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Abstract. For the Kronecker algebra, Zwara found in [14] an example of a module
whose orbit closure is neither unibranch nor Cohen-Macaulay. In this paper, we explain
how to extend this example to all representation-infinite algebras with a preprojective
component.
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1. Introduction. Throughout this paper, we work over an algebraically closed
field k of characteristic zero. All algebras (associative and with identity) are assumed
to be finite-dimensional over k, and all modules are assumed to be finite-dimensional
left modules.

One important problem in the geometric representation theory of algebras is that
of describing the orbit closures of modules in module varieties. In [13, Remark 5.1],
Zwara asked whether the orbit closure of an arbitrary module over a tame concealed
algebra is a unibranch variety. On the other hand, Zwara constructed in [14, Theorem 1]
an orbit closure of a module over the Kronecker algebra with bad singularities.

Our goal in this short paper is to explain how orthogonal exceptional sequences can
be used to extend the aforementioned example to all representation-infinite algebras
with a preprojective component (in particular, to all tame concealed algebras). We
prove that:

THEOREM 1.1. Let A = kQ/I be a connected representation-infinite algebra with a
preprojective component. Then, there exists a dimension vector d ∈ �

Q0
≥0 and a module

M ∈ mod(A, d) such that the orbit closure GL(d)M is neither unibranch nor Cohen-
Macaulay.

In [13, Corollary 1.3], Zwara showed that the orbit closures of modules for
representation-finite algebras are always unibranch varieties. This result combined with
Theorem 1.1 shows that an algebra with a preprojective component is representation-
finite if and only if all of its orbit closures are unibranch.

The layout of this paper is as follows. In Section 2, we review background material
on module varieties; in particular, we recall the notions of orthogonal exceptional
sequences, and effective weights for finite-dimensional algebras. We prove Theorem 1.1
in Section 3.
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2. Background on module varieties. Let Q = (Q0, Q1, t, h) be a finite quiver with
vertex set Q0 and arrow set Q1. The two functions t, h : Q1 → Q0 assign to each arrow
a ∈ Q1 its tail ta and head ha, respectively.

A representation M of Q over k is a collection (M(i), M(a))i∈Q0,a∈Q1

of finite-dimensional k-vector spaces M(i), i ∈ Q0, and k-linear maps M(a) ∈
Homk(M(ta), M(ha)), a ∈ Q1. The dimension vector of a representation M of Q is
the function dim M : Q0 → � defined by (dim M)(i) = dimk M(i) for i ∈ Q0. Let Si be
the one-dimensional representation of Q at vertex i ∈ Q0 and let us denote by ei its
dimension vector. By a dimension vector of Q, we simply mean a function d ∈ �

Q0
≥0.

Given two representations M and N of Q, we define a morphism ϕ : M → N to be
a collection (ϕ(i))i∈Q0 of k-linear maps with ϕ(i) ∈ Homk(M(i), N(i)) for each i ∈ Q0,
and such that ϕ(ha)M(a) = N(a)ϕ(ta) for each a ∈ Q1. We denote by HomQ(M, N) the
k-vector space of all morphisms from M to N. Let M and N be two representations
of Q. We say that M is a subrepresentation of N if M(i) is a subspace of N(i) for each
i ∈ Q0 and M(a) is the restriction of N(a) to M(ta) for each a ∈ Q1. In this way, we
obtain the abelian category rep(Q) of all representations of Q.

Given a quiver Q, its path algebra kQ has a k-basis consisting of all paths (including
the trivial ones) and the multiplication in kQ is given by concatenation of paths. It is easy
to see that any kQ-module defines a representation of Q, and vice versa. Furthermore,
the category mod(kQ) of kQ-modules is equivalent to the category rep(Q). In what
follows, we identify mod(kQ) and rep(Q), and use the same notation for a module and
the corresponding representation.

A two-sided ideal I of kQ is said to be admissible if there exists an integer L ≥ 2
such that RL

Q ⊆ I ⊆ R2
Q. Here, RQ denotes the two-sided ideal of kQ generated by all

arrows of Q.
If I is an admissible ideal of KQ, the pair (Q, I) is called a bound quiver and the

quotient algebra kQ/I is called the bound quiver algebra of (Q, I). It is well known
that any basic algebra A is isomorphic to the bound quiver algebra of a bound quiver
(QA, I), where QA is the Gabriel quiver of A (see [1]). (Note that the ideal of relations
I is not uniquely determined by A.) We say that A is a triangular algebra if its Gabriel
quiver has no oriented cycles.

