines as these plumes begin to strip the boundary layer of salinity
and then merge into larger structures. For the Ra = 100 simulation shown in figure 7(a,b)
this happens between approximately τ̂ = 1 and 10. From τ̂ ≈ 10 onward the plume
wavenumber measured deeper into the simulated domain approaches a stable value of k ≈
1 (see blue dashed curve in figure 7a for the example of Z = −10). The wavenumber closer
to the top boundary (e.g. red dashed line in figure 7a, for Z = −1), fluctuates between
that value and a higher value of k ≈ 3. This is indicative of the episodic re-initiation of
proto-plumes that can also be seen by the herringbone pattern in the space–time diagram
of figure 7(b). These proto-plumes are usually ephemeral, and merge into a larger plume
before they can reach into, and be noticed at, the larger depths. A similar process of
intermittent plume initiation was seen in the related model (i.e. without evaporation)
studied by Slim (2014), who referred to them as proto-plume pulses.

In order to quantify the coarsening of the plume wavelength more generally, we
measuredΛ and k for a range of conditions, with results given in figure 7(c) for simulations
with Rayleigh numbers between 14.9 and 1900. For a limiting case that is near the onset of
the initial instability, we looked at the early (τ̂ = 1) and near-surface (Z = −1) response
in all simulations. As shown in figure 7(c) by the red filled circles, these values closely
follow the theoretical prediction for the most unstable mode (grey line, from figure 3a),
although they tend to slightly exceed it. As the system ages, however, the dependence
of the plume spacing on Ra weakens. We tracked this behaviour by measuring k at
progressively later times and lower depths (where values are less volatile), as shown
by the data in figure 7(c), with the various measurement depths indicated by the figure
inset. These results demonstrate how, for a wide range of Ra, the long-time limit of the
plume wavelength appears to gradually approach the value that would occur at the critical
point, namely kc � 0.76. This is highlighted by the blue circles in figure 7(c), which show
the wavenumbers as measured at τ̂ = 30 and a depth of Z = −10. We will argue in the
following section that the relative independence of k on Ra results from the depletion of
the salt-rich upper boundary layer by plume formation, which effectively reduces it to the
thickness of a system forced just beyond its critical point.

4.3. Dynamics of the high-salinity boundary layer
The emergence of plumes in our model is driven by the negative buoyancy of the salt in
the diffusive boundary layer near the surface of the dry salt lake. Therefore a closer look
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Figure 7. Time evolution of the plume wavelength,Λ, and wavenumber, k. The observed wavenumber depends
on the depth Z and time τ̂ where it is measured, as shown in (a) for a simulation at Ra = 100. Here, the red
dashed curve gives k as measured close to the top boundary, at Z = −1. This metric captures the initially high
k values before coarsening occurs, but also fluctuates at later times due to the re-initiation and merging of
proto-plumes. Deeper, the blue dashed curve shows the wavenumber at Z = −10, where it has a much more
stable value (at least, after the plumes have first descended to this level). (b) A space–time diagram is shown for
the same simulation, where each horizontal line of data represents the state of the simulation for a moment at a
depth of Z = −1. (c) Over time, all simulations show coarsening behaviour. Initially, the k measured near the
surface, at Z = −1, is similar to the most unstable mode of the linear stability analysis (dashed line). However,
as the system ages k decreases and ultimately shows little variation with Ra in the steady state regime, depicted
here for the late-time case of τ̂ = 30 and at a depth of Z = −10. Data for times and depths intermediate between
these two limiting cases are shown as variously coloured circles. Note that wavenumbers for high Ra and τ̂ are
not available, since simulations at high Ra were usually terminated before the required duration was reached.

at the dynamics of the effective thickness of this layer is warranted, along with its link to
how the mature plume wavelength emerges.

We have already shown several instances of where plumes drain the boundary layer of
solute, thereby limiting the convective drive: compare the salinity distributions near the
upper boundaries in figure 5(a,h), for example. This trend can also be seen in figure 8(a),
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Figure 8. The dynamics of the salinity distribution and its effective boundary layer thickness, L′, depend
on Ra. (a) The horizontally averaged salinity, 〈S(Z)〉, is shown for a range of Ra. Results are averaged over
5–10 ensembles for every Ra and taken from times within the dynamic steady state. The inset shows how an
exponential fit is made to the near-surface results (filled dots), to determine L′. (b) This thickness evolves over
time and in the steady state regime the boundary layer fluctuates around an average value (dashed lines) that
depends on Ra. Here, each data set corresponds to a single simulation run. The inset highlights the initial
evolution of the boundary layer during the linear growth and flux growth regimes. (c) The value of L′ in the
dynamic steady state is inversely proportional to Ra, over a wide range of conditions. In other words, in this
regime the buoyancy forces available in the boundary layer are always only slightly above what is required to
trigger an instability. (d) Data collapse showing the salinity distribution in the boundary layers of simulations
in their steady state, scaled by the Rayleigh number.

where we show the horizontally averaged salinity distributions, 〈S(Z)〉, as measured in the
dynamic steady state regime of simulations at different Ra. Near the surface these results
all demonstrate a rapid decay of the salinity with depth, which is stronger for higher Ra.
Figure 8(a) also shows how, just below this boundary layer, and especially for higher Ra,
the salinity may also pass through a small local maximum of around S ≈ 0.3. A similar
salinity peak can be noticed in Slim (2014) (figure 3). At intermediate depths, below Z ≈
−2, the salinity then either approaches a constant value or gradually trails off. We note,
however, that some of the apparent difference in internal structure seen at these lower
depths may simply be due to the restricted height of the simulations at higher Ra (see
appendix A). Similarly, for very high Ra the salinity starts building up below Z ≈ −9,
since the bottom boundary of the simulated domain is only at Z = −10 in these cases.

