PARTITIONS OF THE NATURAL NUMBERS

1
Myer Angel )

(received September 23, 1963)

1. We obtain in this article some results concerning
partitions of the natural numbers, the most important of which
is a generalization of that quoted immediately below. Some
intuitive material is included.

In 1954, J. Lambek and L. Moser [1] showed that "Two
non-decreasing sequences f and g (of non-negative integers)
are inverses if and only if the corresponding sets F and G of
positive integers, defined by F(m) =the mth element of
F=fm)+m and G(n) =g(n) + n are complementary.'" The
inverse of f was defined so that it coincided with f+, where
ff(n) = the number of m such that f(m)<n. Thus the comple-

mentary sets F={2, 6, 12, 20, 30, ...} and G={1, 3, 4,
2
5, 7, ...} definedby F(m)=m +m and G(n)=[Nn-1]+n

2
correspond to the inverse sequences m and [Nn - 1].

Using this example, a possible geometric "map'" of the
concepts involved in the theorem is given in Figs. 1 and 2.
Thus, in Fig. 1, {n+ f(n)|n=1, 2, 3, ...} is represented
by two vertical (number) lines, each containing an infinity of
(natural) points, spaced at equal distances, the analogue of +
being a rising bar which straddles the lines. Understanding
the theorem may be largely equivalent to tracing out this, or
the reader's own, diagram mentally, until any part suggests
the whole.

1)

Editor's comment. Mr. Angel is an undergraduate student
at McGill University. This paper was written when he was
a second year student.
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In Fig. 2, the mth natural number is entered in an nth
position in Column 1 (representing the set F), if there have
been f(n) entries in Column 2 (representing the set G). It
is then of the form n + f(n). It is entered in an nth position
in Column 2 if there have been f+(n) entries in Column 1.

It is then of the form f(n) + n. One and only one of these
conditions holds for each m.

1 1 1
212221222 2 2 1
D S S A
12 3 456 78 9 10 11 12

Fig. 3

In Fig. 3, a sequence of 1's is formed. 2's are inter-
polated so that before the nth 1, there are f(n) 2's. If the
mth term in the sequence is an nth 1, let m be in F. Then
F(n) =m = number of 1's + number of 2's =n + f(n). If the
mth term of the sequence is an nth 2, let m be in G. Then
G(n) =m =number of 2's + number of 1's =n + f+(n), as is
easily verified.

The assignment of natural numbers to complementary
sets, given f, may be considered as being made either
inductively as in Fig. 2, or after an interpolation as in Fig. 3;
this latter method proves to be the more useful in the general
case we shall be discussing. Sequences of numerals represent-
ing sets (such as in Fig. 3) are linguistically more amenable
to treatment by interpolation than are sets of numbers (such
as in Fig. 2), and will hence be introduced when needed.

We observe that the "complementary! sets are "2" sets,
and that dichotomy is a special case of partition. This is
amplified in Fig. 4, although such particular imagery as is
there presented should serve only as the stepping-stone to an
understanding which dispenses with it. The intuitive approach
will therefore be exchanged afterwards for a set-theoretical
formulation in which the temporal and kinetic elements are
camouflaged in static, symbolic representation.
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corresponding (functionally determined) number of previous

Fig. 4

Fig. 4 is interpreted as follows.
are counted off, they are entered in various columns which grow.
The natural numbers may be classified according to the columns
to which they are assigned.

As the natural numbers

Each entry may be expressed as the
number that have so far been entered in its column, plus the

entries in the other columns (cf. §5, Ex. 1, and Fig. 6).

1, 2, 3, ..

., h.

2. In the

following,

F

2" 73

9 .

N denotes the natural numbers

. Fn} or {Fi]iesn} .

The union, F UF.UF_. ... UF , of the sets F. is N,
1 2 3 n i

and the intersection F./MNF
i

The nth smallest element of a set is denoted by F(n).

J

and S the first n natural numbers 1, 2, 3,
n

Partitions of N into a finite number of subsets are
denoted by {F'l’ F

of F, and F, (i# j) is empty.
1 J

Since

the sets F, are also the ranges of strictly monotonic increasing
1

functions on N,

form a subclass of all sequences.

they are often treated as such functions, which

sequences are denoted by F, G, ...

decreasing sequences by f, g, ....

