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Abstract
After the introduction of the ionization-injection scheme in laser wake field acceleration and of related high-quality
electron beam generation methods, such as two-color and resonant multi-pulse ionization injection (ReMPI), the theory
of thermal emittance has been used to predict the beam normalized emittance obtainable with those schemes. We recast
and extend such a theory, including both higher order terms in the polynomial laser field expansion and non-polynomial
corrections due to the onset of saturation effects on a single cycle. Also, a very accurate model for predicting the
cycle-averaged distribution of the extracted electrons, including saturation and multi-process events, is proposed and
tested. We show that our theory is very accurate for the selected processes of Kr8+→10+

and Ar8+→10+
, resulting

in a maximum error below 1%, even in a deep-saturation regime. The accurate prediction of the beam phase-space
can be implemented, for example, in laser-envelope or hybrid particle-in-cell (PIC)/fluid codes, to correctly mimic the
cycle-averaged momentum distribution without the need for resolving the intra-cycle dynamics. We introduce further
spatial averaging, obtaining expressions for the whole-beam emittance fitting with simulations in a saturated regime,
too. Finally, a PIC simulation for a laser wakefield acceleration injector in the ReMPI configuration is discussed.

Keywords: field theory ionization; high-quality electron beams; ionization injection; laser wakefield acceleration; laser–plasma accelera-
tion; resonant multi-pulse ionization injection; tunnel ionization; two-color ionization; ultraintense laser pulses

1. Introduction

In the past decades, many injection schemes for electron
beams in the accelerating wakefield excited by laser
pulses[1–4] have been proposed and tested. Among them,
injection by background density variation[5–12], collinear
colliding pulses injection[13–15] and multi-pulse ionization-
injection schemes, such as two-color ionization injec-
tion[16,17] and resonant multi-pulse ionization injection
(ReMPI)[18–20], are very promising in terms of transverse
beam quality, being able to generate electron beams with
normalized emittances as low as tens of nm, as shown by
analytical results and numerical simulations. The usage of
circularly polarized laser pulses can be beneficial to lower
the threshold for self-injection in the bubble regime[21].
High-quality ionization injection schemes, however, use
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linearly polarized pulses for the ionizing pulse to minimize
the residual transverse momentum, while they may use either
linear or circular polarization for the laser pulse (or the pulse
train for the ReMPI scheme), which drives the wakefield[16].

Accuracy of numerical simulations of ionization-injection
processes can be extremely challenging when schemes
providing good-quality beams are investigated, as they
are required to accelerate electron bunches suitable to
drive an X-ray free-electron laser[22] for the EuPRAXIA
project[23] or similar projects based on a high gradient plasma
accelerator[24]. This is because the longitudinal grid spacing
should be small enough to efficiently resolve the extraction
process, occurring in a tiny fraction (usually ≈ 1/5) of the
ionization pulse wavelength. The use of reduced envelope
models in conjunction with analytical models to correctly
mimic the newborn electrons phase-space (e.g., QFluid[18,25],
INF&RNO[26], ALaDyn[27,28] and SMILEI[29,30]) can
therefore be advantageous when long and large grid-size
simulations are needed. In this respect, highly accurate
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analytical predictions of the root mean square (rms)
transverse momentum or even more accurate models for
the phase-space distribution of the extracted electrons are
needed. In a seminal paper in 2014, Schroeder et al.[31] set for
the first time a comprehensive theory of ionization-injection
thermal emittance with a single laser pulse. This theory
is currently used in the codes cited above and constitutes
the state-of-the-art of the analytical results for single pulse
ionization-injection schemes, to the best of the authors’
knowledge.

In the following, we will suppose that the linearly polar-
ized ionization laser pulse of amplitude a0, with polarization
axis x and carrier wavelength λ0 is propagating along pos-
itive z. Its amplitude is large enough to provide an electric
field above the ionization threshold for the tunnel field-
ionization process. Once electrons are extracted from the
ions, their dynamics follows the prescription for a generic
charged particle in an (almost) plane-wave laser pulse. After
averaging the momenta during the whole first laser pulse
oscillation, we obtain the initial cycle-average normalized
3D momentum −→u = −→p /mec (see Ref. [30] and references
therein):

ux = −a0,e sinξe, uy = 0, uz = 1
2

a2
0,e

(
sin2ξe + 1

2

)
, (1)

where ξe is the ionization pulse phase at the extraction
time and a0,e is the local normalized pulse amplitude at
the extraction position. As the electrons slip back in the
laser field, their quivering amplitude decreases, while also
the longitudinal ponderomotive force gradually reduces the
cycle-averaged longitudinal momentum uz. Finally, as the
pulse completely overpasses the particle, the 3D residual
momentum,

ux = ux, uy = uy, uz = uz − 1
4

a2
0,e , (2)

can be evaluated by neglecting transverse ponderomotive
effects and pulse evolution during the slippage. It is worth to
note here that, while the (initial) cycle-averaged momentum
in Equation (1) is used in, for example, envelope ioniza-
tion models, the residual momenta of Equation (2) can be
employed, in conjunction with the transverse residual posi-
tion estimate, to evaluate the minimum normalized emittance
of the extracted bunch, as in Ref. [31].

The theory from Schroeder et al.[31] also shows that, in
the optimal conditions of unsaturated ionization, the new-
born electrons are extracted in tiny slabs centered at the
maxima of the electric field strength E =| −→

E
(−→x ,t) |. For

a given position, and after having defined the phase of E =
E0 | cosξ | such that ξ = 0 corresponds to a given maximum
of E, the analytical theory shows that the local particle
extraction phase ξe shows a Gaussian distribution around

ξe = nπ , with n integer and variance σξ � � (note that in
Ref. [31] the phase extraction variance is named σψ ), where

�=
(

3E0

2Ea

)1/2

·
(

UH

UI

)3/4

. (3)

Here, E0 is the ionization pulse strength, Ea � 0.51 TV/m
is the atomic field strength and UH,I are the ionization
potentials of hydrogen and of the atomic selected level to be
ionized, respectively. Consequently, the rms residual particle

momentum σux =
√〈
(ux)

2〉 along the ionization pulse polar-
ization is approximately a0�. High-quality electron bunches
are obtained by minimizing the transverse rms momentum,
and this is accomplished by a minimization of σξ , which
should assume the lowest possible value compatible with
the possibility of extracting the electrons from the selected
atomic level of the dopant atoms. As an example, N5+→6+

,
Ar8+→9+

and Kr8+→9+
transitions are usually employed in

ReMPI or two-color schemes. The optimal values of �� σξ
for those processes are approximately 0.29, 0.24 and 0.22,
respectively (see below).

