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A REMARK ON THE GROTHENDIECK-LEFSCHETZ
THEOREM ABOUT THE PICARD GROUP

LUCIAN BADESCU

Let K be an algebraically closed field of arbitrary characteristic.
The term "variety" always means here an irreducible algebraic variety
over K. The notations and the terminology are borrowed in general
from EGA [4].

Let X be a protective non-singular variety embedded in the projec-
tive space Pn — P, and let Y be a closed subvariety. Throughout this
note we shall assume that dim (Y) > 2 and that Y is a scheme-theoretic
complete intersection of X with some hyper surfaces H19 ,Hr of Py

where r = codimx (Y). Sometimes we shall simply say that Y is com-
plete intersection in X.

First of all recall the following result (see [5], [7]):

THEOREM A (Grothendieck-Lefschetz). In the above hypotheses, as-
sume moreover that K is the complex field and that Y is non-singular
of dimension > 3. Then the natural homomorphism of restriction of
Picard groups

(1) Pic (Z)-> Pic (Y)

is an isomorphism.

Note. There is in fact a more precise statement than the above
theorem, asserting that even the corresponding morphism between Picard
schemes Pic (X) —> Pic (Y) is an isomorphism.

The above theorem implies in particular that the following homo-
morphisms of restriction are also isomorphisms (the hypotheses being
the same as in theorem A) :

(2) Pic (X)/Z[OZ(X)] - Pic (Y)/Z[OY(1)]

(3) Pic' (X)-> Pic* (Y)
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( 4 ) Pic0(X) -* Pic0 (Y)

( 5 ) NS(X) -> NS(Y)

where Z[OZ(1)] is the subgroup of Pic (X) generated by the class [O

of the invertible sheaf Ox(l) associated with the hyperplane section of X

via the embedding I c P , Or(l) is the restriction to Y of Ox(l), Picr(Z)

(resp. Pic°(X)) is the subgroup of Pic(X) consisting of all classes of

invertible sheaves numerically (resp. algebraically) equivalent to zero

(see [9]), and NS(X) = Pic(X)/Pic°(X) is the Neron-Severi group of X.

This result is no longer true in general if Y is a surface (take for

instance P3 as X and P, and any non-singular quadric or cubic surface

in P3 as Y). However one knows the following result (see [3]):

THEOREM B. Let Y be a non-singular surface which is complete

intersection in the protective space Pn over an algebraically closed field

of arbitrary characteristic. Then Picτ (Y) = 0 and the class of OF(1) is

not divisible in NS(Y).

The proof of theorem B given in [3] is a consequence of a careful

study of the ^-adic cohomology of Y as well as of Hodge cohomology

H9(Y, Ω%) {Ω\ denoting the sheaf of germs of algebraic differential forms

of degree p on Y). In other words theorem B asserts the following:

Pic(Y) has no torsion and Pic (Y)/Z[OY(1)] has also no torsion.

The aim of this note is to find informations about the maps (1), (2),

(3), (4) and (5) when Y is a surface, complete intersection in X.

THEOREM. In the hypotheses stated at the beginning, assume more-

over that Y is a normal surface and the following condition is fulfilled:

#(X,O
(*)

for every m < 0 and for every 1 < q < dim (X) .

Then the maps (1), (2) and (5) are injective and have cokernels all

isomorphic to the same group E, which is free of finite rank if char (K)

= 0, and e-torsίon-free of finite type if char (K) = p > 0, where e is

any positive integer prime to p. Moreover, the map (4) is always an

isomorphism and the map (3) injective and even bijectίve if char (K)

= 0 .

Proof. It is based on the standard Lefschetz theory in
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Grothendieck's form (see [5], [7]), and on the theory of Picard schemes

(see [6], [11]). We divide it into several steps.

Step 1. (Lefschetz theory). According with the notations and the

context of [7], let X be the formal completion of X along Y; by [7],

chap. IV, theorem (1.5) and the proof of theorem (3.1), the map Pic(Z)

->Pic (Y) factorizes through Pic (X) -> Pic (X) -> Pic (Γ) and the map

( 6) Pic (X) -» Pic (X)

is an isomorphism.