Given the shape of the horizontally averaged salinity distribution seen in both the
initial and mature states of our simulations, we estimated the effective boundary layer
thickness at various times and Ra. To this end, we fit an exponential decay function
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S(Z) = �S exp(Z/L′)+ Sbulk to the rapidly decaying part of the salinity distribution found
just below the top boundary, as demonstrated in the inset to figure 8(a). For reference, in
the stationary solution to (2.8) to (2.10) the relative salinity S = exp(Z), so for our initial
conditions L′ = 1. The results for the evolution of L′ with time are shown in figure 8(b).

As with the other metrics discussed here, the width of the salinity boundary layer evolves
in different ways as the simulation passes through its various regimes. Initially, in the
linear growth phase the perturbations are not large enough to affect the salinity field,
and L′ � 1 for short times (inset to figure 8b). For higher Ra the growth rate of these
perturbations is faster, so this initial regime is shorter (again, this speeding up is well
captured by the use of τ̂ for time). As the instability enters the flux growth regime, the
boundary layer then shrinks as solute is removed by the growing plumes. Eventually this
process stabilises and, as the plumes merge into fewer but larger structures, reverses itself
while the boundary layer between the plumes is recharged (we note that this transition
can also be related to the velocity overshoot shown in figure 6b). Then, when L′ becomes
sufficiently large it allows for the re-initiation of proto-plumes, which repeat the cycle of
growing in amplitude, depleting the boundary layer and merging into larger plumes. Thus,
in the dynamic steady state of the simulations the boundary layer thickness fluctuates
around a value of L′ < 1, corresponding to the episodic emergence of proto-plumes. The
frequency of these proto-plume pulses, and the average value of L′, depend on the Ra of
the system: for higher Ra the boundary layer is thinner and the fluctuations are more rapid.

For convection driven by one side, Slim et al. (2013) suggested that (in our notation)
an effective Rayleigh number of Ra(1 − Sbulk)L′ would describe a boundary layer that
had been disturbed by, for example, loss of material to downwelling plumes. Essentially,
(1 − Sbulk)L′ gives the relative buoyancy forces available in the boundary layer, whereas
Ra characterises the system’s general ability to act on those forces. In all our simulations,
the thickness of the effective boundary layer, L′, appears to scale approximately with
1/Ra in the steady state regime. More specifically, as shown in figure 8(c), the ratio
Ra(1 − Sbulk)L′/Rac approaches a constant value of about 1.8 for Ra above about 100.
As further evidence of this scaling, figure 8(d) shows a data collapse of the near-surface
salinity distributions, 〈S(Z)〉, as rescaled by Ra/Rac. These results all suggest that the
proto-plume pulses continuously trim back the boundary layer and maintain it in a state
that is close to, but just above, a critical condition. This is consistent with the tendency
of the mature plume wavenumber to stabilise at a value near what is expected at these
conditions, namely kc.

4.4. Effects of varying the initial conditions
Finally, we look at how different initial conditions will modify the system’s approach to a
mature convection pattern and demonstrate that the dynamic steady state discussed above
is robust. Up to this point our simulations have begun with an initial condition that can
be defined as S = exp(Z/L′

0), where L′
0 = 1, and with random perturbations characterised

by an amplitude of η = 0.05 (see appendix A, (A6)). Now, we varied both the depth of
the boundary layer used as the initial salinity distribution and the perturbation amplitude.
For this parameter study we used a somewhat restricted domain, extending down to only
Z = −20. The exemplary case of L′

0 = 1 is shown in figure 9(a), which has similar features
to those discussed at length in regards to figure 8. We note that at late times here there
is an additional slight upward drift of the salinity throughout the domain, which can
be explained by a gradual saturation of the salinity in the system once the plumes start
interacting with the lower boundary of the simulation.
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Figure 9. Development of the salinity boundary layer for different initial conditions. In all cases, salinity
distributions were averaged horizontally and over ensembles of 9–11 simulations run at Ra = 100. (a)
Development of the near-surface salinity distribution in a simulation with our typical initial condition of
L′

0 = 1.0, showing its approach to a statistically steady state. (b) Early-time development of the boundary
layer thickness L′ for different initial conditions L′

0. (c) Development of L′ starting with L′
0 = 0.4 for different

initial noise amplitudes η. (d) Development of L′ for simulations started at the same initial conditions as in (b),
but showing longer time scales. Values converge towards the corresponding steady state value (dashed line)
seen in figure 8(b).