The possibility of using very accurate predictors of the rms
normalized emittance along the polarization axis for either
particles extracted in a single cycle or by the whole laser
pulse is of paramount importance for high-quality beam pro-
duction studies. Moreover, as standard requests refer to both
high charge and high quality for the beam, working points in
a saturated or partially saturated regime are often selected.
Motivated by the needs reported above, we recast the theory
in Ref. [31] for the local and global bunch parameters, so as
to include all the relevant terms of order �2, and to include
additional �4 terms. In this work, we addressed the need for
high-accuracy rms predictors in the unsaturated regime, with
errors between analytical results and numerical simulations
below 1% (see Sections 3.1 and 4.1). As high-charge beams
are needed, however, higher pulse amplitudes are used so
as to extract more charge, therefore exploring partially or
even fully saturated regimes. There, a gradual increase of
the global normalized emittance is found by simulations,
as already pointed out in Ref. [31]. Our analytical theory
that includes global saturation effects confirms the emittance
increase and very accurately fits the simulation results (see
Section 4.2). Moving with increasingly higher amplitudes,
we explore the saturation limit within a single laser cycle.
The phase-space of the electrons extracted in a single-cycle
saturated regime (see Section 3.2) reveals fine structures
that may help the understanding of either experimental[32,33]

or particle-in-cell (PIC) simulation[34] results when high-
intensity, very short pulses are used. Our model for the
phase-space is revealed to be extremely accurate in this
regime too (see Section 3.2), and predicts a reduction of
the transverse momentum once the fully saturated regime
is reached. Very large pulse amplitudes, however, may lead
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to switching on multiple ionization stages. In this work we
also propose an accurate model for this double-ionization
process (see Section 3.3). Although the theory proposed in
this work only considers the effects of the laser pulse, it
is interesting to compare the results concerning the whole
bunch emittance with those obtained by PIC simulations,
including the plasma wakefield contribution (Section 5),
with a focus on sub-micrometer long bunches obtainable
with the ReMPI scheme.

2. Setting up the pulse amplitude for tunnel ionization

In the following, the tunnel ionization process occurring
in a (single) laser field is considered. The instantaneous
ionization rate can be described by the Ammosov–Delone–
Krainov (ADK) formula[35–38], expressed in terms of the
electric field normalized to the critical ADK field ρ0 ≡
3E
2Ea

(
UH
UI

)3/2 = a0/ac (here ac � 0.107λ0

(
UI
UH

)3/2
), introduced

in Ref. [18]:

dne

dt
= W · (n0,i −ne

)
,

W = C(ρ0|cosξ |)μ exp
(

− 1
ρ0 | cosξ |

)
, (4)

where ne is the number of extracted particles and n0,i is
the initial number of available ions; C depends on the
atom species and ionization level (there are some different
versions for C, e.g., Equation (6) in Ref. [18]). The exponent
μ in Equation (4) is defined as follows:

μ= −2n∗+ | m | +1, (5)

with n∗ = Z
√

UH/UI and m being the effective principal
quantum number of the ion with final charge Ze and the
projection of the angular momentum, respectively. The peak
normalized amplitude ρ0 = a0/ac is related to the � term
in Ref. [31] as ρ0 = �2. The evaluation of the number
of extracted electrons and spatial averages of σux will be
strongly simplified by expressing the average ionization rate
over a single ionization pulse cycle 〈W (ρ0)〉 as follows:

〈W〉 ≡ 1
π

∫ π/2

−π/2
W (ρ0,ξ)dξ

� C

√
2
π

(
1− μ+5/4

2
ρ0

)
ρ
μ+1/2
0 e−1/ρ0 . (6)

The choice of the optimal value for the normalized field
amplitude ρ0 =�2 depends on several parameters, including
the number of extracted electrons, the final needed beam
quality, the ion density, pulse peak electric field and size. If
a large number of electrons have to be extracted, an optimal
working point could be set so that the laser pulse is close
to its saturation limit, that is, a large fraction of the ions

in the vicinity of the pulse axis are ionized after the pulse
passage. The solution of Equation (4) for an ionization depth
L is ne(L)= n0,i[1− e−	(L)] with the following:

	(L)=
∫ L

0
dz 〈W〉/c. (7)

Setting 	 = 1, we get an ionization percentage of approxi-
mately equal to 60%, and therefore 	(L) ≈ 1 can be used
to define the threshold of saturation effects. It is worth
defining the local average ionization rate 〈W〉/c as 〈W〉/c ≡
kADKρ

μ+1/2
0 e−1/ρ0 , where:

kADK =
√

2
π

C (|m|)/c. (8)

We are now able to find the normalized field achieving
a saturation percentage approximately equal to 60% in
a longitudinal length L. For the selected processes of
Kr8+→9+

(m = 0), Ar8+→9+
(m = 0) and N5+→6+

(m = 0),
the kADK parameters evaluated with Equation (2) in Ref.
[31] are 1.8 × 105, 1.4 × 105, 0.24 × 105 µm−1, respectively.
For each ionization process and saturation length L, the
normalized field ρ0 = a0/ac reaching saturation can be
obtained by numerical solution of the following equation:

(
kADKL

)
ρ
μ+1/2
0 e−1/ρ0 = 1. (9)

Graphical solutions of Equation (9) for either tens of fs
long pulses or near single-cycle pulses can be found in the
Appendix.

3. Accurate residual momentum theory for single-cycle
lasting ionization

In this section we recast the theory for σux and improve its
accuracy by (i) including an O (�2

)
term not taken into

account in Ref. [31], (ii) extending the theory up to O (�4
)

terms and, finally, (iii) including (exponential) correction
terms due to the onset of saturation effects. We will start
with local properties of the emitted electrons by neglecting
the saturation effects. Afterwards, we include the onset of
saturation contribution for σux . The new analytical results
can therefore be included in envelope codes aiming at an
accurate statistical reconstruction of the ionization process
even at ionization pulse intensities close to the single-cycle
saturation threshold (see below).

3.1. Local properties of the emitted electrons without satu-
ration effects

We start considering the rms values of the extraction phase
ξ (σψ in Ref. [31]) and of sinξ , with the aim of obtaining
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an approximate result including O (�4
)

(i.e., O (ρ2
0

)
) cor-

rections for the latter, but neglecting the ionization saturation
effects. Following Ref. [31], we consider a single half-cycle
of the ionization pulse E (ξ) = E0 cosξ , extracting electrons
with phases ξ = k0 (z− ct) around the field maximum at
ξ = 0. Expressing the ionization rate W (ξ) in terms of the
extraction phase, we get the following:

W (ξ)= W0 · (cosξ)μ exp
[

1
ρ0

(
1

cosξ
−1
)]

� W0 exp
(

− ξ 2

2ρ0

)(
1− μ

2
ξ 2 − 5

24ρ0
ξ 4
)

� W0 exp

[
− ξ 2

2σ 2
ψ

(
1+ 5

12
ξ 2
)]
, (10)

where W0 ≡ W (ξ = 0)= kADK/k0ρ
μ

0 e−1/ρ0 is the maximum
rate for the given pulse strength and σ−2

ψ = ρ−1
0

(
1+μρ0

)
is

the same expression as Equation (6) in Ref. [31]. The expan-
sion of the exponential factor in Equation (10) in powers of
ξ is justified by the fact that ρ0 = �2 
 1 in our regimes.
Here, terms containing ξ 4/ρ0 are retained as they are O (�2

)
and this is related to the difference of our results from the
equivalent terms in Ref. [31] (see below). From now on,

we will use W (ξ) in the form W0e− ξ2
2ρ0

(
1− μ

2 ξ
2 − 5

24ρ0
ξ 4
)

,

which results to be corrected up to O (ρ2
0

)
.

It is now straightforward to evaluate the expectation values
of ξ 2, obtaining (up to O (�2

)
) the following:

σ 2
ξ,0 ≡ 〈

ξ 2〉= ρ0
[
1− (μ+5/2)ρ0

]
. (11)

Our expression of
〈
ξ 2
〉

differs from the result in Ref. [31] by
the presence of the additional (−5/2)ρ0 term.

