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THE STRUCTURE OF ELEMENTS IN FINITE FULL
TRANSFORMATION SEMIGROUPS

GONCA AYIK, HAYRULLAH AYIK, YUSUF UNLU AND JOHN M. HOWIE

The index and period of an element a of a finite semigroup are the smallest values
of m ^ 1 and r ^ 1 such that am+T = am. An element with index m and period
1 is called an m-potent element. For an element a of a finite full transformation
semigroup with index m and period r, a unique factorisation a = of} such that
Shift(cr) PI Shift(/?) = 0 is obtained, where a is a permutation of order r and 0 is an
m-potent. Some applications of this factorisation are given.

1. INTRODUCTION

The full transformation semigroup Tx on a set X, the semigroup analogue of the
symmetric group Sx, has been much studied over the last fifty years, in both the finite
and the infinite cases. (See, for example [10, 3].) Here we are concerned solely with the
case where X = Xn = {1,2,... , n}, and we denote the semigroup Txn of all self maps
of Xn by Tn. For each a e Tn we define Fix(a) as {x G Xn | xa = x}, and we denote
* n \F ix (a ) by Shift(a).

Let 5 be a semigroup and a € S. If there exist m, r e Z+ such that am+r - am

and a, a2,..., am+r~1 are pairwise distinct, then a is called an (m, r)-potent element of
5, and we say that a has index m and period r. In particular, if r = 1, then a is called
an m-potent, and if m — r = 1 then a is called an idempotent.

The aim of this paper is to describe a natural factorisation of (m, r)-potent elements
in Tn and to give some applications of this factorisation.

For undefined terms in semigroup theory, see [4].

2. ORBITS

Let a € Tn. The equivalence relation = on Xn, defined by

x = y if and only if (3r, s ^ 0) xaT = xa',
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partitions Xn into orbits fii,f22, • • • , 0*- The orbits are the connected components of
the function graph, and provide valuable information about the structure of the map a.
Typically, an orbit consists of a cycle with some trees attached. If there are no attached
trees, we say that the orbit fij is cyclic, if the cycle is trivial (consisting of a single fixed
point) and |fij| > 2 we say that fi* is acyclic; if fi< consists of a single fixed point, we say
that it is trivial. An example will clarify the ideas. Let n = 17 and let a be the map

1 2 3 4 5 6 7 8
3 3 4 5 6 7 5 6

9 10 11 12 13 14 15 16 17

11 11 12 12 14 15 16 13 17

The orbits of a (with the convention that arrows point towards the cycle or fixed point,
and that arrows go counterclockwise within the cycles) can be depicted thus:

(1) 6- -7

In [1], three of the present authors described and made use of a 'linear' notation (a
modification of Lipscomb's notation [6]) for elements of Tn, in which the map depicted
above appears as

[134567 | 5] [1314 1516 | 13] [9 1112 | 12] [2 3 | 3][86 | 6] [10 11 | 11].

It would be possible to rewrite this article using that notation, but the way in which it
mixes the orbits makes the arguments more difficult and less transparent.

In the general case it is clear that, for each x in Xn, the sequence

x,xa,xa2,...

eventually arrives in a cycle (or a fixed point, which of course we may regard as a special
case of a cycle) and remains there for all subsequent iterations. Denote the set of all ele-
ments contained in cycles by Z(a). (In our example, Z{a) — {5,6,7,12,13,14,15,16,17}.)
The index m of a is the length of the longest path into Z(a), and the period r is the
least common multiple of the lengths of the cycles. (In our example, we have m — 3 and
r = 12.)

It is clear also that the element a is m-potent if and only if Z(a) consists solely of
fixed points and there exists y in Xn such that

yam € Z(a), yet"1'1 Z(a).