On the other hand, if Yn — (Y, Ox/In) (I being the coherent sheaf

of ideals of Y in Z), by a general statement (see loc. cit.) we have

( 7) Pic (X) - inv lim Pic (Yn)
n

Step 2. Condition (*) implies that Hι(Y, Oγ(m)) = 0 for every

m < 0.

Indeed, by induction on r one can easily assume r = 1, i.e. Y

= X Π H (scheme-theoretically), where H is a hypersurface of P of de-

gree d of equation / = 0. We then get the exact sequence:

0 > Ox(m - d) -^-> Ox{m) > Or(m) > 0

which induces the exact sequence of cohomology

H*(X9 Ox(m)) -> H*(Y, Oγ(m)) -* #«+1(X, Ox(m - d)) .

For 1 < q < dim (Y) the first and the third cohomology group vanish,

so that the middle one also vanishes.

Step 3. H\Y,In/In+1) = 0 for every n > 1.

Indeed, because Y is complete intersection of X with the hyper-

surfaces Hlf - , i ϊ r of degree d19 ,<ίr, the conormal sheaf I/P is iso-

morphic to @r

i=1Oγ(—di) (see [7], page 106). Moreover, for every n > 1

the sheaf In/In+ι is isomorphic to the nth symmetric power Sn(I/P), and

therefore is again a direct sum of line bundles of the form Oγ(m) with

m < 0. So by step 2 we get the conclusion of step 3.

Step 4. Consider the standard exact sequence (see [5], [7]):
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which induces the following exact sequence of cohomology:

by step 3

0 = H\Y, In/In+1) -> Pic (Yn+1) -> Pic (YJ -> H\Y, In/In+1)

in which H2(Y,In/In+1) is a torsion-free group if char(K) — 0, and an
e-torsion-free group if p > 0, being in fact a ίί-vector space. Thus,
one can identify Pic(YJ to a subgϊoup of Pic(Γ) (= Pic(Yi)) in such
a manner that [Ox(l)] and [OF(1)] become equal and the quotient group
Pic (YJ/Pic (Yn+1) (w > 1) is:

-torsion-free if char (K) = 0,
-e-torsion-free if p > 0, for any e prime to p.
Then (6) and (7) from step 1 can be restated as follows:

(8) Pic(Z) = Π Pic(YJ.
7 1 = 1

Now it is clear that (1) and (2) are injective maps and have the
same cokernel E which is:

-torsion-free if char (K) = 0 (by (8) and the torsion-freeness of the
groups Pic(Yn)/Pic(YTO+1) for every n > 1),

-e-torsion-free if p > 0, where e is any integer prime to p (in the
same way).

Step 5. For simplicity, let us set p = 1 if char (K) = 0, and

e-Tors (F) — {x e F/ex = 0} for every abelian group F .

Since Pic (Z)/Picτ (X) and Pic(Y)/Picτ(Y) have no torsion, one sees
that in the commutative diagram

e-Tors (Pic* (Z)) — > e-Tors (Pic (X))

I I
e-Tors (PicΓ (Y)) — • e-Tors (Pic (Y))

the horizontal arrows are isomorphisms, and, by step 4, the right ver-
tical arrow is also an isomorphism, hence

( 9) e-Tors (Picr (X)) s e-Tors (Picτ (Y))

By a theorem of Matsusaka (see [9]) PicΓ(Z)/Pic°(Z) and Picr(Y)/
Pic°(Y) are finite groups. Considering the injective homomorphism

(10) β-Tors (Pic0 (X)) -* e-Tors (Pic0 (Y)) .
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I claim it has finite cokernel of cardinality at most λ = order (PieΓ(X)/

Pic° (X)).

Indeed, consider the commutative diagram with exact lines

0 > e-Tors (Pic0 (X)) > e-Tors (Pic r (X)) > C > 0

0 • e-Tors (Pic° (Y)) > e-Tors (Pic* (Y)) — • D • 0

Taking into account of (9), one deduces that the cokernel of (10)

is isomorphic to Ker (u). But the exact sequence (e-Tors is a left exact

functor!)

0 -> e-Tors (Pic0 (X)) -> e-Tors (PicΓ (X)) -> e-Tors (Pic (X)/Pic° (X))

shows that Ker(u) c C c Picτ(X)/Pic°(X), hence the claim.

