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A Construction of Rigid Analytic
Cohomology Classes for Congruence
Subgroups of SL3(Z)

David Pollack and Robert Pollack

Abstract. We give a constructive proof, in the special case of GL3, of a theorem of Ash and Stevens

which compares overconvergent cohomology to classical cohomology. Namely, we show that every

ordinary classical Hecke-eigenclass can be lifted uniquely to a rigid analytic eigenclass. Our basic

method builds on the ideas of M. Greenberg; we first form an arbitrary lift of the classical eigenclass

to a distribution-valued cochain. Then, by appropriately iterating the U p-operator, we produce a

cocycle whose image in cohomology is the desired eigenclass. The constructive nature of this proof

makes it possible to perform computer computations to approximate these interesting overconvergent

eigenclasses.

1 Introduction

Let k ≥ 0 be an integer and let Γ ⊆ SL2(Z) be a congruence subgroup. By Eichler–
Shimura theory, the cohomology group H1(Γ, Symk(C)), considered as a Hecke-

module, contains the space of cuspforms of level Γ and weight k + 2. In [12], Stevens

studied a much larger cohomology group, one with coefficients in a space of p-adic
distributions Dk equipped with a weight k action of the Iwahori subgroup Γ0(p) ⊆
SL2(Z). The space Dk admits a Γ0(p)-equivariant map to Symk(Q2

p) and thus, if

Γ ⊆ Γ0(p), we have a Hecke-equivariant map

H1(Γ, Dk)
ρk
−→ H1(Γ, Symk(Q

2
p))

on cohomology. While the target of ρk encodes information about classical mod-
ular forms, the source contains information about overconvergent modular forms

of weight k + 2.1Moreover, in [12], Stevens proved that if one restricts ρk to the

subspace where U p acts with non-critical slope, the above map becomes an isomor-
phism. (This should be viewed as the analogue of Coleman’s theorem on small slope

overconvergent forms being classical.)

Ash and Stevens in [5, 6] generalized the above comparison theorem to represen-
tations of GLn(Q) (even of arbitrary Qp-split reductive groups). If λ is a character of

a torus of GLn, let Vλ denote the Qp-representation with highest weight λ. One then
replaces Dk with a space of p-adic distributions Dλ endowed with a weight λ action.
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As before, this space maps equivariantly to Vλ, and Ash and Stevens proved that the
corresponding map

Hr(Γ, Dλ)
ρλ
−→ Hr(Γ,Vλ)

is an isomorphism if one restricts to a subspace where the slope of U p is small enough

(see [6]).

A more explicit study of the case of GL2(Q) was made in [10] via modular sym-
bols. As a consequence of the above comparison theorem, any non-critical classical

Hecke-eigensymbol lifts to a unique Dk-valued Hecke-eigensymbol. In [10], the fol-
lowing constructive proof of this fact is given: form an arbitrary lift of the classical

eigensymbol to a Dk-valued modular symbol (but not necessarily to an eigensymbol).

Explicit formulae for such lifts are given. Then iterate the U p-operator to obtain a se-
quence that converges to the sought after Dk-valued Hecke-eigensymbol.

One may hope then to use the methods of [10] to explicitly lift classical Hecke-

eigenclasses for GLn(Q) with n > 2. One daunting part of such a task is generalizing
the first step of lifting a Vλ-valued cohomology class to a Dλ-valued cohomology

class. For GL2(Q), this was done by explicitly “solving the Manin relations” which

required writing down an explicit fundamental domain for the action of a congru-
ence subgroup on the upper-half plane. To repeat these arguments for GLn(Q) with

n > 2 would involve examining the geometry of certain higher dimensional symmet-

ric spaces, which appears to be a difficult task.

However, in the case of GL2(Q), M. Greenberg [9] simplified the arguments of

[10] and managed to form liftings in a “geometry-free” manner. His basic idea is to

lift modular symbols into a larger ambient space. This larger space is big enough that
forming such lifts is trivial. He then uses the U p-operator to force such lifts back into

the space of interest. Iterating this process leads to a sequence of modular symbols

that converges to the true Hecke-eigensymbol. These ideas were used by Trifković in
[13] to compute lifts of eigenclasses corresponding to automorphic forms for GL2(K)

with K/Q an imaginary quadratic field; this again is a situation where lifting classes

directly is made difficult by the complicated geometry that is present.

In this paper, we generalize these constructions to the cohomology of GL3(Q).

As a rich theory of p-adic automorphic forms for higher rank groups is beginning

to emerge, we note that there are very few groups simple enough for which com-
putations and numerical exploration are feasible. Along with Sp4(Q) and GL2(K)

for K/Q imaginary quadratic, GL3(Q) is a natural next step in complexity beyond

GL2(Q). It is a complicated enough group so that many of the new higher rank phe-
nomena are observable in its theory, but well-enough understood that computational

techniques exist for studying its Vλ-valued cohomology.

To carry out M. Greenberg’s lifting idea in the context of GL3-cohomology, we
first axiomatize the situation as follows. Let R be a commutative ring and let Γ ⊆ G

be abstract groups. Let π ∈ G be such that Γ and π−1
Γπ are commensurable. Set

S equal to the semigroup generated by Γ and π. Then the double coset ΓπΓ induces
an operator U on Hr(Γ, M) for any right R[S]-module M. Consider a surjective map

D→ V of R[S]-modules and the induced map on cohomology

Hr(Γ, D)→ Hr(Γ,V ).
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Let ϕ be a U -eigenclass in Hr(Γ,V ) whose U -eigenvalue is a unit in R/AnnR(ϕ).
We prove the existence of a unique U -eigenclass Φ in Hr(Γ, D) lifting ϕ under the

assumption that D has a decreasing R[S]-stable filtration Fil•D such that:

• D/Fil0D = V ,
• FilnD · π ⊆ Filn+1D,
• the topology on D induced by Fil•D is separated and complete.