Fix a bound quiver (Q, I) and let A = kQ/I be its bound quiver algebra. We denote
by ei the primitive idempotent corresponding to the vertex i ∈ Q0. A representation M
of A (or (Q, I)) is just a representation M of Q such that M(r) = 0 for all r ∈ I . The
category mod(A) of finite-dimensional left A-modules is equivalent to the category
rep(A) of representations of A. As before, we identify mod(A) and rep(A), and make
no distinction between A-modules and representations of A.

Assume form now on that A has finite global dimension; this happens, for example,
when Q has no oriented cycles. The Ringel form of A is the bilinear form 〈·, ·〉A :
�Q0 × �Q0 → � defined by

〈d, e〉A =
∑
l≥0

(−1)l
∑

i,j∈Q0

dimk Extl
A(Si, Sj) d(i) e(j).

Note that if M is a d-dimensional A-module and N is an e-dimensional A-module then

〈d, e〉A =
∑
l≥0

(−1)l dimk Extl
A(M, N).

The quadratic form induced by 〈·, ·〉A is denoted by χA.
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The Tits form of A is the integral quadratic form qA : �Q0 → � defined by

qA(d) :=
∑
i∈Q0

d2(i) −
∑

i,j∈Q0

dimk Ext1
A(Si, Sj) d(i) d(j) +

∑
i,j∈Q0

dimk Ext2
A(Si, Sj) d(i) d(j).

If A is triangular then r(i, j) := |R ∩ ej〈R〉ei| is precisely dimk Ext2
A(Si, Sj), ∀i, j ∈

Q0, as shown by Bongartz in [3]. So, in the triangular case, we can write

qA(d) =
∑
i∈Q0

d2(i) −
∑
a∈Q1

d(ta) d(ha) +
∑

i,j∈Q0

r(i, j) d(i) d(j).

A dimension vector d of A is called a root if d is the dimension vector of an
indecomposable A-module. A root d of A is said to be isotropic if qA(d) = 0; we say it
is real if qA(d) = 1. Finally, we say that d is a Schur root if d is the dimension vector of
an A-module M for which EndA(M) 
 k. Such a module M is called a Schur module.

Let d be a dimension vector of A (or equivalently, of Q). The variety of d-
dimensional A-modules is the affine variety

mod(A, d) = {M ∈
∏

a∈Q1

Matd(ha)×d(ta)(k) | M(r) = 0,∀r ∈ I}.

It is clear that mod(A, d) is a GL(d)-invariant closed subset of the affine space
mod(Q, d) := ∏

a∈Q1
Matd(ha)×d(ta)(k). Note that mod(A, d) does not have to be

irreducible. We call mod(A, d) the module variety of d-dimensional A-modules.

2.1. Orthogonal exceptional sequences. Recall that a sequence E = (E1, . . . , Et)
of finite-dimensional A-modules is called an orthogonal exceptional sequence if the
following conditions are satisfied:

(1) Ei is an exceptional module, i.e. EndA(Ei) = k and Extl
A(Ei, Ei) = 0 for all l ≥ 1

and 1 ≤ i ≤ t;
(2) Extl

A(Ei, Ej) = 0 for all l ≥ 0 and 1 ≤ i < j ≤ t;
(3) HomA(Ej, Ei) = 0 for all 1 ≤ i < j ≤ t.

(If we drop condition (3), we simply call E an exceptional sequence.)
Given an orthogonal exceptional sequence E , consider the full subcategory filtE

of mod(A) whose objects M have a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ms = M of
submodules such that each factor Mj/Mj−1 is isomorphic to one of the E1, . . . , Et. It is
clear that filtE is a full exact subcategory of mod(A) which is closed under extensions.
Moreover, Ringel [10] (see also [6]) showed that filtE is an abelian subcategory whose
simple objects are precisely E1, . . . , Et.

Let AE = kQE/IE be the bound quiver algebra where the Gabriel quiver QE
has vertex set {1, . . . , t} and dimk Ext1

A(Ei, Ej) arrows from i to j for all 1 ≤ i, j ≤ t.
The ideal IE is determined by the A∞-algebra structure of the the Yoneda algebra
Ext•Q(

⊕t
i=1 Ei,

⊕t
i=1 Ei). From the work of Keller [8, 9], we know that there exists an

equivalence of categories FE : mod(AE ) → filtE sending the simple AE -module Si at
vertex i to Ei for all 1 ≤ i ≤ t.