The rms residual momentum ux = −a0 sinξ is, however,
directly related to the sinus of the extraction phase ξ . Includ-
ing all the correction terms up to ρ2

0 but neglecting pon-
deromotive force and saturation contributions, we get σ 2

u,0 ≡〈
u2

x

〉= a2
0σ

2
s,0, where

σ 2
s,0 ≡ 〈

sin2ξ
〉= ρ0

(
1+ sI ·ρ0 + sII ·ρ2

0

)
, (12)

where sI = −(μ+5/2+1) and sII = 1
8

(
8μ2 +68μ+131

)
.

Once again, our expression up to the correction O (ρ0)

differs by the equivalent in Ref. [31] by the presence of the
(−5/2)ρ0 term. Figure 1 shows the dependence of σξ,0 and
σs,0 on the pulse amplitude a0 for the local extraction of par-
ticles by the process Ar8+→9+

and a pulse with wavelength
λ0 = 0.4 µm. For both central moments, the theory is able
to reproduce the Monte Carlo simulations results with high
accuracy.

Figure 1. Root mean square values of the local extraction phases ξe and
their sinus as a function of the laser amplitude a0 (λ0 = 0.4 µm) for the
process Ar8+→9+

. The blue line shows the analytical results for σξ,0 by
Equation (11), while the orange line represents the analytical results for σs,0
by Equation (12). Results from Monte Carlo simulations (green diamonds
and red circles, respectively) well agree with the theory. The black dash-
dotted line refers to the bare (lowest order) estimation of σξ,0 � σs,0 ��0 =√
ρ0.

3.2. Local, single-channel, ionization process including sat-
uration effects

Local saturation effects may be important when they occur
within a single pulse cycle (see Figure 2). In this case, due to
the monotonic reduction of the available ions as the pulse
proceeds crossing each field peak, an asymmetry of the
extraction average phase occurs, thus inducing a deviation
of the rms value for ux (see below) from the unsaturated
case and the occurrence of a nonzero average momentum
along the polarization axis. In this section we explore the
local ionization process occurring in a single channel (e.g.,
Ar8+→9+

), while multiple ionization processes activated by
the very large electric field will be discussed in the next
section.

Going more into detail with the rate equation (4), we start
expressing the integral

∫
(dne/dt)dt as follows:

	(ξ)≡ 1
k0,x

∫ ξ

−π/2
dxW(x)

= kADK

k0
ρ
μ

0

∫ ξ

−π/2
dx(cosx)μe

−
1

ρ0 cosx

� νs (ρ0)G
(

ξ√
2ρ0

)
, (13)

where

G(x)≡ 1
2

[1+ erf(x)]+ ρ0

24
√
π

x
(
15+12μ+10x2)e−x2

(14)
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Figure 2. Cumulative ionization fraction 	(ξ) (see Equation (13)) eval-
uated numerically from the exact weight (red curve), from theory (blue
curve) and by theory without the ξ4/ρ0 term (orange full-dashed line). The
right-hand axis shows the errors associated either with the theory (black
curve) or with the lower order theory without the non-Gaussian e−5ξ4/(24ρ0)

correction.

is the saturation shape function, erf(x) is the error function
and kADK = C (|m|)/c and ρ0 
 1 have been used in the
last manipulation. In Equation (13) we have also introduced
the saturation parameter νs = 	(λx/2) (see Equations (6)
and (7)):

νs ≡ √
2π

kADK

k0

(
1− μ+5/4

2
ρ0

)
ρ
μ+1/2
0 e− 1

ρ0 . (15)

The saturation shape function G
(

ξ√
2ρ0

)
accurately

describes the particle extraction as the phase proceeds
from −π/2 to ξ within a single half-pulse cycle and

satisfies G
(

−π/2√
2ρ0

)
= 0, G

(
π/2√

2ρ0

)
= 1, provided that

ρ0 
 1. As is apparent in Figure 3, the full expression

for G
(

ξ√
2ρ0

)
predicts the (numerically evaluated) exact

values for 	(ξ) with errors O (ρ2
0

)
, while the more simple

expression

G0(x)≡ 1
2

[1+ erf(x)] (16)

is also an accurate predictor, but with expected errors O (ρ0).
Once the cumulative ionization function 	(ξ) has been

obtained, the newborn electron distribution function equa-
tion, including saturation effects, can be evaluated as

1
n0,i

dne

dξ
= − ∂

∂ξ
e−	(ξ), (17)

Figure 3. Statistical moments �(n,ρ0) for n = 1−4 and full saturation
correction S numerically evaluated as in Equations (20) and (25) as a
function of the saturation parameter νs for the transition Ar8+→9+

and
λ0 = 0.4 µm.

which can be approximated as

1
n0,i

dne

dξ
= W0e− ξ2

2ρ0

(
1− μ

2
ξ 2 − 5

24ρ0
ξ 4
)

e
−νsG

(
ξ√
2ρ0

)

(18)

if ρ0 
 1.
The statistical local weight of Equation (18) is now

employed (instead of W for the unsaturated case) to catch
the cycle saturation effects on the extracted electron phase-
space distribution. The weight now being asymmetric on
any peak, the average extraction phase in any peak is no
longer null. To start, we immediately evaluate the number
of extracted electrons in the first half-cycle as ne/n0,i =
1 − e−	(ξ=π/2) � 1 − e−νs . The statistical distribution of the
extraction phase can strongly deviate from a Gaussian one
once νs � 1, as the extraction phase can be modeled with
a probability P(ξ) ∼ dn/dξ by using Equation (18). To
simplify the model, it is useful to work with a randomly
distributed variable x ∈ [−xmax,xmax] with xmax = π/

(√
8ρ0
)

and probability

P(x)∼
[

1−ρ0

(
μx2 + 5

6
x4
)]

e−x2−νsG(x), (19)

whose moments �(n,ρ0) ≡ 〈xn〉 can be numerically evalu-
ated as

�(n,ρ0)=
∫ xmax
−xmax

dxxnP(x)∫ xmax
−xmax

dxP(x)
. (20)

The estimate of the average extraction phase within the peak
〈ξe〉single now reads

〈ξe〉single � ±√2ρ0 ×�(1,ρ0), (21)
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Figure 4. Distribution of ue for the electrons extracted in a single cycle
from argon 8+ → 9+ ions (a0 = 0.45, λ0 = 0.4 µm corresponding to
νs = 0.252). The blue bars show the distribution obtained by a Monte Carlo
simulation. The orange and green bars refer to the distribution obtained in
the first and second peak, respectively, inferred by the model of Equation
(19).

where the sign of 〈ξe〉single depends on the phase of the field
peak. The second moment of the extraction phases can be
evaluated in a similar way, obtaining

〈
ξ 2

e

〉
single � 2ρ0 ×�(2,ρ0) . (22)

The moments �(n,ρ0) for n = 1−4, as a function of the
saturation parameter νs and the ionization process Ar8+→9+

with λ0 = 0.4 µm, are shown in Figure 4. As a final result, in
the case of partial or full saturation, the single peak distribu-
tion of the extraction phases around the local field maximum
follows a strongly non-Gaussian distribution of the shape as
Equation (19), with x = ξe/

√
2ρ0 and an ionization fraction

of 1−e−νs . The resulting first- and second-order moments of
the extraction phases follow Equations (21) and (22).

Once the extraction phases have been statistically
described, the resulting distribution of the residual transverse
momenta is finally obtained (once again after neglecting
ponderomotive force effects) by evaluating the particle
momenta as ue = −a0 sinξe. As the first peak ionizes
a fraction of the 1 − e−νs available ions, the remaining
e−νs

(
1− e−νs

)
are extracted by the second peak of the

cycle. There, as sin ξe changes its sign, a reversed
distribution of the momenta with respect to the first peak is
obtained.