(This result corresponds to Theorem 3.1.)

For GL2(Q), a filtration on Dk that satisfies the above conditions is given in [10]

and it is precisely these properties that are used in [9] to produce explicit lifts of
modular symbols. In this paper, we construct for every dominant weight λ of GL3(Q)

a filtration on Dλ that satisfies the above axioms. In particular, we obtain another

proof of the theorem of Ash and Stevens on lifting ordinary eigenclasses.

The proof of this general lifting theorem follows the methods of [9]. Indeed, the

basic idea is to lift a V -valued cocycle representing ϕ to a D-valued cochain. There is
no reason why such a lift should again be a cocycle. However, as V = D/Fil0D, this

cochain will be a cocycle mod Fil0D. Applying the U -operator and dividing by the

U -eigenvalue of ϕ forms a new cochain that still lifts ϕ, but is now a cocycle modulo
Fil1D. This increase in accuracy is a consequence of the second assumption on the

filtration. Iterating this process then leads to a sequence of cochains that converges

to a cocycle whose image in cohomology is the desired Hecke-eigenlift.

For Γ ⊆ SL3(Z), the work of Ash and others [1,4] gives a description of H3(Γ, M)

in terms of GL3-modular symbols. These spaces are computable using the methods
of [3, 4], and by iterating the U p-operator one can actually compute approximations

to Dλ-valued lifts of Hecke-eigenclasses in H3(Γ,Vλ). We carried out such compu-
tations for some boundary classes of small level and trivial weight V0, and indeed

obtained sequences of improving approximations to D0-valued Hecke-eigenlifts of

these classes. We intend in the near future to compute lifts of classes of trivial weight
found in [4] that do not arise from GL2.

Now that the beginnings of a computational theory exist for GL3(Q), many ques-
tions arise. For GL2(Q), a non-critical Hecke-eigensymbol in H1(Γ, Dk) encodes

the p-adic L-function of the corresponding classical cuspform. Do these Dλ-valued

Hecke-eigenclasses encode some kind of p-adic L-function of the corresponding au-
tomorphic form? In [11], Dk-valued Hecke-eigensymbols are used to attach a p-adic

L-function to a critical slope modular form. Can critical slope GL3(Q)-forms be

studied using these methods? In [8], the algorithms of [10] were used to compute
Stark–Heegner points on elliptic curves. Can one hope to use these Hecke-eigenlifts

to (conjecturally) construct points on the (conjectural) motive attached to these au-
tomorphic forms à la Darmon [7]?

The format of the paper is as follows: in the following section we introduce the
distribution spaces Dλ for GL3(Q). In the third section, we prove our general lifting

result. In the fourth section, we construct a filtration on Dλ satisfying the properties

mentioned above and obtain a lifting result for GL3(Q).
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2 p-Adic Distributions

In this section, we recall the notion of Ash and Stevens of p-adic distribution valued

cohomology for GL3(Q). Our description will be fairly concrete, proving many of the
basic facts by explicit computations. We refer the reader to [5] and the forthcoming

[6] for the case of GLn(Q) and for a more systematic treatment.

2.1 Notation

Let p be a positive prime. Let Cp denote the completion of a fixed algebraic closure

of Qp, and let Op denote its ring of integers.

Let G denote the algebraic group scheme GL3. Let B (resp. Bopp) denote the group
of upper (resp. lower) triangular matrices in G. Let N (resp. Nopp) denote the group

of unipotent matrices in B (resp. Bopp). Let T be the group of diagonal matrices so

that B = TN and Bopp
= NoppT.

Let I denote the Iwahori subgroup of G(Op), that is, the collection of elements in

G(Op) whose reduction modulo the maximal ideal of Op is upper triangular.
Let Γ0(p) := I ∩ SL3(Z) denote the p-Iwahori subgroup of SL3(Z), and fix a

congruence subgroup Γ ⊆ SL3(Z) contained in Γ0(p).

2.2 Spaces of Distributions

We set X := im
(

I → Nopp(Cp)\G(Cp)
)

. Since I = (I ∩ Nopp(Op))B(Op), we have
that X is isomorphic to B(Op).

Let λ denote some algebraic character of the torus T. Consider the collection of
Op-valued functions

Mλ := { f : X→ Op | f (tg) = λ(t) f (g) for t ∈ T(Op) and g ∈ X}.

We wish to consider the subset of these functions that are Qp-rigid analytic. To make
this precise, note that N(Op) maps injectively into X. We give N(Op) the structure of

a Qp-rigid analytic space by identifying it with the unit polydisc in C3
p via





1 x y

0 1 z

0 0 1



 ∈ X←→ (x, y, z) ∈ O
3
p.

So explicitly, a function on N(Op) is Qp-rigid analytic if it is of the form

f
(

1 x y
0 1 z
0 0 1

)

=

∑

i, j,k

ci jkxi y j zk

where ci jk → 0 as i + j + k→∞.

