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We solve ‘half’ the problem of finding three-dimensional quasisymmetric magnetic
fields that do not necessarily satisfy magnetohydrostatic force balance. This involves
determining which hidden symmetries are admissible as quasisymmetries, and then
showing explicitly how to construct quasisymmetric magnetic fields given an admissible
symmetry. The admissibility conditions take the form of a system of overdetermined
nonlinear partial differential equations involving second derivatives of the symmetry’s
infinitesimal generator.
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1. Introduction

Quasisymmetry was introduced in Boozer (1983) as a condition on magnetic fields
satisfying force balance, (∇ × B)× B = ∇p, where B denotes the magnetic field and
p denotes pressure, that ensures guiding centre trajectories enjoy a constant of motion
analogous to canonical angular momentum. Subsequently, Burby & Qin (2013), and then
Burby, Kallinikos & MacKay (2020), showed how to remove force balance from the
definition of quasisymmetry, leading to

DEFINITION 1.1. Let Q ⊂ R
3 be a bounded spatial domain. A nowhere-vanishing vector

field B : Q → R
3 is said to be quasisymmetric when there is a non-zero divergence-free

vector field u on Q such that

∇ × (u × B) = 0, (∇ × B)× u + ∇(u · B) = 0, ∇ · B = 0. (1.1)

The field u is known as the infinitesimal generator of the quasisymmetry.

This notion of quasisymmetry is readily shown to be equivalent to existence of a
1-parameter family of spatial symmetries for a standard truncation (see Littlejohn 1981,
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1982, 1983, 1984) of Littlejohn’s guiding centre Lagrangian. It should be compared
with the related notion of weak quasisymmetry, where the second equation in (1.1)
is replaced with u · ∇|B|2 = 0, introduced in Rodríguez, Helander & Bhattacharjee
(2020) and placed in a more general context in Burby, Kallinikos & MacKay (2021);
weak quasisymmetry is the weakest condition on B that ensures guiding centres enjoy
an adiabatic invariant, associated with an approximate spatial symmetry, analogous
to canonical angular momentum, while quasisymmetry is the weakest condition that
guarantees a particular truncation of the guiding centre equations is integrable by way of
a spatial symmetry. (Velocity-dependent symmetries are discussed in Burby et al. (2021).)
Removing the force-balance constraint is of practical concern because, in light of Grad’s
conjecture (see Grad 1967, 1985; Constantin, Drivas & Ginsberg 2021a), the equation
(∇ × B)× B = ∇p is likely not a correct description of real stellarator equilibria at small
enough scales.

Many prior discussions of quasisymmetry attempt to address existence of smooth
quasisymmetric B. For instance, see Garren & Boozer (1991b,a), Landreman & Sengupta
(2019), Burby et al. (2020), Constantin, Drivas & Ginsberg (2021b), Landreman & Paul
(2022), Wechsung et al. (2022) and Sato (2022). However, as the above definition plainly
demonstrates, the magnetic field B and the infinitesimal generator u, i.e. the symmetry
itself, play almost symmetric roles in the theory. Briefly thinking along these lines leads
to the notion dual to quasisymmetry.

DEFINITION 1.2. A divergence-free vector field u is admissible when there is some
quasisymmetric B with u as its infinitesimal generator.

This article initiates the study of admissible u.
Characterization of admissible infinitesimal generators u plays at least two important

roles in the theory of quasisymmetric magnetic fields. The first role concerns the usual
existence problem. The process of finding quasisymmetric B may be split into two
subprocesses: (i) find an admissible u, then (ii) find a quasisymmetric B with that u
as its infinitesimal generator. Of course, this decomposition will only be useful if there
is some way to find admissible u without finding u and B simultaneously. Determining
whether this can be done requires characterizing admissible u. The second role concerns
an important no-go result due to Garren–Boozer in Garren & Boozer (1991b,a).
Garren–Boozer argued quasisymmetric B in toroidal Q that satisfy force balance cannot
exist, except when the u-flow is a 1-parameter family of Euclidean isometries. Technically,
their result really shows the perturbation equations become overdetermined at a certain
order; overdetermined systems can still have solutions. However, no author has found
solutions of the Garren–Boozer overdetermined system, lending weight to their argument.
Their result has not been shown to apply when the force-balance constraint is removed.
In fact, three-dimensional weakly quasisymmetric fields out of force balance are derived
in Sato (2022). It is therefore very interesting to determine whether quasisymmetry must
always correspond to rigid Euclidean motions, or if there are genuine three-dimensional
examples of quasisymmetric magnetic fields. Characterization of admissible u addresses
this problem directly. The question is not whether quasisymmetric fields exist; they do.
The question is whether the symmetry itself needs to be Euclidean or not. Eliminating B
from the quasisymmetry condition enables studying this question in isolation.