Step 6. Since X is non-singular and Y normal, the group-schemes

Pic°(X) and Pic°(Y) are proper over K (see [6], No. 236, theorem 2.1),

therefore it makes sense to speak about the abelian varieties Pic0 (X)red

and Pic0 (Y)rβd. By [12] chap. II, § 6, one gets:

order (e-Tors (Pic0 (X))) = e2g , g = dim Pic0 (X), e prime to p ,

order (e-Tors (Pic0 (Y))) = e2*' , g' = dim Pic0 (Y) .

By the injectivity of the map Pic0 (X) -> Pic0 (Y) and by step 5 we

get the inequalities

g < g' and e2g/ < λe2g .

Remarking t h a t one can choose e arb i t rar i ly large (and prime to p),

these inequalities imply g = gf, i.e. the morphism Pic 0 (X) —> Pic 0 (Y) is

bijective, since it is injective and Pic 0 (X) and Pic 0 (Y) a re abelian sche-

mes of the same dimension. Consequently, we deduce t h a t (4) is an

isomorphism.

Step 7. The isomorphism (4), the injectivity of (1) and the e-tor-

sion-freeness of E show t h a t (5) is also injective and t h a t NS(Y)INS{X)

(which can be identified wi th E) is e-torsion-free.

Step 8 (For char (K) = 0). By step 7, Tors(2VS(X)) s Tors (NS(Y)),

where if F is an abelian group, T o r s ( F ) denotes the torsion subgroup

of F. But taking into account of (4) and the equalities
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Tors (NS(X)) = Pic7 (X)/Pic° (X) and Tors (NS(Y)) = Pic (Y)/Pic° (Y)

one concludes that (3) is an isomorphism.

Step 9. By Neron-Severi theorem for surfaces, NS(Y) is finitely

generated, hence E is also finitely generated, since, by step 7, E is a

quotient of NS(Y). If char (X) = 0, £7 results therefore free of finite

rank. q.e.d.

COROLLARY 1. In the hypotheses stated at the beginning, assume

that Y is a normal surface and that the ground field is the complex

field C.

a) The maps (1), (2) and (5) are ίnjective and yield the isomorphisms

Pic (Y) ^ Pic (X) Θ Z\ Pic (Y)/Z[OΓ(1)] = Pic (X)/Z[OZ(X)Ί Θ Z* <md NS(Y)

^ NS(X) 0 Z% where s is a non-negative integer.

b) Γfee cίαss o/ OF(1) is not divisible in Pic (Y) (resp. in NS(Y)) if

and only if the class of Ox(l) is not divisible in Pic (X) (resp. in

NS(X)).

c) The morphism Pic (X) —> Pic (Y) between Picard schemes yields

the isomorphisms PicΓ (Z) -> PicΓ (Y) and Pic0 (X) -> Pic0 (Y), omd in

particular dim ^ ( Z , Ox) = dim if^Y, Oγ).

Proof. First observe that condition (*) of the theorem is always

fulfilled over the complex field, by Kodaira's vanishing theorem, a) is

then a direct consequence of the theorem; b) results easily using the

isomorphism

(11) Tors (Pic (Z)/Z[OZ(1)]) ^ Tors (Pic (Y)/Z[Or(l)])

(resp. Tors(N5(Z)/^{Ox(l)})^Tors(iVS(Y)/Z{OF(l)})) combined with the

injectivity of (1) (resp. of (5)). The proof of c) is contained in step 6

of the proof of the theorem, because an abelian scheme in character-

istic zero is always reduced (this is a theorem of Cartier, see [11],

lecture 25).

Remarks. 1. First of all recall the following theorem of Lefschetz

about singular cohomology (see [1]):

THEOREM C (Lefschetz). Assume that Y is a non-singular complete

intersection in the protective space Pn = P over the complex field. Then

the natural homomorphism
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H<(P,Z)-+H"(Y,Z)

induced by inclusion Y c P, is

(i) bijective for q < d = dim (Y), and

(ii) injective for q — d, and the quotient group Hd(Y,Z)/Hd(P,Z)

has no torsion.

As it is known (see [8]), theorem A can be deduced from part (i)

of theorem C, if we restrict ourselves to the case where Y is a non-

singular complete intersection in Pn (i.e. X = Pn) and dim (Y) ^ 3. Pro-

ceeding analogously as in loc. cit., we shall see bellow that one can

deduce from part (ii) of theorem C the following special case of corol-

lary 1: if Y is a non-singular surface which is complete intersection

in Pn = P, then the map Pic (P) -> Pic (Y) is injective and Pic(Γ)/Pic(P)

has no torsion, i.e. theorem B for the complex field.