Now, consider a dimension vector d′ of QE and set d = ∑
1≤i≤t d′(i) dim Ei. Then,

there exists a regular morphism fE : mod(AE , d′) → mod(A, d) such that fE (M′) 

FE (M′) for all M′ ∈ mod(AE , d′) (for more details, see [5, Section 5]).
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As an immediate consequence of Zwara’s Theorem 1.2 in [12], we have:

PROPOSITION 2.1. Keep the same notations as above and let M′ ∈ mod(AE , d′). Then,
GL(d′)M′ is smooth/unibranch/Cohen-Macaulay at some N ′ if and only if the same is
true for GL(d)fE (M′) at fE (N ′).

REMARK 2.2. In particular, this proposition allows us to construct orbit closures in
mod(A, d) with bad singularities by reducing the considerations to the smaller algebra
AE . What is needed at this point is an effective method for constructing convenient
orthogonal exceptional sequences. This is addressed in the section below.

2.2. Cones of effective weights. Let d be a dimension vector of A and let θ ∈ �Q0

be a real weight. Given a vector d′ ∈ �Q0 , we define θ (d′) = ∑
i∈Q0

θ (i) d′(i). Recall that a
module M ∈ mod(A) is said to be θ -semi-stable if θ (dim M) = 0 and θ (dim M′) ≤ 0 for
all submodules M′ ⊆ M. We say that M is θ -stable if θ (dim M) = 0 and θ (dim M′) < 0
for all proper submodules {0} ⊂ M′ ⊂ M. Denote by mod(A)ss

θ the full subcategory
of mod(A) consisting of all θ -semi-stable A-modules. Then, mod(A)ss

θ is an abelian
subcategory of mod(A) which is closed under extensions, and whose simple objects are
precisely the θ -stable A-modules. Moreover, mod(A)ss

θ is Artinian and Noetherian, and
hence, every θ -semi-stable finite-dimensional A-module has a Jordan-Hölder filtration
in mod(A)ss

θ .
Now, let C be an irreducible component of mod(A, d). We define Cs(s)

θ = {M ∈ C |
M is θ -(semi-)stable}. The cone of effective weights of C is, by definition, the set

Eff(C) = {θ ∈ �Q0 | Css
θ �= ∅}.

It is well known that Eff(C) is a rational convex polyhedral cone of dimension at
most |Q0| − 1. Given a lattice point θ0 in Eff(C), we say that

d = d1 +̇ · · · +̇ dt

is the θ0-stable decomposition of d in C if the generic module M in C has a Jordan-
Hölder filtration {0} = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M in mod(A)ss

θ0
such that the sequence

(dim M1, dim M1/M2, . . . , dim M/Mt−1) is the same as (d1, . . . , dt) up to permutation
(for more details, see [5, Section 6.2]). If d′ is a dimension vector that occurs in a stable
decomposition with multiplicity m, we write m · d′ instead of d′ +̇ d +̇ · · · +̇ d′︸ ︷︷ ︸

m

.

In what follows, we denote by H(d) the hyperplane in �Q0 orthogonal to a real-
valued function d ∈ �Q0 , i.e. H(d) = {θ ∈ �Q0 | θ (d) = 0}.

LEMMA 2.3. [5, Lemma 6.5] Let F be a face of Eff(C) of positive dimension,
θ0 ∈ relint Eff(C) ∩ �Q0 , and

d = m1 · d1 +̇ . . . mt · dt

the θ0-stable decomposition of d in C with di �= dj,∀1 ≤ i �= j ≤ t. Then,

F = Eff(C) ∩
t⋂

i=1

H(di).
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As a direct consequence of this lemma, we have the following useful result:

COROLLARY 2.4. Assume that Eff(C) has dimension |Q0| − 1 and let F be a facet of
Eff(C). Let θ0 ∈ relint Eff(C) ∩ �Q0 and let

d = m1 · d1 +̇ · · · +̇mt · dt

be the θ0-stable decomposition of d in C with di �= dj,∀1 ≤ i �= j ≤ t.
If the dimension vectors d1, . . . , dt are indivisible then F = Eff(�, d) ∩ H(d1) ∩

H(d2) and d = n1 d1 +n2 d2 for unique numbers n1 and n2.