We then define

Aλ : =

{

f : X→ Op

∣

∣

∣

f restricted to N(Op) is a Qp-rigid function,

f (tg) = λ(t) f (g) for t ∈ T(Op)

}

.
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Note that any function in Aλ is uniquely determined by its restriction to N(Op).
Under our identification of N(Op) with O3

p, rigid functions on N(Op) correspond

to elements of the Tate algebra Zp〈X,Y, Z〉. Let fabc denote the unique extension to
Aλ of the function that sends





1 x y

0 1 z

0 0 1



 to xa ybzc.

Under the above identification, fabc corresponds to the element XaY bZc. Since the
Zp-span of these monomials is dense in Zp〈X,Y, Z〉, the span of the fabc forms a

dense subset of Aλ.

We then set Dλ = Homcont (Aλ, Zp), the space of continuous Zp-linear functionals
of Aλ into Zp. By the above observations, an element µ ∈ Dλ is uniquely determined

by its values on fabc for all a, b, c ≥ 0.

2.3 The Weight λ Action

Let I = I ∩ GL3(Zp) be the Iwahori subgroup of GL3(Zp). Let π be the diagonal

matrix with diagonal entries 1, p and p2, and let Σ be the semigroup generated by I

and π.
Note that I acts on Nopp(Op)\G(Op) by multiplication on the right. We extend

this to an action of Σ by letting π act by Noppg ·π := Noppπ−1gπ. This is well defined
as π normalizes Nopp. We note that this action of Σ preserves X ⊆ Nopp(Op)\G(Op).

We then get a left action of Σ on Mλ by (γ f )(g) = f (g · γ). The following lemma

describes this action explicitly on the functions fabc. In particular, it will imply that
this action induces a left action on Aλ and thus a right action on Dλ by (µ

∣

∣γ)( f ) =

µ(γ f ).

Let λ(k1, k2, k3) be the character of the torus that sends

(

d1 0 0
0 d2 0
0 0 d3

)

to dk1

1 dk2

2 dk3

3 .

Also, for f ∈ Mλ, we write f
(

1 x y
0 1 z
0 0 1

)

= f (x, y, z).

Lemma 2.1 Let λ = λ(k1, k2, k3). For γ ∈ I, the weight λ action of γ on f ∈ Mλ is

given by:

(γ f )(x, y, z) = det(γ)k3(a11 + a21x + a31 y)k1−k2 (m33 −m13 y −m23z + m13xz)k2−k3

× f
( a12 + a22x + a32 y

a11 + a21x + a31 y
,

a13 + a23x + a33 y

a11 + a21x + a31 y
,
−m32 + m12y + m22z −m12xz

m33 −m13 y −m23z + m13xz

)

Here mi j is the i j-th minor of γ. Also (π f )(x, y, z) = f (px, p2 y, pz).

Remark 2.2 In the case of GL2(Q), consider λ = λ(k1, k2), the highest weight of

Symk1−k2 (Q2
p)⊗ detk2 . Then the corresponding weight λ action is given by

(γ f )
(

1 x
0 1

)

= (γ f )(x) = (det γ)k2(a + cx)k1−k2 f
( b + dx

a + cx

)

.
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Proof of Lemma 2.1. For γ ∈ I, we have





1 x y

0 1 z

0 0 1



 ·





a11 a12 a13

a21 a22 a23

a31 a32 a33





=





a11 + a21x + a31 y a12 + a22x + a32 y a13 + a23x + a33 y

a21 + a31z a22 + a32z a23 + a33z

a31 a32 a33





=





b11 b12 b13

b21 b22 b23

b31 b32 b33



 ≡





b11 b12 b13

0 b22b11−b21b12

b11

b23b11−b21b13

b11

0 b32b11−b31b12

b11

b33b11−b31b13

b11





≡





b11 b12 b13

0 b22b11−b21b12

b11

b23b11−b21b13

b11

0 0 det(γ)
b22b11−b21b12





≡





b11 0 0

0 b22b11−b21b12

b11
0

0 0 det(γ)
b22b11−b21b12



 ·





1 b12

b11

b13

b11

0 1 b23b11−b21b13

b22b11−b21b12

0 0 1



 .

The congruences above are taking place in X, i.e., modulo Nopp(Cp) (on the left).
Thus,

(γ f )
(

1 x y
0 1 z
0 0 1

)

= λ





b11 0 0

0 b22b11−b21b12

b11
0

0 0 det(γ)
b22b11−b21b12



 f





1 b12

b11

b13

b11

0 1 b23b11−b21b13

b22b11−b21b12

0 0 1





A direct computation finds that

b23b11 − b21b31 = −m32 + m12y + m22z −m12xz, and

b22b11 − b21b12 = m33 −m13 y −m23z + m13xz

where mi j are the minors of γ. Plugging back in establishes the first formula of the

lemma.
For π, we have

(π f )
(

1 x y
0 1 z
0 0 1

)

= f
(

π−1
(

1 x y
0 1 z
0 0 1

)

π
)

= f

(

1 px p2 y
0 1 pz
0 0 1

)

as claimed.

Corollary 2.3 The action of Σ on Mλ preserves Aλ.

Proof In the formulae of Lemma 2.1, the only possibly troublesome terms are (a11 +
a21x+a31 y)−1 and (m33−m13 y−m23z+m13xz)−1. For γ ∈ I, one checks that a11 and

m33 are units while all other coefficients present are divisible by p. In particular, the

power series expansion of these two functions is again rigid analytic in x, y, and z.
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2.4 Specialization to Weight λ

This section follows closely [5, Section 4], where the general case of GLn is treated.