It is interesting to note that a slight asymmetry and there-
fore a visible deviation from the Gaussian distribution occur
even at pulse amplitudes corresponding to (or close to) work-
ing points used in high-quality beam production simulations
(see, e.g., Ref. [19]). This is apparent in Figure 5, where the
single peak contributions from the model as well as the full-
cycle Monte Carlo and PIC SMILEI simulations are shown
together with the inferred Gaussian distribution obtained by

Figure 5. Deep-saturation distribution of ue for the electrons extracted
in a single cycle from the Ar8+→9+

process (a0 = 0.6, λ0 = 0.4 µm
corresponding to νs = 9.52). The orange bars refer to the distribution
obtained with the model of Equation (19) (first peak of the cycle where
more than 99.99% of the available ions have been ionized). The blue bars
are perfectly superimposed with the orange bars and show the distribution
obtained by a Monte Carlo simulation. The green bars (not visible here
due to the very few particles extracted there) show the distribution of the
electrons extracted by the second peak of the cycle. The red line refers to the
full-cycle electron distribution obtained by simulations without saturation
effects, for reference.

using the rms momentum as in Equation (12). There, the
fraction 1 − e−νs � 22.3% of the available ions is further
ionized by the first peak and a fraction e−νs

(
1− e−νs

)� 17%
is extracted by the second peak. As a result, the model
very accurately describes the process as it matches both
the Monte Carlo and PIC simulations, while the standard
Gaussian distribution partially deviates from the other dis-
tributions. Moving into the deep-saturation regime, very
large deviations from the standard Gaussian distribution are
observed. Figure 6 compares the momentum distribution of
the extracted electrons in the case of deep saturation (νs =
9.52  1) for the Ar8+→9+

process (a0 = 0.6, λ0 = 0.4 µm).
After the half-pulse passage, about 99.998% of the ions have
been ionized.

The analytical estimation of the average and rms spread
of momentum ux over the optical cycle, including saturation
effects, proceeds by observing that the cycle-averaged sinus
of the extraction phase can be evaluated by averaging the
contributions of the two peaks as

〈ξe〉cycle �√
2ρ0

[
�(1,ρ0)− 1

3
ρ0�

(
3,ρ0

)](1− e−νs

1+ e−νs

)
,

(23)

where Equation (21) has been used. Since the second phase
moments of the two peaks in the cycle are exactly the same,
the cycle-averaged

〈
ξ 2

e

〉
cycle can be evaluated directly from

Equation (22). As a result, the full cycle-averaged central
momentum of the electron locally extracted by a single
ionization process is evaluated as σux ≡ 〈

u2
x

〉−〈ux〉2 = a2
0σ

2
s ,
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Figure 6. Average and rms residual momentum for the channel argon
8+ → 9+, single pulse cycle with λ0 = 0.4 µm, as a function of the pulse
amplitude a0. (a) Average momentum as expected by theory (blue line),
by Monte Carlo simulations (red circles), by using the model of Equation
(19) (blue triangles) and by SMILEI PIC simulations (green squares). The
black right-hand axis refers to the ionization fraction after one pulse cycle.
(b) Root mean square of the residual momenta. The blue line shows
the analytical results, which include the saturation effects through the
S (νs) function. The orange full-dashed line shows the analytical results
without saturation effects, for reference. Red circles, blue triangles and
green squares show the results by Monte Carlo, model and SMILEI PIC
simulations, respectively.

where

σ 2
s � σ 2

s,0 S (νs) (24)

and the overall saturation correction S (νs) is

S (νs) ≡ 2�(2,ρ0)− 4
3
ρ0�(4,ρ0)+

−2
{[
�(1,ρ0)− 1

3
ρ0�

(
3,ρ0

)] 1− e−νs

1+ e−νs

}2

.

(25)

The overall saturation correction slightly increases above
unity in the range 0 � νs � 1 (see the black line in Figure 4).

Figure 7. 3D distribution of the residual momentum for the (0) and (1)
channels Ar8+→9+

and Ar9+→10+
in the deep-saturation regime, single

pulse cycle with a0 = 0.6 and λ0 = 0.4 µm. The blue bars and the black
curve show the distribution of the full process Ar8+→10+

as inferred by
a Monte Carlo simulation and by SMILEI PIC simulations, respectively.
The orange and green bars show the distribution obtained by the model
for channels Ar8+→9+

and Ar9+→10+
, respectively. Panel (a) depicts the

residual transverse momentum distribution along the polarization axis x,
while in panel (b) the longitudinal residual momentum uz is shown. Since
ponderomotive forces are not taken into account, the residual momentum
along y is zero (not shown here). As is clear from the sum of the (0,1)
channels (red line), the model is capable of well reproducing the single-
cycle momentum distribution even in a multi-channel regime.

In this range, both the peaks in each pulse contribute to
extracting particles with opposite average momenta, thus
inducing an increase of the rms full-cycle transverse momen-
tum. In the deep-saturation regime (νs � 1), the second peak
gives an even more negligible contribution. At the same
time, the single peak rms spread in momentum decreases
due to the phase-space cut induced by the strong saturation,
with the final result of generating an overall rms momentum
well below the one expected without saturation effects being
active. The final results for the cycle-averaged first- and
second-order moments of the residual momenta in the case
of the single process Ar8+→9+

are shown in Figure 7. As
we clearly see in Figure 7(b), if λ0 = 0.4 µm the maximum
rms momentum is achieved with a0 ≈ 0.53. We stress that
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those results are obtained by activating the single ionization
channel described above.

3.3. Single-cycle, multiple-channel ionization processes

In the single-cycle intermediate and deep-saturation regimes,
the pulse electric field is usually large enough to activate one
(or more) ionization channel(s) above the starting, selected
one. Referring to the usual argon example, when νs � 1 a
two-channel process related to the (l = 1, m = 0) Ar8+→9+

,
Ar9+→10+

occurs, with the next process Ar10+→11+
(m =

1) having a statistical weight significantly lower than the
others. The analysis reported in the previous section can
be applied on the single channels, thus giving insight into
the whole ionization process. To start, we denote with the
superscripts (0) and (1) the base (selected) process and the
subsequent one, respectively, and with n(0)i , n(1)i being their
initial available ions.