Proof. Note that F has dimension |Q0| − 2, and so t ≥ 2. Moreover, the dimension
of the subspace of �Q0 orthogonal to the subspace spanned by {d, d1, d2} is at least
|Q0| − 2 since it contains F . In particular, the set {d, d1, d2} is linearly dependent. Since
d1 and d2 are distinct indivisible vectors, we deduce that d = n1 d1 +n2 d2 for unique
numbers n1 and n2.

When t = 2, the proof follows from Lemma 2.3. Now, let us assume that t ≥ 3.
Arguing as before, we deduce that d is a linear combination of di and d1, and d is also
a linear combination of di and d2 for all 3 ≤ i ≤ t. So, di is a linear combination of
d1 and d2 for all i, and this implies that H(d1) ∩ H(d2) = ⋂t

i=1 H(di). The proof of the
claim now follows again from Lemma 2.3. �

In the next section, we use this description of the facets of Eff(C) to prove the
existence of short orthogonal exceptional sequences for tame concealed algebras.

3. Proof of theorem 1.1. We begin with the following example due to Zwara (see
[14]):

THEOREM 3.1. Let K2 be the Kronecker quiver

1 =⇒ 2

Label the arrows by a and b. Consider the following representation M ∈ rep(K2, (3, 3))

defined by M(a) =
(

0 0 0
1 0 0
0 1 0

)
and M(b) =

(
1 0 0
0 0 0
0 0 1

)
. Then, GL((3, 3))M is neither unibranch

nor Cohen-Macaulay.

It follows from the work of Happel and Vossieck that a basic, connected
and, representation-infinite algebra admitting a preprojective component has a tame
concealed algebra as a factor (see [11, Theorem XIV.3.1]). Consequently, to prove
our theorem, we can reduce the considerations to the tame concealed case. Let us
now briefly recall some of the key features of a tame concealed algebra A = kQ/I .
It is well known that there is a unique indivisible dimension vector h of A such that
qA(h) = 0. In fact, h turns out to be the unique isotropic Schur root of A. Let θh ∈ �Q0

be the weight defined by θh(d) = 〈h, d〉A,∀ d ∈ �Q0 . Now, let P (R,Q, respectively) be
the full subcategory of mod(A) consisting of all A-modules that are direct sums of
indecomposable A-modules X such that θh(dim X) < 0 (θh(dim X) = 0, θh(dim X) > 0,
respectively). The following properties hold true.

(i) mod(A) = P
∨

R
∨

Q, where the symbol
∨

indicates the formation of the
additive closure of the union of the subcategories involved.
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(ii) HomA(N, M) = Ext1
A(M, N) = 0 if either N ∈ R

∨
Q, M ∈ P or N ∈ Q, M ∈

P
∨

R.
(iii) pdAM ≤ 1 for all M ∈ P

∨
R and idAN ≤ 1 for all N ∈ R

∨
Q.

The next two results have been proved for certain tame concealed algebras in [5,
Section 6.2], and the arguments in loc. cit. work for arbitrary tame concealed algebras.
Nonetheless, for completeness and for the convenience of the reader, we provide the
proofs below.

LEMMA 3.2. If A is a tame concealed algebra then mod(A, h)s
θh

�= ∅.

Proof. First of all, it is clear that mod(A, h)ss
θh

�= ∅ since any h-dimensional A-
module from R is θh-semi-stable. Let M ∈ mod(A, h) be an indecomposable module
that lies in a homogeneous tube of R. We are going to show that M is θh-stable. Assume
to the contrary that M is not θh-stable and consider a Jordan-Hölder filtration of M
in mod(A)ss

θh
. This way, we can see that M must have a proper θh-stable submodule M′.

Then, M′ must belong to the homogeneous tube of M, and from this we deduce that
dim M′ is an integer multiple of h. But this is a contradiction. �

PROPOSITION 3.3. If A is a tame concealed algebra then there exists an orthogonal
exceptional sequence E = (E1, E2) of A-modules such that AE is the path algebra of the
Kronecker quiver K2.

Proof. Let h be the unique isotropic Schur root of A. The module variety mod(A, h)
is irreducible by Corollary 3 in [2], and let us denote its cone of effective weights by
Eff(A, h). We know from Lemma 3.2 that there exists a module M ∈ mod(A, h) which is
θh-stable. In other words, the subset �0(M) of Eff(A, h), defined as �0(M) = {θ ∈ �Q0 |
θ (h) = 0, θ (dim M′) < 0,∀{0} ⊂ M′ ⊂ M}, is a non-empty open (with respect to the
Euclidean topology) subset of H(h). We deduce from this that dim Eff(A, h) = |Q0| − 1.
Next, choose a facet F of the cone Eff(A, h) and a weight θ0 ∈ relintF ∩ ��0 . Now,
consider the θ0-stable decomposition of h in mod(A, h):

h = m1 · h1 +̇ · · · +̇mt · ht,

with m1, . . . , mt positive integers and hi �= hj,∀1 ≤ i �= j ≤ t. Note that h1, . . . , ht are
indivisible real Schur roots.