Loosely speaking, characterizing admissible u entails eliminating B from the condition
(1.1). What about eliminating u instead? Solving this problem would generalize previous
coordinate-independent characterizations of quasisymmetric fields in force balance, such
as the triple-product condition found by Simakov and Helander Simakov & Helander
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(2011), in a manner that allows for deviation from ideal equilibrium. We remark that u
has already been eliminated from the weak quasisymmetry condition in Rodríguez, Paul
& Bhattacharjee (2022), resulting in recovery of the earlier triple product formula due to
Simakov and Helander, but without the additional assumption of ideal equilibrium. We
will report on eliminating u from the strong quasisymmetry condition (without assuming
ideal equilibrium) in a future publication.

An infinitesimal generator u on Q is Killing when its flow is a 1-parameter family
of Euclidean isometries. Alternatively, the Killing condition can be characterized
infinitesimally in terms of the strain-rate tensor S = (∇u + ∇uT)/2. (Here T denotes
transpose.) We motivate this terminology by analogy with continuum mechanics, where
the strain-rate tensor of an Eulerian flow field u is given by our formula for S. Thus, S
describes the rate of stretching and shearing of a fiducial material flow with velocity u.

LEMMA 1.3. A vector field u is Killing if and only if the strain-rate tensor
S = (∇u + ∇uT)/2 vanishes.

Proof. Let Φt : x �→ xt denote the time-t flow for u, so that ∂tΦt = u ◦Φt. Let v,w ∈ R
3

be a pair of vectors. The time derivative of the dot product �2
t = (v · ∇Φt) · (w · ∇Φt) is

d
dt
�2

t = ([v · ∇Φt] · ∇u ◦Φt) · (w · ∇Φt)+ (v · ∇Φt) · ([w · ∇Φt] · ∇u ◦Φt)

= 2[v · ∇Φt] · (S ◦Φt) · [w · ∇Φt]. (1.2)

If Φt is an isometry for each t then �2
t = �2

0 for all t. In particular, 0 = d�2
t /dt|t=0 = 2v ·

S · w, since Φ0 = 1. Since v,w are arbitrary, this implies S = 0. Conversely, if S = 0
then d�2

t /dt = 0, which implies �2
t = �2

0. Since v,w are arbitrary, this implies that Φt is an
isometry for each t. �

Every Killing u is admissible, as the following argument shows.

LEMMA 1.4. Suppose u is a nowhere-vanishing vector field on Q with vanishing
strain-rate tensor, S = 0. Then all vector fields B of the form

B = 1
|u|2 (u × ∇ψ + C u) , (1.3)

with u-invariant functions ψ,C (i.e. u · ∇ψ = u · ∇C = 0), are quasisymmetric with
infinitesimal generator u.

Proof. S = 0 implies ∇ · u = 0 and ∇|u|2 + (∇ × u)× u = 0. In particular we have u ·
∇|u|2 = 0.

Let w = u × B. We have

w = 1
|u|2 u × (u × ∇ψ + C u) = 1

|u|2 (u · ∇ψ)u − ∇ψ = −∇ψ. (1.4)

This immediately gives us ∇ × (u × B) = 0. Moreover, if Lu denotes the linear operator
on vector fields v given by Luv = u · ∇v − v · ∇u = [u, v] then

[u,B] = u · ∇|u|−2(u × ∇ψ + C u)

+ |u|−2 (Luu × ∇ψ + u × Lu∇ψ + (u · ∇C)u + C Luu) = 0, (1.5)
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where we have used the fact that u is Killing to infer that Lu is a cross-product derivation
that commutes with ∇, i.e. Lu∇ψ = ∇(u · ∇ψ). Therefore

0 = ∇ × w = (∇ · B)u − (∇ · u)B − [u,B] = (∇ · B)u, (1.6)

which implies ∇ · B = 0.
It remains to show that the vector field k = (∇ × B)× u + ∇(u · B) vanishes. The

vector identities (∇ × B)× u = u · ∇B − (∇B) · u and ∇(u · B) = (∇u) · B + (∇B) ·
u imply

k = [u,B] + 2 S · B. (1.7)

But we have just shown that the first term vanishes, and the second term vanishes because
S = 0. So B is quasisymmetric with infinitesimal generator u, as claimed. �

We remark that this Lemma can be generalized to fields for which ψ is not a global
function. Given a u-invariant function C and an irrotational vector field w such that
u · w = 0, define a field B by replacing ∇ψ with w. Then B is still divergence-free and
quasisymmetric with infinitesimal generator u. This is the most general such B. To prove
this, define w = B × u. From ∇ × (u × B) = 0, this field is irrotational. Also u · w = 0,
so [u,w] = 0. Define C = B · u. We have u · ∇C = 0. Thus, B = (u × w + Cu)/|u|2.