Strictly monotonic increasing

, and more generally non-

Some non-decreasing

sequences which will appear below are p , the nth prime;
n

w(n),
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greatest integer in r(n) where r is a non-decreasing real-
valued function on N. We will say f=g, f<g, and f<g
if and only if f(n) = g(n), f(n) < g(n), and £(n) < g(n), B
respectively, for all n e N. B

The composition product of functions, which is the only
product we shall use, is written fgh ..., fgh(n) being equiva-
lent to h(g(f(n))). (Those readers who prefer the usual com-
position notation, slightly inconvenient here, in which there is
a psychological "'set'" provided by reading the functions in an
order opposite to that in which they are calculated, will read
the function products from right to left.) f+ g represents
the sum of functions, not sets. I is the identity function,

S the successor (n-—-n + 1) function and P the predecessor
(n > n - 1) function.

b3 X%
f is the function determined by f f < I and f Sf>1;
ie., f (n) is the number of members of {x]f <n} =
{x|f(x)<n+1}, sothat Sf =f and f =Pf

We will adjoin 0 and ® to N (more specifically, to
the ranges of functions f) for certain purposes. 0 is useful
since it gives meaning to the P function at 1, and, in its
capacity as additive identity, it signifies '"nothing" or '"no
contribution to the sum''. All negative integers are treated
as 0, and the value of any function at 0 is 0. o is useful,
since if any function becomes constant at k, i.e. beyond some
point of its domain, then we may say f+(k) =o. Rather than
run a parallel rewording of the proofs below to cover the infinite
case, we will allow the reader to check that this case has no
essential distinction.

Some remarks on the behaviour of the functions we have
defined, supplementing the standard algebra of functions, will
facilitate the discussion below.

1) F‘F»< =1, since there are n elements of F which
do not exceed F{n), the nth element of F. On the other hand
F*F =1 onlyon F. There F(F F)-(FF ‘F = IF = F.
Otherwise F F < L.

2) FPF%< =P, since n -1 elements of F do not exceed
F(n) - 1. However, if F and G are complementary sets,
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FPG’F = FG since all elements of G < F(n) are < F(n) - 1.

% %k sk
3) gffg<g g<I, and g f Sfg> g Sg>1. Hence
(fg)™ = g™

4) It is shown in [1] that (f ) =f YJthh is the same as
(P(Pf)” ) f Then (£%)* = PS(f*)" = P(f"P)™ = P(PSf" P)™
= P(P(SfP)™)* = SfP. This result may be obtained directly by
observing that (SIP){* =SP <1 and (SfP)Sf* =Sff*=5> 1.

Nk + Sk o3k ORI B 5
5) (fg) =Plfg ) =Pg f =P(SgP)f =gf

sk sk % ] * %
6) fg g<f< fg Sg; therefore fg gh <f<fg Sgh

3. 1f {F,, F,} isa partition of N, then F1' + FZ o1,

since the n natural numbers not exceeding n are all either in
F  orin F,. More generally, if {F,|ieS } is a partition
1 n

1 .
of N, then Z F,% =1. This equation represents an equality
ie S
n
of functional values for all n € N, and hence for any subset of
N; thus F=F = F =2 FF.". (The cbservation that
ies 1 ies

the nth natural number is equal to n is central to maany of

the remarks thus far. This equation of cardinal and ordinal
values is characteristic of the natural numbers, so that a
straightforward extension of the results below to other systems
is unlikely, although analogous developments involving a sub-
stantial change in character might be attempted.)

If {Fi’ FZ} and {F3, F4} are partitions of N, then
{ F F., 1F4,
n in N, the domain of F3 and F4, is either in F1 or in F

’ . o £ N, s
F2F3 F2F4} is a partition of N, since every
5
M Ily if {F.,|ieS }, {F.|jeS }, keS },

ore generally if { il1 n} { leG n} {Fkl n}
are partitions of N, then so is {FiF_Fk. ol s ke )

J

€S XS XS X...} where S XS isa Cartesian product,

n’ n’ n n’ n
and some of the F's may be empty. Each F may be expressed

as = FF so that we now have a wide class of partitions.
ie S
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2
Examples: Let F1 be the set of squares, F1(n) =n

F_, the set of non-squares Fz(n) =n+ {Nn}; F_, the set

Z’ 3)
of triangular numbers, F3(n) =n(n + 1)/2; and F4, the set

of non-triangular numbers, F4(n) =n+ {N2n}. ({} is the

""closest integer' function.)