For each 1 ≤ i ≤ t, let Ei be a hi-dimensional θ0-stable module that arises
as a factor of a Jordan-Hölder filtration of a generic module M in mod(A, h).
Note that we can choose M to be θh-stable by Lemma 3.2. Furthermore, we have
that HomA(Ei, Ej) = 0,∀1 ≤ i �= j ≤ t, since E1, . . . , Et are pairwise non-isomorphic
(θ0-)stable modules.

Since h1, . . . , ht are indivisible, we have F = Eff(�, h) ∩ H(h1) ∩ H(h2) and h =
n1 h1 +n2 h2 for unique numbers n1 and n2 by Corollary 2.4.

We have that qA(h1) = qA(h2) = 1, and E1 and E2 are exceptional A-modules.
To simplify notation, set l = −〈h1, h2〉A − 〈h2, h1〉A. Then, using the fact that h is an
isotropic root in the radical of χA, we deduce that 2n1 = n2l, 2n2 = n1l, and n2

1 + n2
2 =

ln1n2 . From these relations and the fact that h is indivisible, we deduce that n1 = n2 = 1
and l = 2. Without loss of generality, we can assume that E1 is a submodule of M and
E2 = M/E1. Then, we have that dimk Ext1

�(E2, E1) > 0.
In what follows, we show that E := (E1, E2) is an orthogonal exceptional sequence

with dimk Ext1
�(E2, E1) = 2 and Ext2

�(E2, E1) = 0.
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As M is θh-stable we have that θh(h1) < 0 and θh(h2) > 0. Using the properties (ii)
and (iii) mentioned above, we conclude that E is an orthogonal exceptional sequence; in
particular, we have that 〈h1, h2〉A = 0, and so dimk Ext1

A(E2, E1) − dimk Ext2
A(E2, E1) =

−〈h2, h1〉A = 2. Finally, consider exact sequence 0 → E1 → M → E2 → 0 and the
induced exact sequence:

0 = Ext1
A(E2, E2) → Ext2

A(E2, E1) → Ext2
A(E2, M) = 0.

It is now clear that E has indeed the desired properties. �

Now, we are ready to prove out theorem:

Proof of Theorem 1.1 . It follows immediately from Proposition 3.3, Proposition 2.1,
and Theorem 3.1. �

REMARK 3.4. In this final remark, we outline an alternative approach to proving
the main result of the paper which was communicated to us by the referee. We have
seen that in order to prove Theorem 1.1 we can reduce the considerations to the case
where A = EndkQ(T) is tame concealed. To extend Zwara’s example in Theorem 3.1
to the algebra A, one proceeds in two steps as follows.

First, the variety of the Kronecker-pairs of dimension vector (d, e) is related via
an associated fibre-bundle construction to an open part P of mod(Q, f) for a certain
dimension vector f of Q. Indeed, without loss of generality, we can assume that there
is a vertex x of Q which is a source and Q′ := Q \ {x} is a Dynkin quiver. Let f ′ be the
dimension vector of the unique maximal indecomposable U of Q′. Then, the dimension
vector f is defined so that its restriction to Q′ is e f ′ and its value at the vertex x is d. The
open part P consists of those representations of Q whose restriction to Q′ is isomorphic
to Ue. In particular, this construction allows one to extend Zwara’s example to all tame
quivers.

Now, let us consider the tame concealed algebra A = EndkQ(T). If A is not
Schurian then our main theorem can be proved directly by first inspecting the list
of Happel-Vossieck (see [7]). In all other cases, one can actually show that all direct
summands of T lie between the first section S in the Auslander-Reiten quiver and
TrDp(S) where p is the Coxeter number of Q. Since U = TrDp−1(V ), where V is the
indecomposable projective module at vertex x, we deduce that all modules in the open
part belong to the torsion part induced by the tilting module T . The proof of the
main theorem now follows from Bongartz’s geometric version of tilting theory (see [4,
Theorem 3 and Corollary 1]).
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