The largest m that can occur is n — 1; this happens, for example, if xa = x + 1 for
x = 1,2,..., n — 1 and na = n.
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3. T H E FACTORISATION O F (TO,7-)-POTENTS

Let STn = Tn\Sn, the full singular transformation semigroup of degree n, and let
a € STn be m-potent: Thus a m + 1 = am, and aq+1 / aq for all q < m. For each x

in Xn, let mx be the least integer such that i a m " € Z(a), and, for j = 0 , 1 , . . . ,m, let
/lj = {a; e X n | mx = j}. It is evident that Ao = Z{a), and that the sets Ao, A\,..., Am

m
are mutually disjoint. It is clear too that \J Aj — Xn, since, for all x in Xn, the sequence
x, xa,xa2,... must reach Z(a) in at most vn steps. Finally, we see that the sets are all
non-empty, since there exists y in Am, and yam~J € Aj for j = 0 ,1 , . . . , m — 1. We have
proved the following theorem:

THEOREM 1 . With the above definitions, (AQ,A\, ..., Am) is a partition of the

set Xn.

For example, if a is

/ 1 2 3 4 5 6 7 8 9 10 11 ^
\̂  3 3 4 5 5 8 8 10 10 10 11 J '

then
A, = {5,10,11}, ^ = {4,8,9}, ^ = {3,6,7}, A3 = {1,2).

Let a € Tn have index m and period r. Suppose that there are k orbits fii, f^i • • • •> ^*
and that, for each j in {1,2, . . . ,&}, the map a, = a|n, has index rrij and period r;.
We have already observed that m = max{mi, TO2,..., mk} and r is the lowest common
multiple of r\, r2 , . . . , rk.

Let j € {1,2,. . . , fc}. For each element a in Z{a.j) there is an associated vertex set
Tj (a) of a tree, defined by the property that x € Tj (a) if and only if either x = a, or
there is a sequence x,xa,xa2,... such that, for some u ^ 1,

ia" e X n \ Z(otj) for 0 ^ u < u, and I Q " = a.

(That is a rather cumbersome explanation of a simple idea: in our first example, we have

T\(5) = {1,2,3,4,5}, ^(6) = {8,6}, 7\(7) = {7}.)

Notice that \J Tj(a) = Clj. We then define fc on the set Qj by

I x otherwise,

and define a permutation <7j on fij by

_ J icij if x € Z(aj)
J ] x otherwise.
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Then /3j is an m_,-potent, Oj is a cycle of length (and order) r,, and Ujfij = aj. From the

definitions it is clear also that Shift(<7j) n Shift(^) = 0.

Since the orbits are mutually disjoint, we can conclude that a = a/3, where

a = o\Gi.. .ak, P = /3i/?2 • • • Pk and Shift(ff) D Shift(/3) = 0. Then a is a permutation of

order r = lcm(ri, r2,..., rk) and /3 is an m-potent, with m = max{mi, m 2 , . . . , mk}.

We have proved the following result:

THEOREM 2 . Let a be an element ofTn of index m and period r. Then there

exist a permutation o of order r and an m-potent element j3 such that a = a/3 and

Shift(cr) n Shift(/3) = 0.

We have the following converse result:

THEOREM 3 . Let a be a permutation of order r and let /3 be an m-potent suci

that Shift (a) n Shift (/?) = 0. Let a = a/3. Then

(i) a has index m and period r;

(ii) im(Qm) is the disjoint union of Shift(a) and Fix(a).

PROOF: (i) Observe first that, for all x in Xn,

(2) x 6 Shift(/J) =» xcr/3 = x/3, x € Shift (a) => xa/3 = xa.

Consider the orbits of a and 0. If the orbit Qj of /? is entirely contained in Fix(a), then
x(a/3)q = x/3q for all x in Q.j and for all q. The other possibility is that the fixed point
of fij is in a non-singleton orbit Aj of a. If x € Qj is such that x/3q+1 — x/3q (q ^ 1),
then x,x/3,x/32,.. -,xf3q~x e Fix(cr), and so x(aP)q = x/3«. If <T|AJ- is a cycle of length
s > 1, then x/3qa,x/3qa2,... e Fix(/3), and so x(a^)«+t = x/3«cr' for all t. It follows that
x(a/3)q+s — x(a/3)q and that no smaller q and s will suffice.

We carry this out for each orbit Qj in turn, and obtain the orbital structure of a0.

The longest path into Z(a/3) is determined by the corresponding path for /3, and the
(non-trivial) cycles are the same as those for a. We deduce that a/3 has index m and
period r. (Graphically, the strategy of the above proof is easy to visualise: at each point
z in Shift(a) D Fix(/3) the tree ending in z is simply 'tacked on' to the cycle.)