The total number of extracted electrons in any peak can be
obtained by solving the rate equations for the local available
ions, namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dn(0)

dξ
= −n(0)ν(0)s G(0)

dn(1)

dξ
= −n(1)ν(1)s G(1)+n(0)ν(0)s G(0)

, (26)

whose solutions give the total number of extracted electrons
in any process and their distribution. As shown before, the
numbers of electrons extracted in any peak by the processes
(0) and (1) are

N(0)
e = n(0)i

(
1− e−ν(0)s

)
N(1)

e = n(1)i

(
1− e−ν(1)s

)
+

+n(0)i

(
1− e−ν(0)s − e−ν(1)s M01

)
, (27)

where the transfer function M01 (ρ0;ξ) is defined as

M01 (ρ0;ξ)≡ W(0)
0

∫ ξ

−π/2
dteν

(1)
s G(1)(t)P(0)(t). (28)

Equations (27) very accurately predict the number of
extracted electrons in any channel in a single pulse peak,
being the maximum discrepancy between the inferred
number of extracted electrons and Monte Carlo simulations
outcomes below 1% ≈ ρ2

0 (see Figure 8).
The distribution of the extracted electrons in the channel

(0) follows the already discussed prescriptions from Equa-
tion (19). The distribution from process (1) originates both
from the ions initially available at level (1) and from those
that are freed while the phase proceeds within the peak. As

Figure 8. Ionization fraction in the channels (0) and (1) as a function of
the pulse amplitude for the case Ar8+→10+

, λ0 = 0.4 µm. The red lines refer
to the predictions from Equation (27), while the blue points are obtained by
Monte Carlo simulations. Predictions with errors O (ρ2

0
)
< 1% are obtained

in this way.

the exact expression of the distribution,

dn(1)e

dξ
= W(1)

0 P(1)
[
n(1)i +n(0)i M01 (ρ0;ξ)

]
(29)

contains the transfer function M01 (ρ0;ξ) that would be eval-
uated numerically for any ξ , we just evaluate M01 (ρ0;π/2)
so as to accurately infer the number of extracted electrons,
whose distribution is modeled by making the approximation

∫ ξ

−π/2
dteν

(1)
s G(1)(t)P(0)(t)� eν

(1)
s G(1)(ξ)

(
1− eν

(0)
s G(0)(ξ)

)
.

(30)

The approximation is accurate because non-negligible values
for ν(1)s are necessarily related to a saturated regime of the
base level, which realizes quasi-flat injection of available
ions of the second level.

The two-level model for the whole process occurring
in a single peak, including the estimates of the extracted
particles via Equation (27) and extraction phase distributions
following the base-level distribution in Equations (19) and
(29), can be combined so as to get the whole (0)+ (1)
process (e.g., Ar8+→10+

) in a full pulse cycle. Figure 9 shows
the full-cycle scan of the average and rms momentum for
the two-level process Ar8+→10+

with λ0 = 0.4 µm, as a
function of pulse amplitude a0. The model predictions (blue
diamonds) agree with Monte Carlo simulations (red circles)
and PIC simulations (green squares) for both the average
momentum (Figure 9(a)) and for the rms momentum (Figure
9(b)). The black line from the right-hand axis in Figure 9(a)
shows the fraction of the second ionization process (1) over
the whole set of particles extracted in the cycle, showing
that the model maintains its accuracy also in the case of the
second ionization deep saturation. The model can be easily
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Figure 9. Single-cycle, two-level ionization scan for the Ar8+→10+
pro-

cess with λ0 = 0.4 µm. Red circles, blue diamonds and green squares
refer to Monte Carlo simulations, model predictions and PIC simulations,
respectively. (a) Average momentum from the two-level simulations and the
model, as well as the average momentum as predicted by the single base
level Ar8+→9+

, for reference (blue line). The vertical axis on the right shows
the fraction of level (1) over the whole (0)+ (1) particles extracted in the
cycle. (b) rms momentum from the two-level simulations and the model.
The blue line shows predictions by the theory of the base level without
saturation effects on.

extended in order to include relevant contributions of further
ionization processes.

In Figure 9(a), a blue line representing the average
momentum as predicted by the single Ar8+→9+

process
shows that the second ionization step induces a sensible
reduction of the average momentum as a large ionization of
the (0) level in the first peak causes an increase of the number
of particles extracted in level (1) during the second peak,
where sinξe has an opposite sign. Furthermore, in Figure
9(b) we can also note that the additional (1) level rules out
the momentum drop off induced by saturation in the single
(0) process. As a matter of fact, both the model and the
simulation outcomes fit surprisingly well with predictions
by the theory of unsaturated ionization by the single (0)
process (see also the blue line in Figure 9(b)), representing
the results from Equation (12).

4. Whole bunch emittance theory

As the cycle pulse amplitude depends on both the longitu-
dinal and transverse coordinates, we make the substitution
a0 → f

(−→x )a0, f being the laser pulse envelope profile. As
a result, for any position −→x , the statistical average weight of
the extracted electrons in Equation (6), as well as their rms
transverse momentum, depends on −→x through f . We move
on by firstly neglecting saturation effects (see Figure 2) and
ponderomotive force effects.

4.1. Theory with negligible saturation effects

The description of the spatial dependence of σux and sub-
sequent evaluation of the whole-beam emittance can be
simplified by introducing the generating functional of the
spatial moments:

G (m,n)≡
〈
e−mr2−n(z−ct)2

〉

=

∫
d3xe−mr2−n(z−ct)2 dne/dt

(−→x )∫
d3xdne/dt

(−→x ) , (31)

where dne/cdt = 〈W〉 has been used in the absence of
saturation effects (see Equation (6)) and ρ = ρ0f includes
the pulse envelope f effects. If the pulse envelope has a bi-
Gaussian shape f (r,z− ct) = exp

[−r2/w2
0 − (z− ct)2/L2

]
,

the transverse functional G (k,0) =
〈
e
−k r2

w2
0

〉
is evaluated

without further approximations by means of integrals of the
form

I (k,ρ0)≡
∫ ∞

0
dx2e

⎡
⎣−

⎛
⎝μ+

1
2

+ k
⎞
⎠x−

1
ρ0

(
ex2 −1

)⎤⎦

= e
−
⎛
⎝μ+

1
2

+ k
⎞
⎠+

1
ρ0 	up

[
−
(
μ+ 1

2
+ k
)

; 1
ρ0

]
,

(32)

where 	up (s,x) is the upper incomplete Euler function,
	up (s,x)= ∫∞

x dte−tts−1. As a result, we get

G (k,0)≡
〈
e−kr2/w2

0

〉

=
I (k,ρ0)−

(
μ

2
+ 5

8

)
ρ0I (k +1,ρ0)

I (0,ρ0)−
(
μ

2
+ 5

8

)
ρ0I (1,ρ0)

� 1− kρ0 + k
(
μ+ 5

2

)
ρ2

0 +O(ρ0)
3. (33)
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We stress that, depending upon the needed accuracy, it is
possible to use either the expression containing the Euler
incomplete Gamma functions or its (less accurate) polyno-
mial expansion.

The longitudinal counterpart of Equation (33), that is,
G (0,k) ≡

〈
e−k(z−ct)2/L2

〉
, can be evaluated in a similar way.

We observe, however, that for any k ∈ � we get

〈
e−kx2/w2

0

〉
=
〈
e−ky2/w2

0

〉
=
〈
e−k(z−ct)2/L2

〉
, (34)

which brings us to

G (0,k)=√
G (k,0)

� 1− 1
2

kρ0 + 1
2

k
[(
μ+ 1

2

)
+ 3

4
k
]
ρ2

0 . (35)

The full average generator is finally evaluated as

G (k,k)≡
〈
e−k(r/w0)

2−k(z−ct)2/L
〉
= (G (k,0))3/2

� 1− 3
2

kρ0 + 3
2

k
[(
μ+ 1

2

)
+ 5

4
k
]
ρ2

0 . (36)

The first usage of G (k,k) is for the evaluation of the whole
bunch rms value of the residual momentum ux. This can be
performed by observing that

〈
ρk
〉= ρk

0G (k,k), obtaining

〈
σ 2

u

〉≡
∫

d3xσ 2
ux

×dne/dt
(−→x )∫

d3xdne/dt
(−→x )

= a2
cρ

3
0

[G (3,3)+ sIρ0G(4,4)+ sIIρ
2
0G(5,5)