In figure 9(b) we show the development of the effective boundary layer L′ for a selection
of initial conditions L′

0. Similarly, in figure 9(c) we show the effect of varying the initial
level of noise in our simulation, for a case where L′

0 = 0.4. When L′
0 < 1 the boundary

layer first grows towards the stationary solution of L′ = 1 and then shrinks again, as
the convective instability sets in. Additionally, for lower levels of noise the instability
takes longer to manifest itself, allowing the boundary layer slightly more time to be
established. As such, the maximum value of L′ depends on the initial conditions, in line
with the competition between the growth of the boundary layer and the growth of the most
unstable mode. These processes are, respectively, a roughly exponential relaxation of the
boundary layer thickness (consistent with the fact that the stationary solution is stable to
long-wavelength perturbations, see figure 3) and an exponential growth of the first plumes.
Thus, the cross-over time between these two processes is relatively insensitive to the initial
conditions, and occurs around τ̂ ≈ 1.

For all these cases, the simulations converge towards the same salinity distributions
above times of τ̂ ≈ 2. This is emphasised in figure 9(d), which gives the late-time
behaviour of L′ for the simulations with different initial boundary layer thicknesses.
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Here, all simulations show the same value of L′ in the dynamic steady state (although, the
smaller domain size adds a slight saturation of S as compared with figure 8). As described
earlier, in this regime the boundary layer thickness self-organises into a state that balances
the initiation and growth of new plumes with their coarsening and merging into larger
structures.

5. Effects of spatially varying evaporation rates

Our model of convection in dry salt lakes is inspired by the polygonal patterns that are
often seen in the salt crusts at their surface and we will end this work with a discussion
of the possible interaction of this crust with the convective plumes. We first recall that the
model also predicts the salinity flux into such a surface crust, which follows from (2.2).
In dimensional terms, it can be given by E − ϕD∂zS. This flux vanishes in the stationary
solution corresponding to our initial condition, S = exp(ZE/ϕD), although this scenario
will still leave a constant upward flux of salt into the crust at whatever concentration is
supplied by the reservoir (since S = 0 corresponds to the background density ρ0, see (2.4)).
By similar argument, when there are convective plumes there should be less salt flux into
the crust above an upwelling – where ∂zS is high – than above a downwelling.

A fully dynamical crust, with a thickness varying in response to the salinity flux from
the convection beneath it, is challenging to model. In particular, realistically simulating
the evaporation rate can be difficult (see § 5.1 below), but an aspect of this problem that
we intend to address in the future. In this section we will briefly consider, instead, the
other side of how a feedback between crust patterns and convection patterns could work.
In other words, we will look at whether periodic variations in the properties of a salt
crust could influence any convection pattern occurring beneath it. Since evaporation is
the ultimate driver of the dynamics, this allows us to consider the effect of a salt ridge
through its control over the local evaporation rate at its location. In particular, we ask
whether particular wavelengths of surface features could stabilise plume locations, leading
to potential for long-term feedback between subsurface flows and the crust pattern.

To this end, we modified our model by modulating the surface evaporation rate, such that
UZ = 1 − Am cos(kmX) at Z = 0, and where Am and km are the amplitude and wavenumber
of this modulation, respectively (see appendix A for details of how this is implemented).
As the average evaporation rate remains unchanged by the modulation, this change in
boundary conditions does not affect the system-averaged Rayleigh number, merely the
local conditions. Space–time diagrams for simulations where Ra = 100, Am = 1 and for
four different modulation wavenumbers km are shown in figure 10(a) and movies of the
corresponding simulations are given in supplementary movies S4 through S7. Several
things can be noticed in these simulations. First, in all cases there is a preference for
downwelling plumes to originate at the minima of the evaporation profile. Second, in most
cases the plumes then remain locked at the positions of these minima for some time, before
the order breaks down and the dynamics returns to a state which resembles a system with
a uniform boundary condition. Third, however, when the wavelength of the evaporation
modulation is close to kc ≈ 0.76 there is a tendency for the larger plumes to remain trapped
near the spots of lower evaporation, even in the dynamic steady state.

To quantify these points further, we introduce an order parameter that characterises how
co-aligned the plumes and evaporation patterns are. For N plumes this is given by

ξ = − 1
N

N∑
i=1

cos(kmXi), (5.1)
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Figure 10. Effect of a modulated evaporation rate on convection. (a) Space–time diagrams are shown for four
simulations at Ra = 100 but with surface evaporation rates modulated at an amplitude of Am = 1 and (from top
to bottom) wavenumbers km = 0.63, 1.26, 1.88 and 2.51. These give the time evolution of the salinity profiles
at a depth of Z = −1. In each case the evaporation rate at Z = 0 is indicated by the sine wave on top of the
diagram; the high-salinity downwellings show a preference for areas of lower evaporation. (b) Development of
the order parameter ξ with re-scaled time τ̂ for the same four km, also at a depth of Z = −1, and averaged over
ensembles of five simulation runs.

where Xi is the horizontal position of plume i, as determined by a minimum in the salinity
at a depth of Z = −1. If ξ = 1 then the plumes are perfectly aligned with minima in the
surface evaporation, whereas when ξ = −1 the plumes all lie below maxima and if there
is no preferred arrangement of plumes, then ξ = 0. A large ξ would then suggest a route
for selecting preferred wavelengths in the crust features, with downwelling plumes trapped
by lower-evaporation ridges, and sustaining them with enhanced salinity flux.