We note that we will be considering right representations of G = GL3 exclusively.
Let λ be an algebraic character of the torus T which is dominant with respect to

the Borel Bopp, and let Vλ be the finite dimensional right representation of G with
highest weight λ (with respect to Bopp). Fix vλ ∈ Vλ(Qp) a highest weight vector;

that is,

vλ · t = λ(t)vλ for t ∈ T(Qp), and vλ · n = vλ for n ∈ Nopp(Qp).

Thus, the function

fλ : G(Op)→ Vλ(Cp) given by fλ(g) = vλ · g

descends to Nopp(Op)\G(Op), and by restriction gives a function on X.

Remark 2.4

1. We now describe the analogous map in the case of GL2. Let Vk = Symk(Q2
p) be

the space of homogeneous polynomials in X1 and X2 of degree k, and let GL2 act
on Vk on the right by

(P
∣

∣γ)(X1, X2) = P(aX1 + bX2, cX1 + dX2).

Then Vk has highest weight λ = λ(k, 0) and highest weight vector Xk
1 . The map

fλ restricted to X is given by
(

1 x
0 1

)

7→ Xk
1 ·

(

1 x
0 1

)

= (X1 + xX2)k.

2. For G = GL3, let λ = λ(k, 0, 0) so that Vλ = Symk(Q3
p). We view Vλ as the space

of homogeneous polynomials in X1, X2, and X3 of degree k with the analogous

right action of G. Then Vλ has Xk
1 as a highest weight vector and the map fλ is

given by
(

1 x y
0 1 z
0 0 1

)

7→ Xk
1 ·

(

1 x y
0 1 z
0 0 1

)

= (X1 + xX2 + yX3)k.

3. More generally, if λ = λ(a, b, 0), then Vλ arises as a subrepresentation of
Syma(Q3

p)⊗ Symb(Q3
p) and has highest weight vector

vλ =

b
∑

i=0

(−1)i

(

b

i

)

Xa−i
1 Xi

2 ⊗ Xi
1Xb−i

2 .

From this explicit formula for vλ, one could write down the map fλ as above.

Lemma 2.5 The restriction of fλ to X is in Aλ ⊗Vλ(Qp).

Proof For t ∈ T(Op) and g ∈ G(Op),

fλ(tg) = vλ · tg = λ(t)vλ · g = λ(t) fλ(g)

since vλ is a weight vector of weight λ. From this, it follows that fλ is in Mλ⊗Vλ(Qp).
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Further, let v1, v2, . . . , vd be a basis of Vλ(Qp). Then since Vλ is an algebraic rep-
resentation of GL3,

vλ ·
(

1 x y
0 1 z
0 0 1

)

=

∑

i

Pi(x, y, z)vi,

where Pi(x, y, z) ∈ Qp[x, y, z]. Since these coefficients are polynomials, they are in
particular Qp-rigid analytic. Hence, fλ is in Aλ ⊗Vλ.

We evaluate a distribution µ ∈ Dλ on functions in Aλ ⊗ Vλ(Qp) by setting
µ(

∑

fi ⊗ vi) to be
∑

µ( fi)vi where {vi} is a basis of V . It is clear that this definition

is independent of the choice of basis.

Evaluation at fλ then gives a map Dλ → Vλ(Qp) which we will see below is
I-equivariant. However, this map is not π-equivariant, and for this reason we in-

troduce the ⋆-action on Vλ as in [2].
For v ∈ Vλ, we define

v ⋆ γ = v · γ for γ ∈ I and v ⋆ π = λ(π)−1v · π.

This action extends uniquely to an action of Σ, and we write V ⋆
λ when we view Vλ as

a Σ-module under this action.

We now have the following analogue of [5, Lemma 4.1].

Lemma 2.6 Evaluating at fλ gives a Σ-equivariant map ρλ : Dλ → V ⋆
λ(Qp).

Proof Note that for any γ ∈ I,

fλ(xγ) = vλ · (xγ) = (vλ · x) · γ = fλ(x) · γ.

Recall that π acts on X by x · π = π−1xπ. Thus,

fλ(x · π) = fλ(π−1xπ) = vλ · (π
−1xπ) = λ(π−1) fλ(x) · π = fλ(x) ⋆ π.

We have thus proven that for all γ ∈ Σ, γ fλ = eγ ◦ fλ, where eγ : Vλ → Vλ is the
linear map eγ(v) = v ⋆ γ.

Now, if L : Vλ(Qp) → Vλ(Qp) is a linear map, one sees immediately that

µ(L ◦ f ) = L(µ( f )) for f in Aλ ⊗Vλ(Qp). Thus,

(µ
∣

∣γ)( fλ) = µ(γ fλ) = µ(eγ ◦ fλ) = eγ(µ( fλ)) = µ( fλ) ⋆ γ

which proves the Σ-equivariance of ρλ.

Remark 2.7 We continue with the second example of Remark 2.4, namely λ =

λ(k, 0, 0). The map ρλ is then given by

µ 7→ µ
(

(X1 + xX2 + yX3)k
)

= µ
(

∑

r+s+t=k

(

k

r, s, t

)

xs yt Xr
1Xs

2Xt
3

)

=

∑

r+s+t=k

(

k

r, s, t

)

µ( fst0)Xr
1Xs

2Xt
3.
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Set Lλ equal to the image of Dλ under ρλ; then Lλ is a Σ-stable Zp-lattice of
V ⋆

λ(Qp). Recall that Γ ⊆ Γ0(p) = I ∩ SL3(Z) is a congruence subgroup. The map ρλ

then induces a map on cohomology ρr
λ : Hr(Γ, Dλ) → Hr(Γ, Lλ), which we refer to

as specialization to weight λ.