Two of the possible partitions obtainable from {Fi’ FZ}

and {2F32, F4} are {1;‘117‘3, F1F4, F2F3, F2F4}
={{n" (" +1)/2}, {n"+ {’J(an)}}, {(n+ {Nn})n+ {Nn} + 1)/2},
{n+{~Na} + {(NZ@n+ {Nn})}}} and {FiFiF . F FF,,

1 11
FFF,FFF,FFF,FFF,FFF,6 FFF}

172717 T274747 T47272) T2T1T2 T2T27 T2t 22

={{n8}, {n%*+ 02}, {(n?+ )%}, {(n+ {Va})%},

(22t (Wl +m}}, {n+ (Na})24n+ (N5} ],

{@+ {¥a} + {Nn + {~Vn)} )2} ,

{n+{~Vn} + {Nm+ {Na})} + {n+ {vn} + {N(n+ {~n})}

+ {N@+ {va} + (N + (N} )} .

It is understood that {f(n)} ={f(n)|n € N} when the braces
clearly do not denote the ''closest integer to' function.

The descriptions of F2 and F4 in terms of familiar

functions were found in [1] by a method which may be generalized
as follows: Let {F,|]ie S } be a partition of which F, is a
i n

n * n * 4 *
subset. Then F, = X F F = X (F.F, ) =F F
1 . 1 1 . iJa 1 1
i=1 i=1
n n "
+ Z (F,- Z F.F,). In this way F1 is eliminated from
i i
i=2 j=2

an expression for it.

For example, if we have the partition {Fi’ F,, F3} ,
* * * * - * 4
- - * +
then }3"1 F1F1+F1F2+F1F3 F1F1+(F2F1)+(F3F1)
1+ (F,-FF -FF ) +(F,-FF -FF )
SL(F, - FpF, - FpFy ) +(Fy- FyF, - F3Fy)
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If FZ is the set of squares, and F3 the set of primes, then

the nth number which is neither prime nor square is equal to
2 2. 4+
the nth element of F1 =n+ (m -m- m(m )) (n)
2 2.+
+ (p -m - [Np ]) (n) (n -n-mwn)) (1) =2, since

2
22 -2 - 11(22) <1< 3 - 3-m3), and we find that the first
such number =1 + 2+ 3 =6 .

4. We select for special attention the partition
n
{F1 |ie Sn} expressed in the form {F = F Ii € Sn} .
Yi=t
From the n subsets of any partition {F |1 €S } the monotonic

*
increasing functions F1FJ for all (i,j) in S XSn may be

calculated We have shown above that F, F_] = (F F + and

that FF FF <FF <FF SFF . If, conversel,the
b k= k J Jk Y

extensions of the n?‘ functlons (FiF' ) are given, then the
J

redundancy of information in the case just dealt with is now
reflected in a demand for the consistency of the specified

. * .. . * +
functions; F,F. must coincide with (F.F, ) and
i

s

* bk * *
FF. FF FF <FF SF.F , forall i, j and k in S .
ij jk ik — 1 j k n

IN W

* 2
Thus, if we are given F1F2 =n , and FZFi =P there is
no partition {F |ies } which is a solut1on of the gwen
2
ati . On th her hand, if F_ . =n, d F =p,
equations n the other han i F1 > n an F3 1 pn
it seems plausible that there is a partition {F1, F_, F3} s

2
which is a solution of these equations. In fact, such a partition
2
is given by F, ={n+n + mn - 1)|ne N}
‘{[\)n - 1]+ n+ w([Nn-1])|n e N}

;=P _+(p, )2+ nne N}
We make the following definitions: Any subset S of

Sn X Sn will be called independent, if for any function ¢ from

the elements of S to non-decreasing sequences, a partition
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&k
{F.|]ieS } may be found such that F.F. =¢(i,j) forall (i,j)
i n j
in S. Any maximal independent subset (of Sn X Sn) will be

called a partition basis (of Sn X Sn).