Indeed, using the exponential sequence for P and Y, one gets the

commutative diagram with exact lines:

H\P, 0%) • HKP, (O%)*) • H2(P, Z) • H\P, 0%)

H\Y, Oh

Y) • H\Y, (Oh

YY) • H\Y, Z) • H2(Y, 0%)

where Oh denotes the sheaf of germs of holomorphic functions, and

(Oh)—the sheaf of germs of nowhere—vanishing holomorphic functions.

By GAGA [16] and FAC [15], H\P, Oh

P) = H\P, Oh

P) = H\Y, 0%) - 0,

Pic (P) = ff(P, (0*)*) and Pic (Y) = Hι(Y, (O£)*). Hence the map Pic (P)

—> Pic (Y) is injective since by (ii) of theorem C the map H\P, Z)

->H2(Y,Z) is so, and Pic(Y)/Pic(P) may be identified to a subgroup of

H2(Y,Z)/H2(P,Z), and this last group has no torsion by (ii) again.

2. If we restrict ourselves to the complex case, we see that corol-

lary 1 may be regarded as a more general statement than theorem B.

3. By Lefschetz's principle corollary 1 is also valid over any

algebraically closed field of characteristic zero.

4. By corollary 1 and the above remark, the map (3) turns out to

be an isomorphism, provided that char (K) = 0. We do not know if (3)

is always an isomorphism in the assumptions of the theorem and

char (K) > 0. However, the answer is affirmative if Y is a non-singular

surface, complete intersection in Pn, as shows theorem B.
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COROLLARY 2 (Kleiman [9]). It is sufficient to prove Neron-Severi's
theorem for projective non-singular surfaces in order to deduce it for
projective non-singular varieties of arbitrary dimension (with arbitrary
char (K)).

Proof. Let X be a projective non-singular veriety; we have to
prove that NS(X) is finitely generated if we assume this for projective
non-singular surfaces. Since Neron-Severi's theorem is trivial for
curves, we may assume dim (X) > 3. Choose a projective embedding
ΐ :Z-—>P n ; by FAC [15], §75, theorem 3, H«(X,Ox(m)) = 0 for 1 < q
< dim (X), provided that m sufficiently small. Therefore composing

eventually i with a Veronese embedding vd : P
n =—> PN(N = In j~ j

— 1) of sufficiently high degree d, we get another embedding which

satisfies this time condition (*) of the theorem. Hence, without loss
of generality, we may assume that i satisfies (*). Let then Y be the
intersection of X with a general linear subspace of Pn of codimension
= dim (X) — 2. By Bertini's theorem, Y is a non-singular surface.
Hence, by the theorem, NS(X) can be identified to a subgroup of NS(Y),
which was assumed to be finitely generated, so that NS(X) is also finitely
generated.

Remark. Instead of the injectivity of (5), Kleiman used Hodge
index theorem (see [11], lecture 18) to get the statement of corollary 2.
Actually, Kleiman showed more, namely that Neron-Severi's theorem
is true for every complete variety (which may have singularities),
assuming it for projective non-singular surfaces, by using moreover
Chow's lemma and the resolution of singularities for surfaces.

COROLLARY 3. Let X be a projective non-singular and arithmeti-
cally Cohen-Macaulay subvariety of the projective space Pn over an alge-
braically closed field of arbitrary characteristic, and let Y be a normal
surface which is a complete intersection of X with some hypersurfaces
of Pn. Then the same conclusions as in the theorem hold, and more-
over Pic0 (X) and Pic0 (Y) are both trivial.

Proof. We have to observe that the arithmetic Cohen-Macaulay-ness
of X in Pn implies that condition (*) of the theorem is fulfilled on one
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hand, and that Y is also arithmetically Cohen-Macaulay in Pn

y on the
other hand. In particular we get that HP(X, Ox) = Hι(Y, Oγ) — 0, hence
Pic0 CX") and Pic0 (Y) are trivial. Hence we see that a direct proof of
corollary 3 does not need the discussion from steps 5 and 6, i.e. does
not need the theory of Picard schemes.