Every Killing field u is admissible because such functions ψ,C exist (in abundance).
For Euclidean metric, u is contained in the Euclidean Lie algebra, and therefore has the
form u(x) = U + L × x in Cartesian coordinates, for some constant vectors (U,L). By
translation and rotation we can take U,L both in the z-direction. If U = 0 (the case of
axisymmetry) then we can choose ψ,C to be any smooth functions of r2, z in cylindrical
coordinates (r, φ, z). In particular, we can achieve ∇ψ �= 0 almost everywhere. If L =
0 we can choose any smooth functions of (x, y). In the general case U,L �= 0 (helical
symmetry), we can choose any smooth functions of r2, ζ with ζ = z − cφ where c �= 0 is
the associated pitch (note this requires periodicity in z).

Thus, in the study of admissible u, it is useful to restrict attention to infinitesimal
generators with nowhere-vanishing strain-rate tensors. We call such fields u non-Killing.
The existence of even one non-Killing admissible u would imply existence of genuinely
three-dimensional quasisymmetric magnetic fields. We leave out the case of u for which
S = 0 in some places, non-zero in others.

This article establishes three foundational results concerning admissible non-Killing
u. First, every such u must satisfy a system of partial differential equations that do not
involve B.

THEOREM 1.5 (necessary conditions for admissibility). If u is non-Killing and admissible
then it must satisfy the partial differential equation (PDE) constraints

0 = tr(S), (1.8)

0 = det(S), (1.9)

0 = u · ∇π ‖ − ∇uT · π ‖ − π ‖ · ∇u, (1.10)

where S = (∇u + ∇uT)/2 and π ‖ = 1 − (2S · S)/(S : S) denotes the orthogonal
projector onto ker S. (Note that S : S is the squared Frobenius norm of S. Therefore the
non-Killing property implies S : S is nowhere vanishing.)

See the discussion in § 5 for an alternative formulation of (1.10). Second, the necessary
PDE constraints (1.8)–(1.10) on u are generally locally sufficient for admissibility as well.
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THEOREM 1.6 (local admissibility). If u is non-Killing and satisfies the PDE constraints
(1.8)–(1.10) then for each x ∈ Q such that

(1 − π ‖(x)) · u(x) �= 0 (1.11)

there is an open neighbourhood U 	 x and quasisymmetric B defined within U with u as
its infinitesimal generator.

Finally, the local sufficiency condition extends to a global sufficiency condition in
toroidal annuli as follows.

THEOREM 1.7 (global admissibility). Assume Q is diffeomorphic to the toroidal annulus
S1 × S1 × [0, 1], where S1 = R/(2πZ) denotes the circle. Properties (I) and (II) for a
vector field u are equivalent.

(I.a) u is admissible and non-Killing with corresponding quasisymmetric magnetic field
B : Q → R

3.
(I.b) u × B is nowhere-vanishing in Q.
(I.c) Both u and B are tangent to ∂Q.

(II.a) u is non-Killing and satisfies (1.8)–(1.10).
(II.b) (1 − π ‖) · u is nowhere-vanishing in Q.
(II.c) Both u and im π ‖ are tangent to ∂Q.
(II.d) There is a smooth function ψ : Q → R with nowhere-vanishing gradient such that

u · ∇ψ = 0 and π ‖ · ∇ψ = 0. In particular, ψ is constant on ∂Q.

Properties (I.b), (I.c), (II.b) and (II.c) are technical conditions that roughly say
u is either admissible or locally admissible in a ‘non-degenerate way’. Note that
(1 − π ‖) · u nowhere vanishing is equivalent to the condition that u is never in the
kernel of S. Physically, this corresponds to an assumption that u is never parallel to B.
Property (II.d) should be interpreted as a global admissibility conditions that restricts the
topological behaviour of solutions to (1.8)–(1.10).