]
. (37)

We stress here that G (k,k) can be evaluated without further
approximations by using the incomplete Euler Gamma func-
tions in Equation (32). A faster evaluation of

〈
σ 2

ux

〉
, however,

can be obtained by Taylor expanding Equation (37) with
corrections up to O (ρ2

0

)
, obtaining

σ 2
ux,bunch,0 ≡ 〈

σ 2
u

〉
bunch � a2

0ρ0

× [1− (μ+8)ρ0

+ (
μ2 +19μ+131/2

)
ρ2

0

]
. (38)

The difference with the equivalent result in Ref. [31] (see
Equation (14)) is, as in the local analysis, twofold: our �2 =
ρ0 correction term differs from the equivalent one in Ref.
[31] and we included a �4 = ρ2

0 contribution. The ρ2 term
in Equation (38) is not a tiny contribution, as the prefactor(
μ2 +19μ+ 131

2

)
(≈ 15 for the krypton, ≈ 30 for the argon

and ≈ 50 for the nitrogen) is usually large. In Figure 10
the analytical results of Equation (38) (dashed lines) are
compared with simulations, which exclude the saturation of
the ionization process and the ponderomotive force effects

Figure 10. Whole bunch rms momentum as a function of the normalized
field strength ρ0 = a0/ac for a process without saturation and ponderomo-
tive force effects. Diamond and circle points represent simulation results
for krypton and argon, respectively. The orange and blue lines show, for the
same processes, the analytical results from Equation (38). In the right-hand
axis, the relative errors committed by the analytical formulae are shown as
black points (squares for krypton and triangles for argon). In both cases, a
relative error below 1% is expected.

in the subsequent electron dynamics inside the laser field. In
this case, errors below 1% are expected when evaluating the
full bunch rms momentum along the laser polarization axis.

The functional generator of the moments G (m,n) can
also be used to evaluate the rms values of the transverse
and longitudinal bunch sizes. This can be accomplished by
observing that, for any slice at fixed z−ct, the rms extraction
radius can be evaluated as

〈
r2〉= −∂mG(m,0)m=0. (39)

The gradient ∂mG (m,0) can be obtained either in an exact
form by using the complete version of I (k,ρ0) as in Equation
(32), or by referring to its polynomial expansion in ρ0 
 1.
In the latter case, we get (for a fixed slice z− ct)

〈
r2〉� w2

0ρ0

[
1−

(
μ+ 5

2

)
ρ0

]
. (40)

A further average over the longitudinal z−ct slices will give
us the whole bunch rms transverse size

σ 2
x,bunch,0 ≡ 〈

x2〉
bunch � 1

2
w2

0ρ0

×
[

1− (μ+3)ρ0 + 1
2

(
3μ+ 33

4

)
ρ2

0

]
. (41)

As a final result, as 〈xux〉 = 0 (no transverse ponderomotive
or wakefield forces are considered), the whole-beam normal-
ized emittance squared along the polarization axis (excluding
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Figure 11. Bunch averaged normalized emittance obtained with a thin
slice of ionizable atoms (either krypton or argon) with a scan of the
normalized field strength ρ0 = a0/ac. The pulse wavelength, waist and
duration are 0.4 µm, 5 µm and 10 fs, respectively. The emittance is
further normalized by the pulse waist w0 and amplitude a0, that is,

εn/(w0a0) =
√〈

u2
〉 〈

x2
〉− (〈ux〉)2/(w0a0) = ρ0

√En. Here, black points
represent the simulation results including ponderomotive force effects,
while red points refer to simulations without ponderomotive force effects
on. Diamond and circle points represent simulation results for krypton and
argon, respectively, which include saturation effects during ionization but
exclude the ponderomotive force contribution in the subsequent particle
evolution. The dashed lines show, for the same processes, the analytical
results excluding saturation effects. Thick lines show the analytical results
with a full description of the ionization process.

saturation and ponderomotive effects) reads

ε2
n,x ≡ 〈

x2〉
beam

〈
u2

x

〉
beam − (〈xux〉beam)

2

= 1
2
(a0 w0ρ0)

2En (ρ0,μ0), (42)

where the universal emittance correction term En (ρ0,μ) can
be evaluated retaining O (ρ2

)
terms as

En (ρ0,μ)� 1− (μ+11)ρ0 +
(

2μ2 + 63
2
μ+ 749

8

)
ρ2

0 .

(43)

Equations (42) and (43) correctly describe the whole-beam
emittance in the case of negligible saturation, as is apparent
in Figure 11(c), where the orange line matches with simula-
tions relative to low values of ρ0. Furthermore, we also note
that the model fits (with unsaturated working points) with
simulations including ponderomotive force effects, as those
effects do not increase the beam emittance (at least at the
leading order)[31].

4.2. Whole bunch quality including saturation effects

The onset of ionization saturation during the whole pulse
passage usually occurs at pulse amplitudes close to those
selected as working points, that is, lower than those nec-
essary to get saturation effects within a single pulse peak.
A first effect is the reduction of the number of particles

extracted in the vicinity of the pulse axis, thus enhancing
the statistical weight of the regions with r � �0w0 and
therefore increasing the final

〈
r2
〉
bunch. As result, the rms

residual momentum is slightly smaller than the expected one
without saturation effects on. We will see however that, as
anticipated in Ref. [31], the final effect is that of a whole-
bunch emittance increase, being the final result dominated
by the increase of the bunch radius.

The integrated ionization weight 	(r,z− ct) can be evalu-
ated as (ρ0 
 1)

	(r,z− ct)=
∫ z−ct

−∞
〈W (r,ζ )/c〉dζ

� νse
−

r2

ρ0w2
r × 1

2

[
1+E

(
z− ct√
ρ0wz

)]
, (44)

where

νs = √
2(kADKwz)ρ

μ+1
0 e−1/ρ0 . (45)

We can now use e−	(r,z−ct) 〈W〉(r,z− t) as a weight to obtain
rms quantities. Starting with the rms beam radius

〈
r2
〉
sat we

get at the lowest order in ρ0:

〈
r2〉

sat =

∫ ∞

−∞
dz
∫ ∞

0
dr2r2 〈W〉e−	

∫ ∞

−∞
dz
∫ ∞

0
dr2 〈W〉e−	

=

∫ ∞

0
dr2r2

(
1− e−νse−r2/w2

r

)
∫ ∞

0
dr2
(

1− e−νse−r2/w2
r

)

≈ w2
0ρ0

[
1+ 1

8
νs − 5

864
ν2

s +O (ν3
s

)]
, (46)

where the last expression holds for νs 
 1.
The evaluation of the rms momentum including saturation

effects proceeds by generalizing the generating function of
the moments G (m,n) (Equation (31)) so as to include the
progressive decrease of the available ions as the comoving
coordinate z−ct proceeds towards the tail of the pulse. Once
again, we will get only the lowest order corrections in ρ0 and
νs, obtaining for the special case of interest:

G(3,3)sat �
∫∫

dx2 dζe
−3
(

1+ 1
ρ0

)(
x2 + ζ 2

)
− νs

2
e−x2

[1+E (ζ )]

∫∫
dx2 dζe

− 3
ρ0

(
x2 + ζ 2

)
− νs

2
e−x2

[1+E (ζ )]

�
(

1− 9
2
ρ0

)(
1− 3

8
ρ0νs

)
, (47)
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where in the last manipulation we retained the lowest order in
νs and used

∫∞
−∞dx erf(x)e−ax2 = 0 for a> 0. By inspection

of Equations (36) and (37), we note that
〈
r2
〉
sat and G(3,3)sat

contain corrections to their leading terms in ρ0. Collecting
the saturation corrections into the whole bunch normalized
emittance, which now contains the leading order correction
terms due to saturation effects, we get

ε2
n,x � 1

2
(a0 w0ρ0)

2En,sat (ρ0,μ0), (48)

where the emittance correction term En,sat (ρ0,μ) including
saturation effects with νs 
 1 is

En,sat �
(

1+ νs

8
− 5

864
ν2

s

)

×
[

1−
(
μ+11+ 3

8
νs

)
ρ0

+
(

2μ2 + 63
2
μ+ 749

8
+ 3

8
(μ+11)νs

)
ρ2

0

]
.