These cohomology groups carry a natural action of Hecke operators U p and

T(ℓ, k) for ℓ 6= p prime and k = 1, 2, 3 (see, for instance, [2]). We will primarily
be interested in the operator U p, which is associated to the diagonal matrix π whose

diagonal entries are 1, p, and p2. This operator will correspond to the operator U

carefully defined in the following section. We point out that since ρλ is Σ-equivariant,
ρr

λ is automatically a Hecke-equivariant map.

The following theorem of Ash and Stevens analyzes the specialization map re-
stricted to the U p-ordinary subspace. (See [6], which also treats the non-ordinary

case; see [5] and [2] for analogous results.)

Theorem 2.8 The natural map ρr
λ : Hr(Γ, Dλ)ord ∼

−→ Hr(Γ, Lλ)ord is an isomor-

phism. Here Mord denotes the direct sum of all generalized U p-eigenspaces whose U p-

eigenvalue is a p-adic unit.

As a consequence of this theorem, any U p-ordinary Hecke-eigensymbol in

Hr(Γ, Lλ) lifts uniquely to a Hecke-eigensymbol in Hr(Γ, Dλ). In the following sec-
tions, we will prove this fact in a constructive manner analogous to Greenberg’s work

in [9].

3 Lifting Cohomology Classes

In this section, we present a general lemma on lifting cohomology classes. The no-

tation of this section is meant to mirror that of the previous section with the aim of

making transparent the intended application to the case of interest.
Let Γ ⊆ G be two groups, let π be some element in G, and let S be the semi-

group generated by Γ and π. Let R be a commutative ring and let D be any right
R[S]-module. For γ ∈ S and µ ∈ D, we write the action of S on D by µ · γ.

If we assume that Γ and π−1
Γπ are commensurable, there is an operator U =

U (π) on Hi(Γ, D) defined as follows. Let Dπ denote the π−1
Γπ-module whose un-

derlying set is just D and whose action by s ∈ π−1
Γπ is given by µ ·π s = µ · πsπ−1.

Acting by π gives a map Hr(Γ, D)
π
−→ Hr(π−1

Γπ, Dπ) and restriction and transfer

yield maps

Hr(π−1
Γπ, Dπ)

res
−→ Hr(∆, Dπ)

tr
−→ Hr(Γ, D)

where ∆ = Γ ∩ π−1
Γπ. We define U as the composition of these three maps.

For x in an R-module M, we set AnnR(x) equal to the ideal of elements of R that

annihilate x. If M is a right R-module and T : M → M is a linear map, we call a
non-zero element x ∈ M an eigenvector for T with eigenvalue α ∈ R, if x

∣

∣T = αx.

Note that α is only determined modulo AnnR(x). We say that x is ordinary for T if

the image of α is a unit in R/AnnR(x).
The following theorem is the main result of the section.

Theorem 3.1 Let D be a right R[S]-module with a decreasing R[S]-filtration Fil•D

such that
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(1) FilnD · π ⊆ Filn+1D for each n ≥ 0,

(2) the natural map D→ lim
←−

D/FilnD is an isomorphism.

Let ϕ0 in Hr(Γ, D/Fil0D) be an ordinary eigenvector for U with eigenvalue α. Then

there exists Φ ∈ Hr(Γ, D) such that

(1) the image of Φ in Hr(Γ, D/Fil0D) equals ϕ0,

(2) Φ is an eigenvector for U with eigenvalue α,

(3) AnnR(Φ) = AnnR(ϕ0).

Moreover, if Φ
′ is any ordinary U -eigenlift of ϕ0, then Φ

′
= Φ.

The proof of this theorem will occupy the remainder of the section. We will make

use of a non-canonical lift of U to the level of cochains. To this end, let

· · · → Fr
dr→ Fr−1 → · · · → F0 → R→ 0

be a free resolution of R by right R[Γ]-modules. Applying HomΓ(−, D) yields

0→ HomΓ(F0, D)→ · · · → HomΓ(Fr−1, D)
dr→ HomΓ(Fr, D)→ . . . .

Set

Cr(Γ, D) = HomΓ(Fr, D), Zr(Γ, D) = ker(dr+1), and Br(Γ, D) = im(dr).

So, by definition, Hr(Γ, D) ∼= Zr(Γ, D)/Br(Γ, D).

Note that Fπ
• → R → 0 is a free resolution of R[π−1

Γπ]-modules. Also, both
F• → R → 0 and Fπ

• → R → 0 are free R[∆]-resolutions of R. In particular, there

exists an R[∆]-chain complex map τ :

F•

τ•

��

// R //

=

��

0

Fπ
•

// R // 0

lifting the identity map on R.

Unraveling the definition of restriction and transfer gives the following descrip-

tion of U on the level of cocycles, as in [5, Formulae 4.3]. Let ϕ ∈ Hr(Γ, D) and let
ϕ̃ ∈ Zr(Γ, D) be a cocycle representing ϕ. Decompose the double coset ΓπΓ as a

union of right cosets ∪iΓπγi for γi ∈ Γ. Then

(ϕ̃|U )( fr) ≡
∑

i

ϕ̃(τr( fr · γ
−1
i )) · πγi (mod Br(Γ, D)).

To lift U to the level of cochains, we simply define an operator U : Hom(Fr, D) →
Hom(Fr, D) by

(ϕ|U )( fr) :=
∑

i

ϕ(τr( fr · γ
−1
i )) · πγi
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for ϕ ∈ Hom(Fr, D).
Note that this operator depends on the choice of τ and on the choice of coset rep-

resentatives for ΓπΓ. We will see in the proof of the following lemma, however, that
its restriction to HomΓ(Fr, D) is independent of the choice of coset representatives.