Interested readers can understand that property (II.d) is topological in nature as follows.
Equation (1.10) is equivalent to Lu(π ‖) = 0, where π ‖ is regarded as a degree-2 symmetric
contravariant tensor field. Note that π ‖ is the orthogonal projector onto the family of lines
given by ker S. It follows that the family of planes given by span(u)⊕ ker S is integrable
in the sense of Frobenius Abraham & Marsden (2008). Here, span(u)⊕ ker S denotes
the pointwise direct sum of vector spaces; if e3 in any vector field with S · e3 = 0 then
span(u)⊕ ker S at x ∈ Q is precisely the plane spanned by u(x) and e3(x). Thus, in a
neighbourhood of any point in Q, there is a locally defined function ψ satisfying the
properties in (II.d). It is unclear, however, if theselocally defined functions can be glued
together to give a smooth globally defined ψ . This is the topological question underlying
(II.d). In Appendix A, we give an example of a pair of nowhere-vanishing vector fields
e3,u defined on a toroidal annulus Q with |e3| = 1, ∇ · u = 0, [e3,u] = 0, e3 × u nowhere
vanishing, and e3,u tangent to ∂Q, such that no globalψ exists. This shows that if the local
admissibility conditions (1.8)–(1.10) do imply existence of a global ψ by themselves then
the reason must involve (1.9). Appendix A also contains a detailed proof that property
(II.d) in Theorem 1.7 can be replaced with the more obviously topological property

(II.d’) Each leaf of the foliation integrating span(u)⊕ ker S is compact.

Here, foliation refers to a continuous family of surfaces that are everywhere tangent to
the 2-planes defined by span(u)⊕ ker S. Leaves of this foliation are individual surfaces in
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the family. A leaf being compact means that it is closed (i.e. its complement is open) and
bounded.

2. Derivation of the local admissibility constraints

The following self-contained derivation of local admissibility constraints for u largely
isolates elements of the discussion from Burby et al. (2020). That these necessary
conditions are also sufficient, as will be explained in §§ 3 and 4, was not recognized in
Burby et al. (2020).

Suppose that B is quasisymmetric with non-Killing infinitesimal generator u. The
following argument shows that u must satisfy the PDE constraints (1.8)–(1.10). In
addition, the discussion here leads to Lemma 2.1, which reduces the problem of finding a
quasisymmetric B with given non-Killing u to a system of PDEs with a single unknown.

The equation system (1.1) defining quasisymmetry is equivalent to

B · ∇u − u · ∇B = 0, u · ∇B + ∇u · B = 0, ∇ · B = 0. (2.1)

The well-known fact that |B| admits a symmetry for quasisymmetric B then follows from

u · ∇|B|2 = 2 (u · ∇B) · B = 2B · ∇u · B = −2B · ∇u · B = 0. (2.2)

An immediate consequence of (2.1) is

2B · S = B · (∇u + ∇uT) = B · ∇u + ∇u · B = 0. (2.3)

Since, by definition, B is nowhere vanishing, this implies det(S) = 0, which recovers
the constraint (1.9). Clearly it applies to any admissible u whatsoever, be it Killing,
non-Killing or anything in between.

By symmetry of the strain-rate tensor, for each x ∈ Q there is an orthonormal frame
(e1(x), e2(x), e3(x)) that diagonalizes S(x)

S(x) = λ1(x) e1(x)e1(x)+ λ2(x) e2(x)e2(x)+ λ3(x) e3(x)e3(x). (2.4)

The constraint det(S) = 0 implies that at least one of the eigenvalues, say λ3(x), is
zero. The incompressibility constraint 0 = ∇ · u = tr(S) therefore implies the sum of the
remaining two eigenvalues vanishes: λ1(x)+ λ2(x) = 0. Upon setting λ(x) = λ1(x), these
observations lead to the following expression for S(x):

S(x) = λ(x) (e1(x)e1(x)− e2(x)e2(x)). (2.5)

Note that the non-Killing assumption played no role in arriving at this formula.
Now invoking the fact that u is non-Killing reveals that the eigenvalue λ(x) must

be non-zero to ensure S(x) �= 0. It follows that S(x) has three distinct eigenvalues
{0, λ(x),−λ(x)}, with λ nowhere vanishing, and that the corresponding unit eigenvectors
are uniquely determined up to sign. In this way, the strain-rate tensor of any non-Killing
admissible u determines a unique, locally and smoothly defined frame field (e1, e2, e3) for
choice of signs of the three unit vectors. The 8-fold degeneracy in the frame definition
may be reduced to 4 by requiring right-handed orientation. Our convention will be that the
unit vector e1 is an eigenvector of S with positive eigenvalue, while e3 is a null eigenvector
of S.
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By (2.3) and (2.5)