In figure 10(b), we show the development of ξ with time for simulations with the same
parameters as in figure 10(a). This plot confirms that, especially for larger km, the initial
plumes start very well aligned with the surface modulation, with ξ up to about 0.9 at
early times. Since Ra = VB/E, lower-evaporation regions will appear, locally, as having a
higher effective Ra, and it makes sense to expect a higher growth rate of plumes there. The
figure also shows that the duration of the initial pinning of plumes under the evaporative
minima depends on the modulation wavenumber km; i.e. the surface modulation can delay
the transition from the flux growth to the merging regime. Furthermore, in all cases
the long-term limit continues to show at least weak ordering, with ξ fluctuating around
positive values of about 0.1–0.2 or greater. The km = 0.63 case shows a marked contrast,
however. Here, the surface modulation is well matched to the wavelength seen in the
dynamic steady state of the simulations and the rise of ξ to about 0.6 documents how
initially disordered plumes arrange themselves to synchronise with the spacing and phase
of the modulation.
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Figure 11. Effects of surface evaporation modulation at (a) early and (b) late times, for simulations at Ra = 100
and averaged over ensembles of 5 realisations for each set of conditions. Plume locations are determined by
maxima in the salinity at a depth of Z = −1. (a) The duration of any initial phase locking, τ̂φ , depends on the
modulation amplitude, Am, and wavenumber, km. In particular, high-amplitude modulation at wavenumbers
between 1.9 and 3.1 can noticeably delay plume merging. (b) Long-term behaviour of the average order
parameter 〈ξ〉 for different modulation amplitudes and wavenumbers. This was calculated as the time-averaged
value of ξ in the range of 30 ≤ τ̂ ≤ 60. Surface evaporation modulation with km between 0.3 and 0.9 is
particularly effective at pinning downwelling plume locations, even down to relatively modest amplitudes of
Am = 0.3.

Figure 11 shows how the above results hold true for a wide range of km and Am.
Here, the choice of modulation wavenumbers is limited such that the system width is a
multiple of the modulation wavelength. Within this constraint, we chose to investigate
a range of modulation wavenumbers in an area of the parameter space that promised
to exhibit interesting behaviour, including the full range of wavenumbers seen in the
dynamical simulations of Ra = 100 for homogeneous boundary conditions (see figure 7c).
For the early-time ordering we define a phase-locking time, τ̂φ , as the time it takes
for the order parameter to drop below ξ = 0.75. Note that this is an arbitrary value,
but results are similar for other parameter choices of how to characterise the early-time
synchronisation of plumes with flux patterns. Figure 11(a) shows how this time depends on
the modulation details. The initial phase locking is strongest, i.e. the plumes stay aligned
with the minima in the surface modulation the longest, for modulation wavenumbers
between km = 1.6 and km = 3.1. (n.b. a rapid period-doubling instability can be seen
in figure 10(a) for km = 1.26, suggesting how this alignment breaks down at low km).
As might be expected, the modulation wavenumbers for which the initial plumes stay
aligned the longest roughly corresponds to the wavenumbers first seen to be unstable in
the simulations with homogeneous evaporation rates: for Ra = 100 this is k ≈ 3.1.

To measure the long-time synchronisation of the plumes with the surface modulation
we instead averaged the order parameter ξ from τ̂ = 30 to 60. Figure 11(b) shows how
this average order parameter, 〈ξ〉, depends on the modulation details. Similar to the
phase-locking time, the strength of the ordering increases with the modulation amplitude
Am. More interestingly, ξ exhibits a pronounced maximum in the wavenumber range of
km = 0.3 to 0.9, which is already present for moderate amplitudes of Am = 0.3. This
range broadly matches the critical wavenumber kc ≈ 0.76 as well as the wavenumbers
of polygonal salt crust patterns observed in nature, where kcrust = 0.78 ± 0.43 with no
observable dependence on Ra (Lasser et al. 2019, 2020).

5.1. Evaporation rate modulation in nature
In the following we will briefly show how a modulation of the evaporation rate could be
realised in the setting of a salt desert with salt ridges in a surface crust. Although the
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Figure 12. Temperature (a) and relative humidity (b) measurements from salt polygons at Owens Lake,
California, conducted in winter 2016. Sensors were embedded either within a ridge or in the centre of a nearby
polygon. Displayed values are averaged over 20 minute intervals.

effect of a salt crust on evaporation can be hard to evaluate exactly (see e.g. Eloukabi
et al. 2013; Nield et al. 2016; Bergstad et al. 2017; Farhat 2018; Nachshon et al. 2018), the
temperature and relative humidity are important parameters, next to salt concentration
and air movement, controlling evaporation from a salt pan. We attempted to estimate
the influence of ridges on the micro-climate at the crust level by embedding sensors
within salt polygons found in Owens Lake (CA) and tracking the temperature and relative
humidity between 26 November and 2 December 2016. We used HiTemp140 and
RHTemp1000IS data loggers, which recorded temperatures and relative humidity every
two minutes with a precision of ±0.01 ◦C and ±0.1 %, respectively. The resulting data
are deposited on a public repository (Nield, Lasser & Goehring 2020) and the protocol
for their collection is described in more detail by Lasser et al. (2020), along with further
details of the field site.