Lemma 3.2 The operator U : Hom(Fr, D) → Hom(Fr, D) induces a map of

chain complexes U : Cr(Γ, D) → Cr(Γ, D) and hence a map of cohomology groups

Hr(Γ, D)→ Hr(Γ, D).

Proof We first check that the action of U on an element of Cr(Γ, D) does not depend

on the choice of coset representatives for ΓπΓ. So assume for each i that we have
Γπγi = Γπγ̂i and write ηiπγi = πγ̂i with ηi ∈ Γ. Note that π−1η−1

i π = γ̂iγ
−1
i and

thus is in ∆. We then have for ϕ ∈ Cr(Γ, D) = HomΓ(Fr, D),

∑

i

ϕ(τr( fr · γ̂
−1
i )) · πγ̂i =

∑

i

ϕ(τr( fr · γ
−1
i π−1η−1

i π)) · ηiπγi

=

∑

i

ϕ(τr( fr · γ
−1
i ) ·π π−1η−1

i π) · ηiπγi

=

∑

i

ϕ(τr( fr · γ
−1
i ) · η−1

i ) · ηiπγi

=

∑

i

ϕ(τr( fr · γ
−1
i )) · πγi ,

which establishes the independence.

We now verify that U induces a map from Cr(Γ, D) to Cr(Γ, D); that is, we must

verify that if ϕ is invariant under Γ, then so is ϕ
∣

∣U . We have

((ϕ
∣

∣U ) · γ)( fr) =
(

(ϕ
∣

∣U )( fr · γ
−1)

)

· γ

=

∑

i

ϕ(τr( fr · γ
−1γ−1

i )) · πγiγ

=

∑

i

ϕ(τr( fr · γ
−1
i )) · πγi = (ϕ

∣

∣U )( fr).

Here the second to last equality follows from the independence of coset representa-

tives established above as ΓπΓ = ∪iΓπγi = ∪iΓπγiγ.

Lastly, the fact that U commutes with d is immediate from its definition.

The following simple lemma forms the basis of our argument.

Lemma 3.3 Assume that D has a decreasing R[S]-filtration Fil•D satisfying hypothe-

sis (1) of Theorem 3.1. Then ϕ ∈ Cr(Γ, FilnD) implies ϕ
∣

∣U ∈ Cr(Γ, Filn+1D).

Proof We have

(ϕ
∣

∣U )( f ) =

∑

i

ϕ(τ( f · γ−1
i )) · πγi ,

which is in Filn+1D as ϕ takes values in FilnD and, by (1), FilnD · π ⊆ Filn+1D.
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Lemma 3.4 Assume that D has a decreasing R[S]-filtration Fil•D satisfying hypothe-

ses (1) and (2) of Theorem 3.1.

If Ψ is in the kernel of Hr(Γ, D) → Hr(Γ, D/Fil0D) and Ψ
∣

∣U = αΨ with α ∈
(R/AnnR(Ψ))×, then Ψ = 0. That is, there are no ordinary U -eigenclasses in the

kernel of Hr(Γ, D)→ Hr(Γ, D/Fil0D).

Proof Since α is a unit modulo AnnR(Ψ), there is an element β ∈ R such that
αβ ≡ 1 (mod AnnR(Ψ)). We then have Ψ = βn

Ψ
∣

∣U n for all n ≥ 0. If Ψ̂ is a

cocycle in Zr(Γ, Fil0D) representing Ψ, by Lemma 3.3, Ψ̂ ∈ Zr(Γ, FilnD) + Br(Γ, D)

for all n ≥ 0. Thus, the image of Ψ in Hr(Γ, D/FilnD) vanishes for all n ≥ 0. By

hypothesis (2) on Fil•D, we have

Hr(Γ, D) = lim
←−

n

Hr(Γ, D/FilnD)

and thus Ψ = 0.

We are now prepared to prove our main theorem.

Proof of Theorem 3.1 Let ϕ̂0 ∈ Zr(Γ, D/Fil0D) denote a cocycle representing ϕ0 ∈
Hr(Γ, D/Fil0D) and let ϕ̃0 ∈ Cr(Γ, D) denote an arbitrary lift of ϕ̂0. Note that dϕ̃0

takes values in Fil0D as ϕ̂0 is a cocycle.

Since ϕ0 is an ordinary U -eigenclass, there is some β ∈ R be such that αβ ≡ 1
(mod AnnR(ϕ0)). Define ϕ̃n := βnϕ̃0

∣

∣U n ∈ Cr(Γ, D). We claim that the image of

ϕ̃n in Cr(Γ, D/FilnD) is a cocycle. Indeed,

dϕ̃n = βnd(ϕ̃0

∣

∣U n) = βn(dϕ̃0)
∣

∣U n,

which by Lemma 3.3 takes values in FilnD as dϕ̃0 takes values in Fil0D.

Let ϕ̂n ∈ Zr(Γ, D/FilnD) denote the reduction of ϕ̃n modulo FilnD and let ϕn

denote the image of ϕ̂n in Hr(Γ, D/FilnD). We will show that for each n > 0, ϕn is

U -eigenvector with eigenvalues α and that ϕn is a lift of ϕn−1.