S · B = λ (e1e1 − e2e2) · B = λB1 e1 − λB2 e2 = 0, B = B1 e1 + B2 e2 + B3 e3. (2.6)

This requires B1 = B2 = 0 because λ is nowhere vanishing. Therefore the magnetic field
B must have the following remarkably simple expression in the frame determined by S

B = B3 e3. (2.7)

In particular, B3 = ±|B|. From this, the symmetry condition (2.2) for |B|, and (2.1), we
arrive at the following condition on u:

e3 · ∇u − u · ∇e3 = 1
B3

B · ∇u − u · ∇
(

B
B3

)

= 1
B3
(B · ∇u − u · ∇B)− (

u · ∇B−1
3

)
B

= 0. (2.8)

To complete the proof of Theorem 1.5, first observe that π ‖ is given by

π ‖=1 − 2S · S

S : S
= 1 − 2 λ2(e1e1 + e2e2)

λ2 · 2
= e3e3. (2.9)

It follows that

u · ∇π ‖ − ∇uT · π ‖ − π ‖ · ∇u = u · ∇(e3e3)− ∇uT · (e3e3)− (e3e3) · ∇u

= (u · ∇e3)e3 + e3(u · ∇e3)− (e3 · ∇u)e3 − e3(e3 · ∇u)

= 0, (2.10)

which recovers (1.10), as claimed.
The preceding argument successfully obtained the PDE constraints (1.8)–(1.10). It also

identified a notable representation for quasisymmetric magnetic fields B that dramatically
simplifies the problem of finding a quasisymmetric B given an admissible u. This is
summarized in the following Lemma.

LEMMA 2.1. Fix a non-Killing u. Assume there is a globally defined null eigenvector, e3,
for the u-strain-rate tensor. Also assume u satisfies the PDE constraints (1.8)–(1.10). The
nowhere-vanishing vector field B is quasisymmetric with infinitesimal generator u if and
only if B = B3 e3, B3 is nowhere vanishing, and B3 satisfies

u · ∇B3 = 0, e3 · ∇B3 = −B3 ∇ · e3. (2.11)

Proof. We have already shown that if B is nowhere vanishing and quasisymmetric
with non-Killing infinitesimal generator u then (a) B = B3 e3 and (b) u · ∇B3 = 0. The
condition e3 · ∇B3 = −B3 ∇ · e3 follows simply from 0 = ∇ · B = ∇ · (B3 e3).

It is still necessary to show that B = B3 e3 is quasisymmetric when B3 satisfies (2.11).
But this follows from the direct calculations

∇ · B = e3 · ∇B3 + B3 ∇ · e3, (2.12)

∇ × (u × B) = B · ∇u − u · ∇B = B3[e3,u] − (u · ∇B3)e3, (2.13)

(∇ × B)× u + ∇(u · B) = u · ∇B + ∇u · B = (u · ∇B3) e3 + 2B3 S · e3. (2.14)

The right-hand side of (2.12) vanishes because B3 satisfies (2.11). The right-hand side of
(2.14) vanishes because e3 is a null eigenvector for S and B3 satisfies (2.11). The right-hand
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side of (2.13) vanishes because

u · ∇π ‖ − ∇uT · π ‖ − π ‖ · ∇u = u · ∇(e3e3)− ∇uT · (e3e3)− (e3e3) · ∇u

= (u · ∇e3)e3 + e3(u · ∇e3)− (e3 · ∇u)e3 − e3(e3 · ∇u)

= [u, e3] e3 + e3 [u, e3]

= 0, (2.15)

and B3 satisfies (2.11). �

3. Local admissibility

Next we provide a proof of Theorem 1.6.

Proof. The proof proceeds by constructing a smooth nowhere-vanishing solution B3 of
the equations u · ∇B3 = 0 and e3 · ∇B3 = −B3 ∇ · e3 in a neighbourhood of each point
x where u(x)× e3(x) �= 0. Given such a B3, the vector field B = B3 e3 is quasisymmetric
with infinitesimal generator u by Lemma 2.1.