The transitive closure of R (the union of all positive
powers of R) is denoted by C(R), where R is any relation
(set of ordered pairs). If the transitive closure of any proper
subset of R\JR" (the union of R and its converse) is a proper
subset of C(R\JR") and R contains no reflexive pairs, then
we shall say that R is circuit-free. Any maximal circuit-free
subset (of Sn X Sn) will be called a tree (of Srl X Sn). Note

that a tree is an irreflexive, asymmetric relation whose field
is S , and might be called an oriented tree without loops on
n

n nodes.

If S is independent, then for each ¢ on S, we define
& on S~ by &(j,1i) = (d(i,j))t for all (i,j) in S. (It is easily
seen that S and S~ have no common elements.) Since
FjFi* = (FiFj*)"' for the F_ of any partition, it follows that if

S=VUW is independent, so is V~\U W.

If S is independent and contains (i,j), then i#j, S
does not contain (j,i), and if S contains (j,k) or (k,j) then
it does not contain (i, k) or (k,i). We know that this is so
because we have obtained results about the subsets of any
partition which imply that ¢ cannot be defined arbitrarily on
S (e.g., FiFi* =1. If an independent set S contains the pair
(i,1), then we may deduce &(i,i) =I). If there is any subset
{(i,j), (i,i1), (ii'iz)’ e (ir,j)} (all i's and j distinct)

of S\US”, then S is not independent, since if it were, ¢
might be chosen so that ¢(i,j) < (i, ii) ¢(i1,i2) . ¢(ir,j).

Then, for the sets F_, of some partition, F,F,’g< < F F. >kF, F._*
i i i i1 i1 i2
. F.*, which is impossible. (Recall that F, *F, <1I.)
irj ij T ij—
The preceding remarks are summarized in the statement that
a necessary condition for the independence of a set is that it be
circuit-free. The sufficiency of the condition may be shown by
embedding S in a maximal tree, applying the second part of

Theorem 1, and observing that any subset of a partition basis,
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or of any independent set, is independent. It follows that every

maximal independent subset of S X S 1is a maximal circuit-
n n

free subset of S X S , so that we have proved the first part o
n n

THEOREM 1. Every partition basis is a tree. Every
tree is a partition basis.

Proof. It remains to prove the second statement.
Suppose that T is a tree of S XS . By commuting a finite
n n
number of ordered pairs of T, we may obtain a tree T1,

such that 1 does not occur as the second member of an ordered
pair of Ti’ and such that T1 contains (j,i) and (k,i) only
if j=k. Expressed in the language of graph theory, T1 is a
tree all of whose branches are directed away from the root 1.

If T contains (i,j) we shall say that j is a successor of i,

1

and if C(T1) contains (i, j), j will be called a descendant of
its ancestor i. It will be sufficient to show that T1 is a
partition basis. Since T1 is a maximal circuit-free set, it
is not a proper subset of an independent set, so that it will be
sufficient to show that T1 is independent.

We wish to find a partition {Fili € Sn} , given ¢ and
T1, such that FiFj* = ¢(1,j) for all (i,j) in T1. It is further

desirable that { F.|i€ S } be such that if (i,k) is not in Ti,
1 n

%
then FiFk may be found by a general rule rather than an
extensive description. Two especially convenient types of rule
are:

F F * F.F >kF F * i,j j» k

Fo 7 B FF = &1, ) #(j, k)
and

FF* FF*SFF* i,j) S ¢(j, k

(Fio = FyFSEFL = 0) S 60,5 .

Note that if either type of rule appears, so will the other, since
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* * * * * *
=F F i ' F. =F.F. SF.F
FiFk Fi f Fij is equivalent ‘cczk Fk ; Fk f iFi
3k * k. . ES S sky sk
F.F. *=F F*FF 1 F.F. =P(F.F. **=- P(F.F.*F F ¥%)?*
(FFy TR T R s S (FF) (ijjk)
= PR F¥p kg Pkp ok o PSFkPFJ,*SFjPF,* =F. F.*SF.F.*, and

n -
P
oy
| Sy
=

F.F*=F F *SF F * implies F F *=(F F *t = ((F . F *F F *h)t
ji ik ki ij

k
=F.F"F F *). If we have such a rule then we can express
n %
each F, as Z F. F,, i.e. in terms of the functions in the
i =1 i
range of ¢ (which we will call basis functions).