In figure 12 we show temperature and relative humidity measurements from sensors
placed inside a salt ridge and within the crust at the centre of a polygon. In figure 12(a) the
diurnal fluctuations of temperature between about 10 ◦C at 2:00 PM and 0 ◦C at 6:00 AM
are clearly visible. We note that these temperature changes are unlikely to directly affect
the density-driven flows by thermal expansion, as they would induce a density change of no
more than 1 kg m−3. For comparison, we measured the water immediately below the crust
to have a density of at least 200 kg m−3 higher than that at depths of approximately 1 m
(Lasser et al. 2020). This difference in magnitude is what justified our original assumption
(see § 2) of ignoring thermal contributions to fluid density, and double-diffusive effects.
These periodic daily fluctuations are also fast compared with the growth of the crust, which
occurs over weeks to months (Nield et al. 2015). Additionally, the highest temperatures
recorded during the day are similar between the centre of the crust polygon and the ridge.

Temperatures inside the ridge, however, drop faster and to lower values at night;
the temperature difference is approximately 2 ◦C on average. Figure 12(b) shows the
development of the relative humidity over the same period. The relative humidity
measured inside the ridge is approximately equal (on the first, third and sixth days) or up to
15 % higher (on the second, fourth and fifth days) to that in the polygon centre. Humidity
differences are most pronounced during nights and mornings but are preserved to some
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extent over the course of the day. The difference in relative humidity can be explained by
the trapping of moist air below the ridges (see Nachshon et al. 2018 for a discussion of
how trapped, stagnant air can also reduce evaporation through salt crusts). Both reduced
temperature and increased relative humidity inhibit evaporation from the surface of a salt
ridge and could serve as part of the feedback mechanism proposed above, which modulates
the evaporation rate.

In a similar geographic setting a temperature reduction of 1 ◦C and relative humidity
increase of approximately 20 % resulted in a decrease of the evaporation rate from 3
mm day−1 to 2 mm day−1, or approximately 30 % (Farhat 2018). These differences
are comparable to the temperature and relative humidity differences we measured
between a salt ridge and polygon centre. In figure 11(b) we have illustrated that
modulation amplitudes of Am ≥ 0.3 are sufficient to cause a significant spatial ordering
of the downwelling plumes. Our observations therefore suggest that the modulation of
evaporation rates that could reasonably occur in a field setting would be sufficient to
influence the plume positions.

6. Summary and discussion

We have presented a linear stability analysis and subsequent numerical study of
buoyancy-driven convection in a fluid-saturated porous medium with surface evaporation
and where fluid is replenished from a distant reservoir. This model is inspired by the
situation below a dry lake or salt pan and by the possible connection of the convective
dynamics below the ground to the emergence of regular polygonal patterns at the surface
(Lasser 2019; Lasser et al. 2019). When rescaled by the evaporation rate E and a length
scale that balances advection and diffusion, L = ϕD/E, the model is controlled by a single
dimensionless group, the Rayleigh number Ra. In this context, Ra can be interpreted as the
speed at which a large blob of salt-rich fluid would naturally descend, VB, relative to the
upward flux of fluid required to balance evaporation.

There is a stationary solution for the resulting system of equations, corresponding
to a salt-rich boundary layer of fluid, of thickness L, lying just below the evaporating
surface. Our linear stability analysis considers whether this solution is stable or not,
and complements earlier work concerning the onset of convection in equivalent models
(Wooding 1960; Homsy & Sherwood 1976; Wooding et al. 1997; van Duijn et al. 2002).
In particular, we confirmed the critical conditions and neutral stability curves given in
those works for the surface boundary conditions of either constant evaporation or constant
fluid pressure. Additionally, our analysis extends on previous approaches by solving for the
growth rate of an arbitrary small-amplitude perturbation at any Rayleigh number. Through
these methods the initial growth of convective plumes near the evaporating surface was
shown to generally be a type-I/finite-wavelength instability, where the most unstable mode
increases with increasing Ra.

In order to follow the evolution of the convective instability past its initial stages, we
then performed a range of numerical simulations. The dynamics of the convection in these
simulations passes through several regimes: the sequence is similar to one identified by
Slim (2014) for the related case of porous-medium convection also driven from one side,
but without any evaporation or throughflow. The plumes initially follow a linear growth
regime, where their wavelength closely matches the predictions of the linear stability
analysis. As their amplitude grows, however, they begin to deplete the salt-rich fluid near
the surface, and the dynamics passes into a flux-growth regime. In the subsequent merging
regime the system coarsens as the growing plumes begin to interact and join together into
larger structures. This process leaves gaps between plumes and in the re-initiation regime
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new proto-plumes appear in these gaps, via similar instabilities in the boundary layer.
The emerging proto-plumes are quickly drawn into larger and more stable downwelling
plumes, allowing for new proto-plume pulses to occur episodically. We characterised this
re-initiation regime as a dynamic steady state of the system.