(ii) If /3 is the identity map (in which case m — 1), then the result is obvious. We
suppose that 0 is not the identity map. Suppose first that z e im(am). In the notation
of Theorem 1, let x € Aj for some j in {1,2, . . . , m}, so that x, x/3,..., xft~l € Shift(/3)
and xa? - xfij G Shift(a) U Fix(a). Certainly xam G Shift(cr) U Fix(a).

Conversely, suppose that z G Shift(a) U Fix(a). If z G Fix(a), then

z = za = --- = zam G im(a m ) .

If z G Shift(a), then za~m G Shift(a), and so, by (2),

2 = (za-m)am = (za-m)am G im(am).

https://doi.org/10.1017/S0004972700038028 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038028


[5] The structure of elements 73

It is clear that the union Shift(o-) U Fix(a) is disjoint. D

We are ready now to prove our main result:

THEOREM 4 . Let a be an element ofTn. Then a is an (m, r)-potent if and only

if there exist a unique permutation a of order r and a unique m-potent element 0 such

that a = CT/3 and Shift(cr) n Shift(^) = 0.

PROOF: From Theorems 2 and 3 it is enough to show that the factorisation of a
given by Theorem 2 is unique. Let a — <TI/?I — cr2/?2 where Oj is a permutation of order
Tj and fa is an mj-potent such that Shift(<7j) n Shift(/3j) = 0 for j — 1,2. It follows from
Theorem 3 that a has index rrij and period r,- for j = 1, 2. Hence m\ = m-i and r\ = r2.
Moreover, it follows from Theorem 3(ii) that Shift(<r1) = im(am) \ Fix(a) = Shift(a2).
Since, for all z in Shift(crj),

ZOL — ZCTjftj = ZOj ,

it follows that O\ = o-i, and it then follows immediately that /?i = ft- Q

It is important to note that the uniqueness of the factorisation depends upon the
condition Shift(cr) n Shift(/3) = 0. For example, we have

4. APPLICATIONS

The numbers of some kinds of elements in Tn are known (see, for example [2, 7, 8, 9]).
By using Theorem 1, we can obtain a formula for the number of m-potents in Tn as well.
The number of partitions of n into m + 1 parts is also the number of equivalences on
the set Xn having m + 1 classes; this is the Stirling number S{n,m + 1) of the second
kind. (See, for example, [5], where the relevance of Stirling numbers to semigroup theory
is made clear.) Denote the set of partitions of n into m + 1 non-zero parts by Pm+i(n).

Given a partition k0,ki,...,km of n, we can assign sets AQ, A X , ..., Am, with |A,-| = kj

for each j , in

, K\,..., kmj

ways. Each element of A\ must map to elements of Ao and there are |j4i|li4°l ways in
which this can happen. Similarly, there are l^l''*1' ways in which the elements of A2 can
map into A\. Continuing in this way, we obtain the following theorem:

THEOREM 5 . The number of m-potent elements (m = 1,2,... ,n — 1) in STn is

\ * I | { .*01 .* l jL* m - l
/ I . * I "'1 ""> • • • ^m
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Let r(k, r) denote the number of permutations of k elements of order r. Since (0, r)-

potent elements are permutations, we only take into account (m, r)-potent elements with
m ^ 1 in the following theorem.

THEOREM 6. Let m ^ 1 and r ^ 1. Tien tie number of (m, r)-potent elements
in STn is

PROOF: We know that each (m,r)-potent element can be uniquely written as a/3
where a is a permutation of order r and 0 is an m-potent element and Fix(cr) U Fix(/?)
= Xn.

Let (Ao, Ai,..., Am) be a partition of Xn with | A{ \= kt (i = 0 , 1 , . . . , m), and let
K = K(AQ, AI, ..., Am) denote the set of all m-potent elements in Tn with corresponding
partition (Ao, Ai,..., Am), as in Theorem 1. For each /3 6 K we have Fix(/3) = AQ. Since,
by Theorem 2, Shift(cr) C Ao, there are r(fco,r) permutations of order r in Tn having
Shift(cr) C Ao. Similarly, the result follows from Theorem 4, as required. 0
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