Before obtaining such a partition, we will find a serial
order of S which contains T1. Let the successors of every
n

i with more than one successor be serially ordered, and let
K be the union of the chosen serial orders. Then
L= C(T1)UK\JKC(T1) UC(Ti‘)K \JC(Ti‘)KC(Ti) is a serial

order of Sn containing C(Ti).

This last may be put in a more comprehensible, although
more prolix form by using more phrases, and focussing on a
familiar serial order. Let K and L be represented by
"less than'. Then i< j(in L) if i is an ancestor of j, or
i<j (in L) if the successor of the greatest common ancestor
of i and j which is an ancestor of i is less than (in K) the
successor which is an ancestor of j.

We will now find a partition { Fili € Sn} which has the

desired properties. Form an infinite sequence of '1's, and
for each j which is a successor of 1, interpolate j's so
that if K contains (k,j) then j precedes k in the sequence,
and so that the value of the function ¢(1,j) at m is equal to
the number of j's which precede the mth 1 (m > 1). This is
accomplished by interpolating a number of j's e-c_qual to
o(1,j)(m) - &(1,j){(m - 1) between the mth and (m-1)th 1.

The key steps of an easy induction which justifies that construc-
tion are ¢(1,3)(1) = &(1,1)(1) - &(1,j)(0) and &(1,])(m)
=¢(1,j)m - 1) +(d(1, j)(m) - ¢&(1,j)(m - 1)). The successors
of the mth term in the sequence thus obtained are similarly
interpolated between the mth and (m-1)th term, and so on.
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Since the field of T 1is finite, the process terminates
with some sequence s. The partition {F_|i€S } 1is deter-
i n .

mined by taking m to be in the set Fi if i is the mth term
sk

of s. Then FiFj {(n) = the number of j's before the

nth i =4¢(i,j){n) for all n and for all (i,j) in Ti. This

completes the proof of the Theorem.

5. Having given a constructive proof of the second part
of Theorem 1, using the auxiliary sequence s, we will shortly
be in a position to justify the following statement of what is
probably our main result:

Let there be given any oriented tree and let its nodes be
labelled 1, 2, ..., n. To the branch (i,j) let there be
assigned an arbitrary function ¢(i,j) (non-decreasing from
N to N\U{0}). If (i,j) is not a branch of the tree, define
(i, j) by the following rules:

¢(i,1) = the identity function I
o(i,j) = (6(,i)) if (j,i) is a branch
81, K) = $(1,3,)(S) $(3,.3,)(S) - (S) (3, K)

if (i,j1), (j1 ) ... (jn,k) are branches or inverse branches

,jz
of the tree. The successor function S is put in parentheses
to indicate that it sometimes appears and sometimes does not,

n
as explained below. If we set Fi = Z ¢(i,j), then the ranges
j=1
of Fi’ FZ, e, Fn form a partition of the natural numbers,

d >:<= i i),
an FiFJ. $(i, j)

We now continue from the end of §4 to show how F,Fk
i

is found when (i, k) is not in T1U Ti", and i# k. By the

method of formation of the sequence, if (i,j) and (j,k) are
in T1, then any k will precede i in s only if it preceded

%

a j between k and i; therefore FiFk = d(1,j) #(j, k), and

230

https://doi.org/10.4153/CMB-1964-020-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1964-020-1

%k
FkFi =d(k,j) S &(j,i). In general, if T1 has the subset

{(11,12), (12,13), R (1m_1,1m)} then

* 3 3 . . . .
(1) Fi1Fim = ¢(11,12) ¢(12,13) ¢(1m-1’1m) ,

since every im precedes an i preceding an i

m-1" """ 3’

preceding an iz, preceding an i1 in s. To exhibit the

structure of the formula, subscripts 1, 2, 3, ... have been
used, but formulas 1, 2, 3, 4 are in fact valid, when suitably
interpreted, for p>1, m > 1, and < the number of elements
in the field of T. h -

