Study of photon dominated regions in IC 348

K. Sun¹, C. Kramer¹, B. Mookerjea², V. Ossenkopf^{1,3}, M. Röllig^{1,4} and J. Stutzki¹

¹I. Physikalisches Institut, Universität zu Köln, Germany ²Department of Astronomy, University of Maryland, USA ³SRON National Institut for Space Research, the Netherlands ⁴Argelander-Institut für Astronomie, Universität Bonn, Germany

Abstract. We present fine structure line of neutral carbon at $492\,\mathrm{GHz}$ ($^3\mathrm{P}_1$ – $^3\mathrm{P}_0$, hereafter [C I] 1–0) and $^{12}\mathrm{CO}$ 4–3 KOSMA observations. This data has been combined with FCRAO $^{12}\mathrm{CO}$ 1–0 and $^{13}\mathrm{CO}$ 1–0 data. We have used these observations to understand the emission from the photon dominated regions (PRDs) in IC 348. We confirm the anti-correlation between N(C)/N(CO) and N(H₂) as seen in most Galactic PDRs (Mookerjea *et al.* 2006).

1. Results

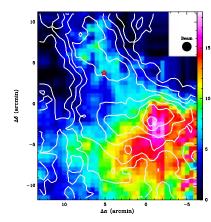


Figure 1. Integrated intensities of [C I] 1–0 emission (color) overlayed with contours of 12 CO 4–3 (contours) in IC 348. The center of the map is at $\alpha = 03^h44^m10^s$, $\delta = 32^\circ06'$ (J2000). The intensities are integrated from V_{LSR} 2 km s⁻¹ to 14 km s⁻¹. The contour levels are from 10 K km s⁻¹ to 58 K km s⁻¹ by a step of 8 K km s⁻¹. Both data are shown at a common resolution of 70". The black star denotes the position of HD 281159, a B 5 type star.

IC 348 is one of the most studied young open clusters, which lies at a distance of 320 pc. The [C I] 1–0 emission peaks to the south-west of the mapped region (Fig. 1). The emission extends towards the east and the north-east. The 12 CO 4–3 intensity also peaks almost at the same position of the [C I] peak, but shows a second peak lying to the north of HD 281159 and elongated along the north-south direction. The features in the 12 CO 4–3 map agree quite well with those in 12 CO 3–2 map (Sun *et al.* 2006). We attribute the difference in the intensity distributions of [C I] and 12 CO 4–3 to the fact that 12 CO 4–3 traces regions of higher temperature, while [C I] traces the embedded PDR surfaces of the molecular clouds with high column density. A plot of the N(C)/N(CO) ratio vs. the H₂ column density in IC 348 shows a clear anti-correlation. A linear fit to the data in logarithmic coordinates gives a slope of -0.59 (cf. Fig. 6, Mookerjea *et al.* 2006).

References

Mookerjea, B. et al. 2006, A&A 456, 235 Sun, K. et al. 2006, A&A 451, 539