(49)

Although the results from Equation (49) are strictly valid for
νs 
 1, they look very accurate also for νs � 2.5, where a
fraction of 1 − e−νs � 90% of the ions lying on the pulse
axis will be further ionized (see Figure 11). Inspection of
the saturation corrections with larger saturation parameters
could be operated either by using results from Equation (32)
or by using numerical integration of Equation (46).

5. ReMPI injection simulation

The results reported in the previous sections do not take into
account the effects of wakefield forces inducing the beam
trapping (see Refs. [39,40] for the theory on ionization-
induced injectors), which are also known to be potentially
detrimental for transverse beam quality[41,42]. Although our
theory is limited to the description of the phase-space just
after the bunch slippage behind the laser pulse, it is inter-
esting to compare the beam normalized emittance with the
expected (minimum) value without wakefield effects and
follow its evolution during the beam acceleration.

We selected a simple ReMPI configuration[18] with a driver
train obtained by splitting a 2.5 µm wavelength pulse into
two sub-pulses of amplitude a0,d = 1.25 of duration Td =
30 fs, with minimum waist w0,d = 30 µm and time delay
of 177 fs. The time delay was set to be very close to the
plasma period for a density of 3.7×1017 cm−3, to resonantly
excite a large amplitude plasma wave. The ionization pulse
of duration Ti = 25fs and amplitude a0,i = 0.44 was obtained
by frequency doubling a Ti:Sa pulse and was focused with a
minimum waist of w0,i = 5 µm. The time delay of 60 fs of
the ionizing pulse from the last pulse of the driver was set
to localize the ionization process close to the node of the

accelerating field, to achieve the best conditions for trapping
(see Ref. [18]). The trapezoidal plasma target profile has
up/down ramps 50 µm long and the focal position of the
pulses was set at 100 µm from the upramp end, to facilitate
the bunch injection in a stable wakefield. Simulations were
performed with the quasi-3D, pseudo-spectral PIC code FB-
PIC [43], which was selected for its capability of reducing
numerical emittance growth. The code was run with two
azimuthal modes, longitudinal and radial resolution of 17
and 57 nm, respectively, with 16 particles per cell. A bino-
mial smoothing was also applied to reduce numerical noise.
The argon ion dopant, with a 10% atomic fraction of the
argon + He mixture, was initially set with ionization level
8. Finally, to ensure that the driving train remains focused
for about 2 mm to follow the emittance evolution through
particle extraction and trapping, refractive guiding with a
parabolic channel is used (see Ref. [44] for a comprehensive
theory of pulse guiding).

A snapshot of the simulation results in the vicinity of the
pulses foci is shown in Figure 12. As the train of pulses
(polarized along y) resonantly excites a large amplitude
plasma wave, the electrons extracted by the ionizing pulse
(polarized along x) slip back the pulse and are suddenly
trapped in the first bucket. The resulting trapped electron
bunch possesses a charge of about 2 pC and a peak current
of 0.5 kA, thus inducing negligible beam loading effects.
During their movement backwards, electrons experience
variable de-focusing forces (the radial ponderomotive force)
and focusing forces due to the wakefield. Although neg-
ligible correlation between the position and the momen-
tum occurred within the first pulse period after particle
extraction, those transverse forces introduced sizable 〈xux〉
and

〈
yuy
〉

correlations (see the inset of Figure 12), whose
shape depends on the linearity of transverse forces and their
variation along the longitudinal comoving coordinate z − ct
experienced by the particles. As a final result, although
the (linear) ponderomotive force itself has no measurable
impact on emittance growth, its combined effect with the
wakefield forces usually brings about transverse quality
degradation unless linear wakefield forces and a good beam
matching are provided. The resulting evolution of the nor-
malized emittance along the propagation axis is shown in
Figure 13. An initial increase of the normalized emittance
along x occurs when the ionization pulse is close to its focus
position (150 µm). After that, due to a partial rephasing
of the (x,ux) quasi ellipses in the longitudinal slices, an
emittance decrease occurs with minimum at z ≈ 600 µm,
with subsequent emittance oscillations. Finally, after about
1.8 mm, the normalized emittances along x and y stabilize
to the values of 0.107 and 0.019 µmrad, respectively, the
first one being approximately 13% higher than the expected
value without the wakefield contribution. In our simulation,
the (slight) increase of normalized emittance from the min-
imum expected value of 0.095 µm (see Equation (48) and
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Figure 12. Simulation snapshot in the vicinity of the focus position.
(a) Electron density, laser pulses transverse fields and longitudinal on-
axis accelerating gradient. The envelopes of the driving pulses with carrier
wavelength 2.5 µm are shown in orange, while the purple envelope refers to
the frequency-doubled Ti:Sa laser constituting the ionizing pulse. A large
amplitude wake is excited behind the second driver pulse, as is apparent
from the longitudinal accelerating gradient (black line, a.u.). (b) On-axis
transverse electric field of the driving train (black line), the ionizing pulse
(purple) and the accelerating gradient (blue line). The fields are shown
in a.u. with the correct ratio between the laser pulse amplitudes. The
longitudinal phase-space plot of the extracted electrons with uz > 0.4
is also shown. The inset shows the transverse phase-space cuts (x,ux)

and
(
y,uy

)
.

Figure 11) is mainly due to a nonlinearity of the transverse
wakefield force, as phase mixing seems to play a minor
role due to the extremely low bunch length (0.25 µm). This
is also apparent in Figure 14(a), where the inspection of
the inset shows that a nonlinear (x,ux) correlation occurs.
Moreover, as it is shown in Figure 14(b), the slice emittance
at the peak current is very close to the projected one (green
dash-dotted line).

6. Summary

We reported on a comprehensive analysis of the 3D phase-
space of the particles extracted via tunneling ionization by
a single, linearly polarized, Gaussian laser pulse. Results

Figure 13. Evolution of the normalized emittance along the ionization
pulse polarization axis (x, blue) and along the driving pulse polarization (y,
orange). The green horizontal line refers to the expected emittance along x
without the effect of the wakefield.