From (1) we find

F*PFF ¥
'(iiim)

im™ i1
=P(F, F, *F_ F, . F, F, *)
i1 i2 " i2 i3 i{lm-1) im
=PF,_ 'F RS S S I
im i(m-1) i3 i2 "t i1
=PSF, PF . SF._PF >kSF PF *
im"~ " i(m-1) i37 12 iz i1
=F, F *... SF, F >kSF F *
im" i(m-1) i3 i2 i2" i1
(2) F, F. >k=<1>(i , 1 ) oo SH(i_, i )S(i,1,)
im i1 m m-1 372 21
If (k,j) isin K and (i, k), (i,j) are in Ti’ then
Fij* =¢(j,1)d(i, k), since no k precedes a j unless it also

precedes an i previous to that which j precedes. This is
likewise true if (i, k), (i,j) are in C(T1) and (k,j) is in L.

Suppose T1 contains (1,k1), (ki'kz)’ e (km-i’km)

and (L,3,), (G0, -0 G ;i) and (k,j) isin L. Then

p-1
we have
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= = i ,' LY S j " s j ’.
F, F F_F. FF <1>(Jp JP_1) ¢(,53,054(3, 1)

jp km jp km
i, k) ... bk Lk
(3) Bk ol ko) - bk k)
Now,
* *s ook Lk So(k_,k )bk ,i)S
FmFip = FrmTi SFiFjp w0l Ky y) oo Sely ke elky 3

(4) S5 )00 Jp) e S5 )

Thus, any 17‘,1“1:< may be expressed in terms of basis
i
functions, (1) or (2) being used if (i,k) or (k,i) is in C(T1)

respectively, and (4) or (3) if (i,k) or (k,i) is in

K UKC(T1) V) C(T1 K UC(T1‘)KC(T1) respectively.

Example 1 illustrates the derivation of a partition from a
partition basis. An arbitrary selection of basis functions was
made, except insofar as the randomness was calculated, and
that, of all possible relations T, economy of space imposed
the choice of a short one.

The basis functions were chosen to be well-known functions;
the inverses of these functions are likewise well-known. Such
is not the case for functions easily enough compounded from them;
an instance of this has been encountered in § 2.

This is a significant psychological point, since a forced
reference, when exhibiting a partition, to 'the inverse of a
function'" rather than to a function which happens to be an
inverse, is a first step in exposing the ultimately tautologous
nature of the result.

Example 1. The partition basis in Sé X S6 is
{(1,4), (4,3), (2,1), (2,5), (2,6)}. The basis functions are
2
given by ¢(1,4) =n, &4, 3) =[(n-1)/2] ¢(2,1) = w(n-1),

#(2,5) =2", ¢(2,6) =n + 2 (see fig. 5).
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Fig. 5

Now, &¢(4,1) =[Nn - 1], &(3,4)=2n, ¢(1,2) =P,
4)(5,2) :'Iogz(n - 1): ¢(652) =n - 3'

T1 :{(1:2): (2,5), (216): ('1’4)’ (4’3)}; K:{(4,2), (5:6)} ’

L =the set of ordered pairs that corresponds to the serial order
1 <4<3<2<5<6.

The process.of forming a sequence which will give us
{Fili € 56} is shown in Fig. 6.

1
2 2 4 1 2 4 4 4
6 6 6 5 5 2 6 5 5 2 4 1 6 5 5 5 5 2 4 3 4 4
[ S NS S S S N NS A N A U D N S A SN N B SR N
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22
Fig. 6

The irregular spacing of the upper sequences anticipating the
subsequent interpolations is, of course, an irrelevant metric
property of the visual aid. Some sample calculations are

2
$(1,4) =1 =1 at 1 so that one 4 precedes the first 1.

2
$(1,4) =2 =4 at 2 so that four 4's precede the second 1.
From the sequence
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={(1,6), » (3,6), (4,5), (5,5), ...}

we find that F6={1, 2, 3, 7, 13, ...}.

3

An example of the way in which Fiqu is found in terms

of the basis functions follows for F3F5*.