Suppose x ∈ Q and u(x)× e3(x) �= 0. Then there is an open neighbourhood U of x
on which u × e3 is nowhere vanishing. By [u, e3] = 0 and the Frobenius theorem, there
is a smooth function ψ : U → R with nowhere-vanishing gradient such that e3 · ∇ψ =
u · ∇ψ = 0. Therefore there is a smooth, nowhere-vanishing function λ such that u ×
e3 = (1/λ)∇ψ . If Ω denotes the Riemannian volume form on Q, the latter condition is
equivalent to ιe3 ιuΩ = (1/λ) dψ . Lie differentiating both sides of this formula with respect
to u and using ∇ · u = 0, [e3,u] = 0, then implies Lu(1/λ) dψ = 0. Since dψ is nowhere
vanishing, the function λmust therefore be constant along u-lines, u · ∇λ = 0. Now taking
the curl of u × (λe3) = ∇ψ gives

0 = ∇ · (λe3)u + [λe3,u] = ∇ · (λe3)u. (3.1)

Since u is nowhere-vanishing on U this implies ∇ · (λe3) = 0, or e3 · ∇λ = −λ∇ · e3. We
conclude that B3 = λ is the desired solution of u · ∇B3 = 0, e3 · ∇B3 = −B3∇ · e3. �

4. Global admissibility

Finally, we prove Theorem 1.7.

Proof. Suppose B is quasisymmetric with non-Killing infinitesimal generator u. Also
assume that u × B is nowhere vanishing and that both u and B are tangent to ∂Q.
Theorem 1.5 immediately implies u satisfies (1.8)–(1.10). Equation (2.3) immediately
implies that e3 = b is a nowhere-vanishing global section of the line bundle ker S.
The orthogonal projector onto ker S is therefore π ‖ = bb, which shows (1 − π ‖) ·
u = b × (u × b) is nowhere vanishing in Q. To establish existence of ψ , consider the
vector field w = u × B. The curl of w vanishes. Moreover, the line integral of w around
any closed loop in ∂Q vanishes because u and B provide a basis for vectors tangent to
∂Q. Since Q is homotopic to either component of ∂Q, it follows that w = ∇ψ for some
single-valued function ψ : Q → R. Clearly u · ∇ψ = B · ∇ψ = 0 and ∇ψ is nowhere
vanishing.

Now for the converse. Let E = π ‖ · (u × ∇ψ). Clearly E takes values in ker S. We
claim E is also nowhere vanishing. For suppose it vanished at x ∈ Q. Consider an open
neighbourhood U of x and an orthonormal frame (e1, e2, e3) defined on U such that π ‖ =
e3e3. Vanishing of E at x implies e3(x) · (u(x)× ∇ψ(x)) = (e3(x)× u(x)) · ∇ψ(x) = 0.
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The vector e3(x)× u(x) is not zero because (1 − π ‖) · u is nowhere-vanishing. Moreover,
π ‖ · ∇ψ = 0 implies e3 · ∇ψ = 0 in U. Thus ∇ψ(x) is orthogonal to the three linearly
independent vectors u(x), e3(x) and e3(x)× u(x), contradicting the fact that ∇ψ is
nowhere vanishing. We conclude that E is nowhere vanishing, as claimed, and e3 = E/|E|
is a globally defined unit vector field that takes values in ker S. In addition, e3 × u is
nowhere vanishing and e3 is tangent to ∂Q. Repeating the argument from the proof of
Theorem 1.6 now shows that λ = |∇ψ |/|u × e3| is a nowhere vanishing, globally defined
solution of u · ∇λ = 0, e3 · ∇λ = −λ (∇ · e3). Lemma 2.1 therefore implies that B = λ e3
is quasisymmetric with infinitesimal generator u. Moreover, u × B = λu × e3 is nowhere
vanishing in Q and B = λ e3 is tangent to ∂Q. �

5. Discussion

The proofs of Theorems 1.6 and 1.7 involve explicit construction of quasisymmetric
B with a given admissible non-Killing infinitesimal generator u. These constructions
solve ‘half’ of the problem (step (ii) from the introduction) of constructing genuinely
three-dimensional quasisymmetric B. The other ‘half’-problem remains open – the
existence question for smooth non-Killing admissible u needs to be addressed. A
subsequent publication will apply Cartan’s method of prolongation to involution, along
with the Cartan–Kähler theorem (see Bryant et al. 1991), to resolve at least the local
existence problem.

The admissibility problem can also be studied for weak quasisymmetry, as defined in
Rodríguez et al. (2020). Details of such analysis will appear in future publications.