COROLLARY 4. In the hypotheses of corollary 3, assume moreover
that the characteristic of the ground field is zero and that the group
Pic (X)/Z[OX(1)] has no torsion. Then every integral curve on Y whose
sheaf of ideals in Y is invertίble and which is set-theoretic complete
intersection of Y with a hypersurface of Pn, is actually a scheme-theo-
retic complete intersection of Y with a hypersurface of Pn.

Proof. Using corollary 3 and isomorphism (11), one gets that the
group Pic (Y) /Z[Oγ(l)] has no torsion. Moreover, since Y is arithmeti-
cally Cohen-Macaulay in Pn, the Serre homomorphism a(Y): S(Y)
—> ΘΓ=o Γ(Y, Oγ(s)) (see EGA II or FAC) is an isomorphism, where by
S(Y) we mean the homogeneous coordinates ring of Y in Pn. Corollary
4 follows now from the following lemma of Robbiano (see [13]) :

LEMMA. Let V c Pn be a closed subvariety of Pn such that the Serre
map a(V)9 is an isomorphism and Pic (V) / Z[OV(1)] has no torsion. Then
every closed integral subscheme D of Y whose sheaf of ideals in Y is
invertible and which is set-theoretic complete intersection of V with a
hypersurface of Pn. is actually a scheme-theoretic complete intersection
of V with a hypersurface of Pn.

Proof. D can be regarded as a Cartier divisor on Y; since D is
integral and set-theoretic complete intersection of V with a hypersurface
of Pn, there are two positive integers a and β such that Ov(aD) = Ov(β)
(PviaD) denoting the invertible OF-module associated with the divisor
aD). The torsion-freeness of Pic (V) /Z[OV(1)] shows that there is a
positive integer γ such that OV(D) ^ Ov(γ). Now the divisor D corres-
ponds to a section / e Γ(V, Ov(γ))9 and since Γ(V, Ov(γ)) ^ S(V)rf we see
that D is a complete intersection of V with the hypersurface H of
equation F = 0, where F is an homogeneous form of degree γ in n + 1
variables representing / in S(V).

Remark. Corollary 4 extends a result of Robbiano (see [14]), which
essentially is the special case of corollary 4 in which X is moreover
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arithmetically factorial in Pn (modulo the fact that in [14] the ground
field is not assumed to be algebraically closed but also in our case this
restriction is not really necessary, if we look carefully at the direct
proof of corollary 3). The arithmetic factoriality of X in Pn implies
that Pic (X)/Z[OZ(1)] = 0 and that every hypersurface of X is cut out
by a hypersurface of Pn.

Before giving an example, let us mention an elementary interpre-
tation of the group Pic (V)/Z[OV(1)] associated with a protective em-
bedding V c Pn of a non-singular variety V, namely: it is canonically
isomorphic to the divisor class group of the normal graded ring
eΓ=0Γ(F,OF(s))(see [2], [10]).

EXAMPLE. Let X = Pm x Pm' and embed X in the protective space

Pn by:

with a0 + + am = s,βo + + βm, = t, α, > 0, βd > 0, s > 0, ί > 0 and

n = ( m ^ " ^ - ( ^ ^ J *) ~ 1. This embedding is always Cohen-Macaulay,

and by above interpretation, Pic(X)/Z[Ox(ΐ)] = Z®Z/dZ, where d is
the greatest common divisor of s and t (since Ox(l) ^ pf O(s) ® pfθ(t),
where Pi and p2 are the canonical projections of our product). There-
fore, if m + mf > 3 and s and t are relatively prime each other, this
embedding satisfies the hypotheses of corollary 4.

We do not know in general if the restriction about the character-
istic of K to be zero is really necessary in corollary 4. However, theo-
rem B and Robbiano's lemma above allow us to deduce the following
result, which extends to arbitrary characteristic the result of Robbiano
from [13]:

COROLLARY 5. Let Y be a protective non-singular surface, complete
intersection in the protective space Pn over an algebraically closed field
K of arbitrary characteristic. Then every integral curve D on Y which
is set-theoretic complete intersection of Y with a hypersurface of Pn,
is actually a complete intersection of Y with a hypersurface of Pn,
and hence D is a complete intersection in Pn.
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