Over- and undernutrition: challenges and approaches. 29 June-2 July 2009

Evidence of low vitamin D intake and suboptimal 25-hydroxyvitamin D status in adolescent females: data from a 3-year longitudinal study on bone health

J. A. Nurmi-Lawton¹, A. Baxter-Jones², P. Taylor³, C. Cooper³, J. L. Berry⁴ and S. A. Lanham-New⁵ ¹Helsinki University Central Hospital, Helsinki, Finland, ²University of Saskatchewan, Saskatoon, Saskatchewan, Canada, ³University of Southampton, Southampton SO16 6YD, UK, ⁴Vitamin D Research Group, University of Manchester, Manchester M13 9WL, UK and ⁵Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK

Vitamin D deficiency has been associated adversely with health outcomes. There is no dietary reference value for vitamin D for the agegroup 4–64 years as it is considered that UVB exposure from sunlight provides sufficient quantities. There is now overwhelming evidence of widespread vitamin D insufficiency in the general population. The optimum levels of serum 25-hydroxyvitamin D (S-25(OH)D) for adult health are considered to be 75–80 nmol/l, but the levels required for children and adolescents to maintain optimal peak bone mass (PBM) are not clear⁽¹⁾.

The effects of nutrition and exercise on PBM development were investigated in young female gymnasts (G) and non-gymnasts $(C)^{(2)}$. The initial baseline data for this 3-year longitudinal study are reported here. Dietary intake was assessed using estimated dietary records (7 d at baseline) and analysed using Diet 5 for Windows (version 2000; Robert Gordon University, Aberdeen, UK). Blood samples were collected during the month of October and S-25(OH)D, plasma parathyroid hormone (P-PTH), serum Ca (S-Ca) and serum albumin (S-alb) were determined at baseline. Data for anthropometric measurements, pubertal maturation, bone mass and bone metabolism markers were also collected and reported previously⁽¹⁾.

	G (n 38)		C (n 46)	
	Mean	SD	Mean	SD
Age (years)	11.2	2.2	11.5	1.8
Height (m)	1.36 ^a	0.1	1.49 ^b	0.1
Weight (kg)	31.1 ^a	7.9	41.7 ^b	11.4
Vitamin D intake (µg/d)	2.6	1.8	2.4	1.3
S-25(OH)D (nmol/l)	46.6 ^a	16.0	55.9 ^b	17.2
P-PTH (pmol/l)	2.3	1.0	2.1	0.9
S-Ca (mmol/l)	2.2 ^a	0.06	2.3 ^b	0.05
S-alb (g/l)	46.4 ^a	1.7	45.3 ^b	1.8

^{a,b}Means within rows with unlike superscript letters were significantly different (t test, P < 0.05).

Dietary intakes of vitamin D and Ca were similar for both groups. Group G had significantly lower S-25(OH)D and S-Ca (all P<0.01) than group C, but no difference was found for P-PTH. S-25(OH)D levels <40 nmol/l (indicative of suboptimal vitamin D status) was found in 34% of group G and 20% of group C. There was a weak but significant Pearson correlation between dietary intake of vitamin D and S-25(OH)D for all subjects (r 0.3, P<0.02) and for group G (r 0.5, P<0.01), but not for the group C. A negative correlation was found between S-25(OH)D and P-PTH (r –0.3, P<0.02).

These results indicate a prevalence of suboptimal vitamin D status in young British females. Group G have previously been reported to have greater bone mass than group $C^{(1)}$. The finding of lower S-25(OH)D for group G but similar P-PTH compared with group C suggests that high-impact training may have independent bone-building effects through force loading, which may override other negative effects such as low S-25(OH)D status, thus allowing for optimal PBM development.

This work was funded by the National Osteoporosis Society.

- 1. Holick MF (2004) Am J Clin Nutr 80, suppl., 1678S-1688S.
- 2. Nurmi-Lawton JA, Baxter-Jones A, Mirwald R et al. (2004) J Bone Miner Res 19, 314-322.