Let e3 be a globally defined unit vector field e3 in the null space of S. The proof of
Theorem 1.5 in § 2 shows that the condition (1.10) is equivalent to [e3,u] = 0. The latter
condition may be expressed in terms of the coefficients of S in Cartesian coordinates
(x, y, z) as follows. Non-killing u implies some principal cofactor for S is non-zero. Thus,
in a region where, say, the zz-cofactor for S is non-zero, an explicit formula for e3 is

v =

⎛
⎜⎝

SxySyz − SyySxz

SxzSyx − SxxSyz

SxxSyy − S2
xy

⎞
⎟⎠ , e3 = v/|v|. (5.1)

This allows re-writing of the condition [u, e3] = 0 as an ordinary PDE in the components
of u, namely v × [u, v] = 0.

We may obtain a coordinate-independent expression for e3 in a similar spirit as follows.
As mentioned in the statement of Theorem 1.5, π ‖ = 1 − 2 S · S/S : S is the orthogonal
projector onto ker S. Therefore we can obtain a vector field proportional to e3 by applying
π ‖ to some other vector field with a non-zero component in ker S, such as u × ∇ψ , where
ψ is a flux function with non-vanishing gradient. After appropriately normalizing, this
argument leads to the following expression for e3 in terms of u and the flux function ψ
only:

e3 = ± π ‖ · (u × ∇ψ)
|π ‖ · (u × ∇ψ)| . (5.2)

The sign ambiguity is resolved by deciding whether u × B should be parallel or
anti-parallel to ∇ψ . Note this same construction appears in the proof of Theorem 1.7.

By repeating the proof of Theorem 1.7 with ψ replaced with ψ ′ = f (ψ), where f is any
smooth monotone single-variable function, we find that the most general B with a given
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non-Killing u as its infinitesimal generator is given by

B = |f ′(ψ)||∇ψ |
|u × e3| e3. (5.3)

Thus, once the symmetry is known, B is determined by a single free flux function f (ψ).
Apparently the space of genuinely three-dimensional quasisymmetric B is not much larger
than the space of non-Killing admissible u! The representation (5.3) should be compared
with the well-known representation given in Lemma 1.4.

An alternative route to the equations found here for a non-Killing u is via Theorems X.2
and X.3 of Burby et al. (2020). The parameter B can be eliminated from these by using
B = (u × ∇ψ + Cu)/|u|2 with C = u · B, and we had proved u · ∇C = 0. Then ψ can
be eliminated by ∇ψ = |B|u × b.

The global characterization of admissible u provided by Theorem 1.7 requires linear
independence of u and e3. Since any quasisymmetric B is parallel to e3 and it is well
known that u is parallel to B along a magnetic axis, Theorem 1.7 cannot be applied naively
when the spatial domain Q is a solid torus instead of a toroidal annulus. Obtaining a global
characterization of three-dimensional admissible u in the presence of magnetic axes will
be the subject of future work.

This work has specifically avoided introducing the ideal equilibrium constraint. If this
constraint is imposed then it is clear that the local admissibility conditions specified
in Theorem 1.5 are still necessary conditions on u. Sufficiency is a more delicate
matter, however. On the one hand, our admissibility conditions, when satisfied, guarantee
existence of quasisymmetric magnetic fields. On the other hand, it is unclear whether
there are magnetic fields among this family that satisfy ideal force balance. Whatever the
case, there will be additional PDE constraints imposed on u that ensure the associated
B is in force balance. It would be interesting to eliminate B from the combined
force-balance/quasisymmetry system in future work.

The arguments presented in this article assumed the spatial domain Q is a region in
R

3 and that the metric tensor on Q is flat. They generalize readily to the more general
situation where Q is a Riemannian 3-manifold with possibly non-flat metric tensor g. The
strain-rate tensor then becomes S = g−1[Lug]g−1/2, where Lug denotes the Lie derivative
of g along u and g−1 indicates raising indices using the metric g. Such non-flat metrics
have become interesting to consider, even in terrestrial settings, due to recent results from
Cardona, Duignan & Parrella (2024) showing that smooth non-symmetric solutions of
magnetohydrostatics with non-trivial rotational transform exist for non-flat metrics that
approximate the flat metric with arbitrary precision.
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Appendix A
A.1. An illuminating counterexample

This appendix makes the technical point that the local admissibility conditions from
Theorem 1.5 need to be supplemented with a modicum of global admissibility conditions
in order to achieve global results.