Figure 14. Snapshot at the end of the simulation. (a) On-axis transverse
electric field of the driving train (black line), the ionizing pulse (purple) and
the accelerating gradient (blue line). The longitudinal phase-space plot of
the extracted electrons is also shown. The inset shows the transverse phase-
space cuts (x,ux) and

(
y,uy

)
. (b) Slice analysis of the normalized emittance

(blue line) and slice current (orange line). The dash-dotted line refers to the
overall (i.e., projected) emittance, for reference.

concerning a single-cycle averaging showed that the model
distribution of Equation (19) very accurately described the
distribution of the momenta for a single ionization process
(e.g., Kr8+→9+

). We firstly reported an estimate of the
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rms residual momentum for the electrons extracted in a
single pulse cycle. Such an estimate, valid in the limit of
unsaturated ionization, had accuracy O (ρ2

0

)
, that is, O (�4

)
using the notation of Ref. [31], linked to the presence of
non-Gaussian terms in the extraction phase ξe distribution
(see the last row in Equation (10)). As the pulse amplitude
increases approaching the saturation limit, the analysis of
such a momentum distribution reveals the appearance of
non-null average momentum along the single pulse peaks
and a decrease of the cycle rms momentum in the saturation
regime. The extension of the model up to two ionization
processes (e.g., Kr8+→10+

; see also Equation (26) and
subsequent equations in that section), together with Equation
(1) gives us the possibility to predict with unprecedented
accuracy the whole ionization process occurring in a single
pulse cycle. This offers either a new perspective to analyze
and prepare experiments with few-cycle pulses or a very
accurate basis to simulate the cycle-averaged phase-space
of the extracted particles in fast codes using the envelope
approximation.

As a second outcome, we obtained a very accurate esti-
mate of the whole bunch emittance, that is, the normalized
emittance along the polarization axis of the electron bunch
just after the pulse passage (see Equations (42) and (43) for
the unsaturated case and Equations (48) and (49) for the sat-
urated case). Our results for the whole bunch confirmed the
emittance increase in the saturation regime as firstly reported
in Ref. [31], improving the results shown there by giving
analytical estimates of the rms transverse size increase and
rms momentum slight decrease due to saturation effects.

The accuracy of the results reported in the manuscript has
been checked either via full-PIC simulations or with ad hoc
Monte Carlo codes, showing a remarkably high accuracy
(with errors below 1%) of the analytical outcomes in the
fully saturated regimes explored in the text. Our results, how-
ever, do not include the effect of the plasma wakefield where
the extracted particles would be trapped. Also, transverse
ponderomotive effects have not been taken into account in
the analytical results concerning the transverse momentum
and position separately, although their combination through
the normalized emittance is not affected by the (leading
term) radially linear ponderomotive force, as confirmed by
our simulations.

Finally, we discussed the evolution of the beam emittance
in a PIC simulation including the wakefield effects. The
results concerning the whole-beam emittance we present
here rely on the effect of the laser pulse solely, while wake-
field transverse forces can induce emittance degradation
either via the onset of nonlinear transverse forces or via
phase mixing. We showed that, in the ReMPI (and also
for a two-color) configuration, the possibility of generating
very short bunches enables the possibility of limiting the
emittance growth due to phase mixing, thus improving the
final quality for a matched beam.

Appendix

1. Optimal working point for the ionization process

In the special case of a single or few-cycle pulse (see Refs.
[33,34] for recent applications to the ionization injection[45]),
a key parameter is the normalized field strength bringing
saturation into a single pulse cycle. In this case, L ≈ λ0.
However, in the usual case of a long laser pulse (cT  λ0),
following Equation (5) in Ref. [31], we expect a longitudinal
ionization length of L � �cT = ρ

1/2
0 cT . We can visualize

solutions of Equation (9) by means of Figure 2, where

the ionization scale-lengths K (ρ0)=
(

kADKρ
μ+1/2
0 e−1/ρ0

)−1

and ionization lengths L (ρ0) are shown as a function of the
normalized field strength ρ0.

For each process, the working point is found as the inter-
section of the K and L curves in Figure 2. There we show the
working points realizing saturation at a single wavelength for
the cases λ0 = 0.2−0.8 µm (horizontal lines) or saturation
for a long pulse having length in the range 5−15 µm (black
lines). Finally, the red marks show the selected working
points for pulses of length of about cT = 5 µm. Inspection of
Figure 2 shows that the interval of normalized field strengths
of interest is very tiny. For krypton, the value of ρ0 = 0.052
is enough to fully ionize the available ions within a single
cycle with λ0 = 0.2 µm. For a very long pulse with cT =
15 µm, however, ions are close to saturation with ρ0 = 0.045.
Similarly, the field amplitude ranges for argon and nitrogen
are 0.055−0.065 and 0.078−0.102, respectively.

2. Setup for the PIC simulations of single-cycle ionization

We report here the setup of the PIC simulations with the code
SMILEI[29,46] used to obtain Figures 5, 6, 7, 9, and 15. For

Figure 15. Scale-length in µm for ionization saturation as a function of the
normalized field strength ρ0 = a0/ac and for the Kr8+→9+

(m = 0) (green
line), Ar8+→9+

(m = 0) (orange line) and N5+→6+
(m = 0) (light blue line)

processes. The horizontal lines show the saturation point in a single cycle,
while the black lines are related to long pulses of length cT . The red
markers show the working points bringing saturation with pulses having
the longitudinal size of about 5 µm.
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these simulations the azimuthal decomposition technique
in cylindrical geometry has been used, with two azimuthal
modes[47–49]. The longitudinal and radial resolutions are
�z = 0.003125 µm and �r = 0.1 µm, respectively, the
integration time step �t = 0.99�z/c. A laser pulse with
a Gaussian envelope and temporal profile propagating
in the z direction is initialized in the simulation domain
using the electromagnetic field expressions in Ref. [50],
multiplied by the appropriate Gaussian temporal envelope.
The laser pulse, with carrier wavelength λ0 = 0.4 µm and
polarized in the x direction, has a waist w0 = 10 µm and
full width at half maximum (FWHM) duration of intensity
TFWHM,d = 10 fs, with a0 taking the values for the respective
simulations shown in the mentioned figures. The cylindrical
plasma target, composed of already ionized Ar8+ and the
neutralizing electrons obtained through ionization of the
first eight levels, has uniform atomic density of 1020 cm−3,
length Ltarget = 6�z and radius Rtarget = 8�r. Each species
(ions and neutralizing electrons) of the target is sampled
with nz · nr · nθ = 256 macro-particles per cell, distributed
regularly with

[
nz = 4,nr = 4,nθ = 16

]
particles along the

z, r directions and in the 2π azimuthal angle, respectively.
The laser pulse is initialized with a carrier-envelope phase
π/2, that is, with a zero-value of the transverse electric field
in the center of the laser pulse. At t = 0, the pulse peak
is positioned at the center of the target to reproduce the
underlying assumptions of the derivations. The ionization
procedure implemented in the code uses the ADK ionization
rate formula as reported in Ref. [31]. The residual parameters
of the electrons obtained through ionization are computed
after the laser pulse has left the target.

3. Monte Carlo simulation

Monte Carlo simulations used the rate equations (Equa-
tion(4)) to extract particles, where the local normalized field
strength ρ = ρ0f included pulse envelope effects through a
Gaussian profile f (r,z− ct) = exp

[−r2/w2
0 − (z− ct)2/L2

]
.

As the particles have been extracted, the phase extraction ξe

was collected and the residual momentum ux = −(a0f )sinξe

was determined along with the extraction transverse position
x. The evaluation of the residual momentum along the
polarization axis and the particle transverse position does
not take into account the transverse ponderomotive force
and we referred in the text to those simulations as ‘without
ponderomotive force effects’. A Monte Carlo simulation
including the full electron dynamics after particle extraction,
that is, including ponderomotive force effects, has also been
used. In both the cases, fine temporal resolution has been
employed (c�t = λ0/150) so as to accurately describe both
the ionization process and, in the second case, the subsequent
particle quivering.
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