For the first claim, since ϕ0

∣

∣U = αϕ0, we have ϕ̃0

∣

∣U − αϕ̃0 is in Cr(Γ, Fil0D) +

Br(Γ, D). Thus

ϕ̃n|U − αϕ̃n = βnϕ̃0

∣

∣U n+1 − αβnϕ̃0

∣

∣U n
= βn

(

ϕ̃0

∣

∣U − αϕ̃0

) ∣

∣U n,

which, by Lemma 3.3, is in Cr(Γ, FilnD) + Br(Γ, D). Therefore, ϕn

∣

∣U = αϕn.

For the second claim, we have

ϕ̃n − ϕ̃n−1 = βnϕ̃0

∣

∣U n − βn−1ϕ̃0

∣

∣U n−1
= βn−1

(

βϕ̃0

∣

∣U − ϕ̃0

) ∣

∣U n−1,

which, by Lemma 3.3, is in Cr(Γ, FilnD) + Br(Γ, D) as βϕ0

∣

∣U = ϕ0.

Thus,

{ϕn} ∈ lim
←−

n

Hr(Γ, D/FilnD) ∼= Hr(Γ, lim
←−

n

D/FilnD) ∼= Hr(Γ, D),
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where the last equality follows from hypothesis (2) on Fil•D. The collection of classes
{ϕn} therefore corresponds to a single class Φ ∈ Hr(Γ, D). It is immediate that Φ

lifts ϕ0 and that Φ
∣

∣U = αΦ.

The equality of the R-annihilators of Φ and ϕ0, and the uniqueness of Φ now

follow from Lemma 3.4. We check these two facts simultaneously. To this end, let Φ
′

in Hr(Γ, D) be any ordinary U -eigenlift of ϕ0 with Φ
′
∣

∣U = α ′
Φ

′. Then AnnR(Φ ′) ⊆
AnnR(ϕ0) as Φ

′ maps onto ϕ0. To see the reverse inclusion, let x ∈ AnnR(ϕ0). Then,

by Lemma 3.4, xΦ ′
= 0 since otherwise xΦ ′ would be a U -ordinary eigenclass which

maps to 0 in Hr(Γ, D/Fil0D). Thus, AnnR(ϕ0) = AnnR(Φ ′).

Further, since U scales Φ
′ by α ′ and scales ϕ0 by α, it follows that α ′ − α is

in AnnR(ϕ0) = AnnR(Φ ′). In particular, Φ
′ also satisfies Φ

′
∣

∣U = αΦ
′. Again,

by Lemma 3.4, the difference Φ − Φ
′ must vanish as otherwise Φ − Φ

′ would be

a U -ordinary eigenclass which maps to 0 in Hr(Γ, D/Fil0D). Hence, Φ = Φ
′ and

AnnR(Φ) = AnnR(ϕ0).

Remark 3.5 If R is assumed to be a local ring, we can further deduce that there

is a unique U -eigenclass lifting ϕ0 (as opposed to a unique ordinary U -eigenclass).
Indeed, α ∈ R is a unit if and only if α is a unit modulo any proper ideal. From this

it follows easily that any eigenlift of an ordinary eigenclass is automatically ordinary.
This strengthening will be used in the proof of the main theorem of the following

section.

4 Filtrations and Liftings

We return now to the setting of Section 2. In order to invoke the results of the previ-

ous section, we introduce a filtration on Dλ which satisfies the hypotheses of Theo-

rem 3.1.

4.1 A Σ-Stable Filtration on Dλ

We define a filtration on Dλ as follows. For N ∈ Z≥0, set

FilN Dλ :=
{

µ ∈ Dλ : ordp(µ( frst)) ≥
⌈ N − (r + s + t)

2

⌉

for r, s, t ≥ 0
}

,

where ⌈x⌉ is the smallest integer greater than or equal to x. Recall that the functions
frst are defined at the end of Subsection 2.2.

We note that this filtration is too large to satisfy the hypotheses of Theorem 3.1.
In the following subsection, we will replace it by a slightly smaller filtration.

Proposition 4.1 The filtration Fil•Dλ is stable under the action of Σ.

Proof By definition, (µ
∣

∣γ)( frst) = µ(γ frst). If λ = λ(k1, k2, k3), by Lemma 2.1, for
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γ ∈ I we have

(γ frst)
( 1 x y

0 1 z
0 0 1

)

= det(γ)k3(a12 + a22x + a32 y)r(a13 + a23x + a33 y)s

× (−m32 + m12 y + m22z − m12xz)t(a11 + a21x + a31 y)k1−k2−r−s

× (m33 −m13 y −m23z + m13xz)k2−k3−t .

We expand out the last terms with the binomial theorem (keeping in mind that the

exponents may be negative). We have

(γ frst)
( 1 x y

0 1 z
0 0 1

)

= det(γ)k3(a12 + a22x + a32 y)r

× (a13 + a23x + a33 y)s(−m32 + m12y + m22z −m12xz)t

× (a11)k1−k2−r−s
(

∞
∑

j=0

(

k1 − k2 − r − s

j

)

( a21

a11
x +

a31

a11
y
) j)

× (m33)k2−k3−t
(

∞
∑

j=0

(

k2 − k3 − t

j

)

(

−
m13

m33
y −

m23

m33
z +

m13

m33
xz

) j)

=

∑

a,b,c

αabc xa ybzc.

Binomial coefficients
(

a
b

)

with a ≥ 0 and b > a should be interpreted as 0. Note that
a11, a22, a33, m22, and m33 are all units while a21, a31, a32, m12, m13, and m23 are all

multiples of p.