Fi* = (3, 4)59(4, 1) = [N@n+ 1) - 1] =[N2n],
FF, " =6(3,4)56(4,1)86(1,2) =p ([N2n] + 1) ,
F,F, * 2 6(3,4)56(4, 1)S6(1, 2)$(2, 5) = PNzl + 1),
(For the printer's convenience we have written p_ as p(n).)

The partition finally obtained is {Fili €S 6} , where

F,={n+p_+ [02-1y2]+ n” + 2P (p_+2)|neN} ,
F, ={m(n-1) + n + [((n(n-i))z - 1)/2] +(w(n—1)f + 20y (n+2)|n e N},
Fo={[N2n]+ p((N2n] + 1) + n+ 2n + oP(NZn]+1) + (p([N2n]+ 1)+ 2) [neN}
F,={[ Na-1] + p([Nn-1]+ 1) + [(n-1)/2] + n + zp([“[;-”Jr 1)

+ (p((Nn=1]+ 1) + 2)|n € N}
F, ={n({log, (n-1)]) + [log, (n-1)] + [((n([log, (n-1)])° - 1)/2]

+ (n([log, (n-1)]N° + n + ([log, (n-1)] + 3)|n ¢ N}
F, = {mn-3) + (n-3) + [((n(n-3))% - 1)/2] + (n(n-3))° + 2" 4 n|neN}.

If the signs indicating row summation etc. are 1gnored, the above
is a square matrix whose (i, j)th entry if F F It should be
j

remembered that the customary evaluation of non-natural points
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of functions usually defined on a field wider than N is waived

-3
by a previous convention. Thus, 2" 2o for n< 3.

We have so far considered a 'typical' partition whose
importance lies more in the generality which its arbitrariness
suggests than in its particular structure. In the following
examples, elements of the partition bases and the basis
functions were chosen with regard to one another to provide
more elegant partitions.

Example 2. The partition basis in S_ X S3 ={(1,2), (2,3)}.

3
The basis functions are given by ¢(1,2) = P ®(2,3) = P -

F , F

d(2,1) =¢(3,2) =m(n - 1). We obtain the partition F 20 Fas

1 b
where

F ={n+p +p lneN} ,
1 n pn

F ={mn-1)+n+p |neN},
2 n

F3={1T(1T(n- 1)) + w(n - 1)+n]n€ N;

Example 3. The partition basisin S XS ={(1,2),
—_— m m

(1,3), ..., (1,m)}. The basis functions are given by (1, 2)

=a_n, ¢(1,3)=a_n, ... §(1,m)=a n, where a, =1, and the
2 3 m 1

a, are positive integers. After a simplification we obtain the
i
partition {Fi]i €S }, where, for 1<j<m,
m sJ=
n n
F.={n+ = a, + = a, [(n - 1)/a.]lne N}. For example,
) izj+1 145 )
i=1

4
{n+7+8[(n-1)/2]}, {n+4+7[(n-1)/3]}, {n+6[n-1)/4]}.

if a2=2, a3=3, a =4, then the Fj are {10n},

Example 4. The partition basis in S4 X S4 is

{(1,2), (1,3), (1,4)}. The basis functions are given by
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&(1,2) =a,n, ¢(1,3)=a3n, (1, 4) =a,n, where the a, are
i

positive irrationals, and we set a1 =4. We obtain the

s Fo, F4}, where

partition {F1, F 3

2

F, = {n+ [azn] + [a3n] + [a4n] |ne N},
P, = ([n/a,) + n+ [aylln/a,] + 1]+ [a,(ln/a,] + D][ne N},
P, ={[n/a,]+ [ayn/a, ]l + 0+ [a,([n/a,] + D]fn €N}

F, ={[n/a,]+ [2,[n/a,]] + [a,[n/a,]] + n[n e N} .

As in Example 3, we may obtain a similar partition
{F.l[ieS_}. TItisnot hard to show that m may be infinite
i m

provided that only finitely many basis functions have non-zero
values at any natural point. Thus, the condition here is
lim a =0.
n
n-—+ o

Example 5. If the basis functions, for any partition basis
in S XS , are all of the form &¢(i,j){n) =n + a, where a
m m

is a variable non-negative integer, then the subsets of the
partition obtained are the congruence classes mod m (in N).

I would like to thank Prof. J. Lambek for his very helpful
interest and advice.
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