Throughout this study we focused on exploring how the dynamical properties of the
convection scaled with its driving parameters, here summarised by the Rayleigh number
or by the related proximity of the system to its critical point, ε = (Ra − Rac)/Rac. In the
linear growth regime the growth rate of the most unstable mode αm ∼ ε, as expected for
a type-I instability. Similarly, for later regimes the plume velocities, measured in various
ways, were found to be proportional to ε. This follows naturally from the definition of Ra =
VB/E, since the velocity scaling of our system is based on the evaporation rate E. Given
this, we found a time scale τ̂ = τε = εtE2/ϕ2D to be a convenient rescaling. Specifically,
the various regime transitions occur at times of order τ̂ = 1 for a wide range of initial
conditions and Rayleigh numbers. In terms of length scales, the most unstable mode of
the linear instability increases monotonically with Ra. However, due to the tendency of
plumes to merge, this response is only seen at very short times – we would not expect it
to affect the growth of salt crusts in realistic settings. Instead, in the dynamic steady state
we found that the constant interplay between proto-plume initiation and merging resulted
in a plume spacing that was largely independent of Ra, such that the wavenumber of the
mature plumes always approached the critical wavenumber of kc ≈ 0.76.

We note that this last result is in contrast to the more well-studied case of two-sided
convection, where the thickness of the entire convecting domain, H, imposes a scaling of
the mature wavenumber with a Rayleigh number defined alternatively as Ra = VBH/ϕD
(e.g. Hewitt et al. (2014) who suggest k ∼ √

Ra or Fu, Cueto-Felgueroso & Juanes (2014)
who suggest k ∼ Ra). In a two-sided system, if a plume naturally moves at a speed ∼ VB
across the domain height H, then a plume spacing of order 1/

√
Ra reflects the distance

over which concentration gradients would diffuse over the course of the plume’s fall
(Liang et al. 2018). For our one-sided case of convection the system height is irrelevant.
Instead, the boundary conditions provide the length scale, L, over which the typical
contributions of advection and diffusion balance, and our Rayleigh number can be written
as Ra = VBL/ϕD. The length L is also the equilibrium thickness of a heavy boundary layer
of fluid that would otherwise naturally develop below the surface and so it characterises the
potential driving force available for convection. We argued that the relative independence
of the plume spacing with Ra, observed in out simulations, relates to how convection
depletes this salt-rich boundary to leave a layer just barely thick enough to allow for
convection. This conclusion was supported by a demonstration that in the steady state
regime the effective thickness of the boundary layer, L′, is proportional to 1/Ra over a
wide range of Ra and by a data collapse of the shape of the horizontally averaged salinity
field with the same scaling. Put simply, if the boundary layer grows much thicker than
this, then it will favour the rapid growth of new proto-plumes, which will strip the layer
back down to close to a critical thickness before they disappear through plume mergers.
We argued that this balance also controls the plume spacing and is why the steady state
wavenumber of the convection plumes is always maintained at a value near kc, regardless
of the real Rayleigh number of the system.

Finally, we modified our model to allow for inhomogeneous boundary conditions,
namely a sinusoidal modulation of the evaporation rate in space. This modulation is a first
step for exploring how feedback between subsurface convection and surface crust growth
could work. The influence of ridges on the evaporation rate is supported by data measured
in the field, which shows a difference in temperature and relative humidity below ridges, as
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compared with salt polygon centres. We found that for a range of modulation wavenumbers
and amplitudes, regions of locally suppressed evaporation could pin downwelling plumes
in place for long periods of time. This pinning was particularly apparent for modulations
around the critical wavenumber, kc.

Put together, our results indicate that the vigorous convection patterns that emerge in
our model system are robust to differences in Ra, for Rayleigh numbers far enough above
Rac. Such a robustness to fluctuations in the environment is an important feature of any
mechanism driving salt polygon emergence in nature, as these patterns occur in areas with
vastly different conditions but nonetheless display remarkably consistent length scales
(e.g. Christiansen 1963; Krinsley 1970; Nield et al. 2015). A plume wavelength of 2π/kc
corresponds to features with a spacing of a few metres, assuming diffusion constants of
order 10−9 m s−2 and evaporation rates of order 1 mm day−1 (or, 10−8 m s−1). This agrees
both with the observed sizes of salt polygons and with the scales of convective plumes
seen under similar conditions in tidal flats and sabkhas (Stevens et al. 2009; Van Dam
et al. 2009). We intend to develop this argument further with detailed comparisons with
field data elsewhere (Lasser et al. 2019, 2020). Furthermore, although motivated by the
problem of a dry salt lake, the model system developed here could also be applied to other
cases of convection in a porous medium, where there is some background throughflow of
fluid across the convecting domain.

Supplementary movies. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2021.225.
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Appendix A. Numerical simulation

We implemented a two-dimensional finite difference model of an evaporating salt lake,
based on the non-dimensional system of equations given by (2.8)–(2.10). This uses
a pseudo-spectral approach and a streamfunction–vorticity representation, similar to
Chen & Meiburg (1998a), Ruith & Meiburg (2000) and Riaz & Meiburg (2003), a
sixth-order compact finite difference scheme to compute spatial derivatives and an explicit
fourth-order Runge–Kutta scheme for time stepping. The code has been made available on
GitHub (Lasser & Ernst 2020).