We now consider the possible valuations of αabc for a fixed triple (a, b, c). Note that
the coefficient of a monomial of degree d appearing in the expansion of the first three

nonconstant factors of this product has valuation at least d− (r + s + t). (This follows

as the only non-linear term that appears in these factors has a coefficient divisible
by p.) Also note that the coefficient of a monomial of degree m in the expansion

of the last two nonconstant factors will have valuation at least equal to
⌈

m
2

⌉

. (This
follows as all coefficients that appear in these expressions are divisible by p including

the coefficient of the xz term.) Thus, the valuation of αabc is at least
⌈

(a+b+c)−(r+s+t)
2

⌉

.

Note that µ(γ frst) =
∑

a,b,c αa,b,cµ( fabc); we wish to show that this sum has valua-

tion at least
⌈

N−(r+s+t)
2

⌉

. We do this term-by-term. Fix a triple (a, b, c). If a + b + c ≥
N, then by the above computation, we have that the valuation of αabc is large enough.

If a + b + c < N, then, as µ is in FilN Dλ, we have that µ( fabc) has valuation at least
⌈

N−(a+b+c)
2

⌉

. Since

⌈ N − (a + b + c)

2

⌉

+
⌈ (a + b + c)− (r + s + t)

2

⌉

≥
⌈ N − (r + s + t)

2

⌉

,

we have that µ
∣

∣γ is in FilN Dλ.
Lastly, we consider the action by the element π. In this case,

(µ
∣

∣π)( frst) = µ(π frst) = pr+2s+tµ( frst).
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Thus, if µ is in FilN Dλ so is µ
∣

∣γ.

Lemma 4.2 If µ ∈ FilN Dλ and µ( f000) = 0, then µ
∣

∣π ∈ FilN+1Dλ.

Proof Since (µ
∣

∣π)( frst) = pr+2s+tµ( frst), if (r, s, t) 6= (0, 0, 0), then

ordp((µ
∣

∣π)( frst)) ≥ ordp(µ( frst)) + 1 ≥
⌈ (N + 1)− (r + s + t)

2

⌉

.

Moreover,

(µ
∣

∣π)( f000) = µ(π · f000) = µ( f000) = 0

and thus µ|π ∈ FilN+1Dλ.

4.2 The Main Filtration

Recall the map ρλ : Dλ → Lλ defined in Subsection 2.4. Set Kλ := ker(ρλ), which is
a Σ-module, as ρλ is Σ-equivariant. We then define our main filtration on Dλ by

FilN Dλ := FilN Dλ ∩ Kλ.

Before checking that this filtration satisfies the hypotheses of Theorem 3.1, we intro-
duce one lemma.

Lemma 4.3 If µ ∈ Kλ, then µ( f000) = 0.

Proof Let vλ, v2, . . . , vd be a basis of Vλ(Qp). Since vλ is a highest weight vector for

Nopp, we have

vλ ·
( 1 x y

0 1 z
0 0 1

)

= vλ +

d
∑

i=2

Pi(x, y, z)vi.

Thus,

ρλ(µ) = µ( f000)vλ +

d
∑

i=2

µ(P ′
i )vi

where P ′
i is the unique extension of Pi to X. Therefore, µ( f000) = 0 as µ is in the

kernel of ρλ.

Proposition 4.4 We have that Fil•Dλ is a decreasing Zp[Σ]-stable filtration such that

(1) FilN Dλ

∣

∣π ⊆ FilN+1Dλ for all N ≥ 0,

(2) the natural map Dλ → lim
←−

Dλ/FilN Dλ is an isomorphism.

Proof The first part of the proposition follows from Lemmas 4.2 and 4.3. For the

second part, it is clear from the definitions that ∩FilN Dλ = 0. Conversely, if {µN} ∈
lim
←−

Dλ/FilN Dλ, for a fixed triple (a, b, c) the sequence {µN( fabc)} is Cauchy converg-

ing to say αabc ∈ Zp. Let µ be the unique distribution such that µ( fabc) = αabc for all

a, b, c. Then µ projects to µN for each N ≥ 0.
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4.3 Lifting Hecke-Eigensymbols

Let H denote the abstract Hecke-algebra generated over Zp by U p and by T(ℓ, k) for

all primes ℓ 6= p and k = 1, 2, 3. Recall that the specialization map

ρr
k : Hr(Γ, Dλ)→ Hr(Γ, Lλ)

is H-equivariant. We offer the following theorem (which is implied by Theorem 2.8).

Theorem 4.5 If ϕ ∈ Hr(Γ, Lλ) is an H-eigenvector whose U p-eigenvalue is a unit,

then there exists a unique H-eigenvector Φ ∈ Hr(Γ, Dλ) that specializes to ϕ.

Proof We apply Theorem 3.1 to the distribution module Dλ and its filtration Fil•Dλ.

By Proposition 4.4, this filtration satisfies the hypotheses of Theorem 3.1 with re-
spect to π, the diagonal matrix with entries 1, p and p2. Note that Dλ/Fil0Dλ

∼= Lλ

and thus, by Theorem 3.1, there exists a unique U p-eigenvector Φ lifting ϕ (see Re-

mark 3.5).

We moreover claim that Φ is automatically an H-eigenvector. Indeed, let T ∈
H and let ϕ

∣

∣T = aϕ. Then, since T and U p commute, both Φ
∣

∣T and aΦ are

U p-eigenlifts of aϕ. By uniqueness, we conclude that Φ
∣

∣T = aΦ.

Remark 4.6 The above argument works equally well if one has a H-eigenvector

v ∈ Hr(Γ, Lλ)⊗ O for some finite extension O of Zp.
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