A.1. Model set-up
The numerical model simulates a two-dimensional (X, Z) area of width W in the
X-direction and height H in the Z-direction. For the salinity S and fluid flux U = (UX,UZ)
we assume periodic boundary conditions in the X-direction. The relative salinity S = 1 at
the top boundary (Z = 0) and S = 0 at the lower boundary (Z = −H). At Z = 0 surface
evaporation is modelled as a boundary condition on UZ . To allow for a modulation in
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evaporation rate, UZ = 1 − Am cos (kmX) there, where Am represents the strength of the
modulation and km its wavenumber; for constant evaporation, Am = 0. In all cases the
average value of UZ at the surface is 1. At the bottom boundary, Z = −H, fluid recharge
is assumed to be uniform, such that UZ = 1 there.

We use potential functions to reformulate the equations of porous-medium flow,
following Ruith & Meiburg (2000) and Riaz & Meiburg (2003). For a two-dimensional
and incompressible flow the flux U is related to the Lagrange streamfunction ψ by U =
(∂Zψ,−∂Xψ). The vorticity, ω = ∂XUZ − ∂ZUX , is then given by the Poisson equation,

∇2ψ = −ω. (A1)

Taking the curl of Darcy’s law, (2.10), allows us to eliminate the pressure term, as ∇ ×
(∇P) = 0, and solve for the vorticity as

ω = −Ra∂XS. (A2)

The salt mass balance of (2.9) can also be written in terms of the streamfunction

∂τS = (∂Xψ)(∂ZS)− (∂Zψ)(∂XS)+ ∂2
XS + ∂2

ZS. (A3)

To solve (A1)–(A3) we need boundary conditions for the streamfunction ψ and vorticity
ω. The constraints on flow give ∂Xψ = −1 + Am cos(kmX) at Z = 0 and ∂Xψ = −1 at
Z = −H. These inhomogeneous boundary conditions can be accounted for by taking ψ =
ψ ′ + Ψ , where

ψ ′ = −X + Am

km
sin(kmX) cos2

(
πZ
2H

)
, (A4)

such that ∂XΨ = 0 at both Z = 0 and Z = −H. The constant salinity conditions
correspond to a vanishing vorticity, ω = 0, at both these surfaces. As an initial condition
we make use of

S0 = eZ − e−H

1 − e−H , (A5)

which is the stationary solution of the salinity when Am = 0. Following Riaz & Meiburg
(2003) we introduce perturbations by adding random fluctuations into the initial salinity.
To do so we generate random numbers f (X, Z), uniformly distributed in [−1, 1], for all grid
points. In order to avoid artefacts in derivatives, these are then convolved with a Gaussian
function of width σ = 3 grid cells, such that

S′ = η f (X, Z)× e− X2+Z2

σ2 , (A6)

where η gives the magnitude of the perturbation. The initial salinity field is then S =
S0 + S′, at τ = 0. Unless otherwise stated we used a default value of η = 0.05.

A.2. Implementation
To numerically solve the governing equations of the simulation we largely follow the
implementation described by Riaz & Meiburg (2003) and Ruith & Meiburg (2000).
Specifically, at each time step we: (i) compute derivatives in the X-direction by first making
use of a Fourier transform; (ii) compute derivatives in the Z-direction by using a compact
finite difference scheme (Lele 1992); and (iii) use an explicit fourth-order Runge–Kutta
scheme for the time integration of equation (A3).
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Ra figure 6 figure 7 figure 8 figure 9 figures 10 & 11

14.9–20 — 20 × 20 — — —
20 40 × 100 40 × 100 — —
23–40 20 × 20 20 × 20 20 × 20 — —
40 40 × 100 20 × 20 20 × 20 — —
45 − 50 — 20 × 20 20 × 20 — —
60 40 × 100 20 × 20 20 × 20 — —
65–75 — 20 × 20 20 × 20 — —
80 40 × 100 20 × 20 20 × 20 — —
85–95 — 20 × 20 20 × 20 — —
100 40 × 100 20 × 20 20 × 20 20 × 20 40 × 40
120–140 40 × 100 40 × 100 40 × 100 — —
160 40 × 40 40 × 100 40 × 100 — —
180 40 × 100 40 × 100 40 × 100 — —
200 12 × 25 20 × 40 40 × 80 — —
220–290 40 × 80 20 × 40 40 × 80 — —
300 12 × 25 20 × 40 12 × 25 — —
400 10 × 20 13 × 25 10 × 20 — —
450 10 × 20 — 10 × 20 — —
500 10 × 20 10 × 20 10 × 20 — —
550 7 × 15 — 7 × 15 — —
600 7 × 15 10 × 20 7 × 15 — —
650 7 × 15 — 10 × 20 — —
700 7 × 15 8 × 15 7 × 15 — —
750 7 × 15 — 7 × 15 — —
800 5 × 10 8 × 15 7 × 15 — —
900–1000 5 × 10 5 × 10 7 × 15 — —
1100–1800 5 × 10 5 × 10 5 × 10 — —
2000 — — 5 × 10 —

Table 2. System dimensions, W × H, of simulations for different Ra used in figures 6–11. All domain sizes
are given in units of the natural length L.

The simulation is performed on a grid of M × N points at positions (xm, zn). The grid
spacings �X and �Z are varied with Ra, since the spatial resolution has to be increased
at higher Ra to resolve all relevant features. Domain sizes were also adjusted, allowing
for a similar number of grid points in most simulations. The simulation grid spacings and
domain width W and height H are given in table 2 for all Ra. The time step�τ follows the
Courant–Friedrichs–Lewy (CFL) condition (Courant, Friedrichs & Lewy 1928),

C = Umax�τ

�X
≤ C0, (A7)

where Umax is the maximum speed occurring at that time, and where we set C0 = 0.1.
Derivatives in X-direction: we employ Fourier expansions, with coefficients

Ψ̂ξ (zn) = 1
M

M∑
m=1

Ψ (xm, zn) e−2πiξxm/W (A8)

and analogous expressions for ψ̂ ′
ξ and ω̂ξ , where ξ can take integer values between ±M/2.

In terms of these Fourier coefficients (A1) may be written as(
2πiξ

W

)2

Ψ̂ξ + ∂2
Z Ψ̂ξ = −ω̂ξ − ω̂ξ0, (A9)

917 A14-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

22
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.225


J. Lasser, M. Ernst and L. Goehring

α0 α1 a1 a2 a3 a4 a5 a6

interior — 1/3 14/9 1/9 — — — —
node 0 5 — 197/60 −5/12 5 −5/3 5/12 −1/20
node 1 3/4 1/8 −43/96 −5/6 9/8 1/6 −1/96 —

β1 β2 b1 b2 b3 b4 b5 b6

interior 12/97 −1/194 120/7 — — — — —
boundary 11/12 −131/4 177/16 −507/8 783/8 −201/4 81/16 −3/8

Table 3. Coefficients for sixth-order compact finite difference schemes used in the numerical simulations,
following Lele (1992) and Tyler (2007). The α and a terms are used to calculate first derivatives in Z, while β
and b terms are used for second derivatives.
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Figure 13. Code was validated for single-mode perturbations of initial amplitude η = 10−6, on domains of
depth H = 12 and width W = 2π/k. Growth rates α were obtained by fitting the measured amplitude (blue
circles) with an exponential fit (black line). Examples are given for: (a) Ra = 20, k = 1.067, growth rate of
fit αfit = 0.662, compared with α = 0.660 from linear stability analysis; (b) Ra = 30, k = 1.686, αfit = 2.245
compared with α = 2.250; (c) Ra = 40, k = 2.003, αfit = 4.407 compared with α = 4.414.

where ω̂ξ are calculated at each time step by a similar transformation of (A2), and where
ω̂ξ0 = ∇2ψ̂ ′

ξ are constant in time and arise from the boundary conditions.
Derivatives in Z-direction: to solve the system of equations given by (A9) we computed

∂2
ZΨ̂ξ (zn) following the implicit sixth-order compact finite difference scheme given by

Carpenter, Gottlieb & Abarbanel (1993). The N linear differential equations can be
described by two matrices such that

Aleft∂
2
ZΨ̂ξ (zn) = ArightΨ̂ξ (zn) ⇒ ∂2

ZΨ̂ξ ( yn) = (A−1
leftAright)Ψ̂ξ (zn). (A10)

To construct the matrices Aleft and Aright, we use the coefficients αi, βi, ai and bi listed
in table 3, as calculated by Tyler (2007). At each time step we then solve for the Fourier
components ψ̂ , which are inverted to give the streamfunctionψ(xm, zn). The flux U is then
calculated from the streamfunction by again using an implicit sixth-order compact finite
difference scheme for the spatial derivatives. Coefficients for the first and second-order
derivatives of interior and boundary points are listed in table 3.

Time integration: to update the salinity field via (A3) we used a fourth-order
Runge–Kutta scheme and the coefficients given for example by Süli (2003, p. 352). For
spatial derivatives we again use an implicit sixth-order compact finite difference scheme.
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A.3. Validation
The model was validated by comparison with the results of the linear stability analysis.
A similar approach is used in Ruith & Meiburg (2000), Riaz & Meiburg (2003), Chen &
Meiburg (1998a) and Tan & Homsy (1988). For this, instead of (A6) we perturbed our
initial conditions with

S′ = −ηZ
(

eZ − e−H

1 − e−H

)
cos (kX), (A11)

using a perturbation of initial magnitude η = 10−6. This perturbation is consistent with the
constant-salinity boundary condition and affects only a single wavenumber k. Its growth
over time was measured from (half) the peak-to-peak amplitude of this mode evaluated at a
depth of Z = −1. The simulated growth rate αfit was determined by fitting an exponential
to the amplitude measurements. For this fit we focus on the linear growth phase, manually
excluding any initial transient or later nonlinear saturation. Some example measurements,
and fits, are shown in figure 13. Results for various Ra and k agree with the theoretical
values to within a relative error of order 1 %, as was shown in figure 3(b).
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