Consider the toroidal annulus Q = [−1, 1] × S1 × S1 	 (r, θ, φ). Equip Q with the
metric tensor g = dr2 + dθ 2 + dφ2. Define the vector fields e3,u on Q according to

u = ∂φ, e3 = (r + 1)(r − 1)√
(r + 1)2(r − 1)2 + 1

∂r + 1√
(r + 1)2(r − 1)2 + 1

∂θ . (A1)

It is easy to see that e3 is a unit vector, [e3,u] = 0, ∇ · u = 0 and u, e3 are everywhere
linearly independent. The 2-planes spanned by e3,u are given as the vanishing locus of
the 1-form λ on Q defined by

λ = −dr + (r + 1)(r − 1) dθ. (A2)

The form λ satisfies the Frobenius integrability condition λ ∧ dλ = 0. It is nowhere
vanishing on Q.

One way to state the Frobenius integrability theorem is λ ∧ dλ = 0 implies there is a
locally defined smooth positive function h such that hλ is closed. The function h is known
as an integrating factor. If there was a smooth functionψ with nowhere-vanishing gradient
such that u · ∇ψ = e3 · ∇ψ = 0 then dψ would be parallel to λ, thus implying existence
of a global integrating factor h. The following argument shows that h cannot be globally
defined in this example, and therefore neither can ψ .

Suppose h were globally defined. Then there would be constants aθ , aφ ∈ R and a
smooth function χ : Q → R such that

hλ = aθ dθ + aφ dφ + dχ. (A3)

The integrals of hλ along the parameterized curves

cθ (ζ ) = (1, ζ, 0), cφ(ζ ) = (1, 0, ζ ), (A4)

each vanish because λ vanishes when pulled back to either boundary component of Q.
Thus

0 =
∫

cθ

hλ = 2πaθ , 0 =
∫

cφ

hλ = 2πaφ, (A 5a,b)

which shows hλ = dχ . In particular, the differential dχ is nowhere vanishing on Q, χ
is constant on each of the boundary components of Q and the level sets of χ are the
integral manifolds for λ. By nowhere-vanishing dχ , the level sets of χ are all embedded
submanifolds in Q with a common diffeomorphism type. But since each boundary
component of Q is simultaneously a 2-torus and a level set for χ it follows that each
level set of χ is an embedded 2-torus.

We will now show that, except for the boundary components of ∂Q, each integral
manifold for λ is also diffeomorphic to a cylinder R × S1. Since cylinders are not
diffeomorphic to 2-tori, this contradiction implies that there can be no global h.

The integral manifolds for λ can be computed explicitly from the definition of λ, (A2).
Consider the system of ordinary differential equations in the annulus [−1, 1] × S1 	 (r, θ)
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defined by
ṙ = (r + 1)(r − 1), θ̇ = 1. (A6)

It is easy to see that the integral manifolds for λ are each of the form γ × S1, where γ is an
integral curve for (A6) and S1 denotes the φ-axis. In other words, the integral manifolds
for λ are surfaces of revolution generated by integral curves of (A6). The general solution
for (A6) is

r(t) =
1 −

[
1 − r0

1 + r0

]
e2t

1 +
[

1 − r0

1 + r0

]
e2t

, θ(t) = θ0 + t mod 2π, (r0, θ0) ∈ [−1, 1] × S1. (A7)

For r0 ∈ (−1, 1) the derivative ṙ(t) is strictly negative for all t ∈ R and limt→∞ r(t) = −1,
limt→−∞ r(t) = 1. Therefore t �→ r(t) defines a diffeomorphism R → (−1, 1). It follows
that the image of γ (t) = (r(t), θ(t)) is an immersed 1-manifold diffeomorphic to R.
Hence, the revolution γ × S1 is diffeomorphic to R × S1, as claimed.

A.2. Replacing (II.d) with (II.d’)
Here we prove that Theorem 1.7 is still valid if property (b) is replaced with property (b’).
In other words, the only global admissibility condition that must be appended to the local
conditions (1.8)–(1.10) is that the leaves of the foliation tangent to span(e1,u) should be
compact. Note the appearance of non-compact leaves in the counterexample above.

We argue by establishing the following more general result.

THEOREM A.1. For n ∈ N, let M be a compact connected (n + 1)-manifold with
boundary that embeds in R

n+1. Let F be a codimension-1 foliation of M such that

(i) Each leaf in F is compact.
(ii) F is transitive. (For each leaf L and x, y ∈ L there is a leaf-preserving

diffeomorphism F : M → M with y = F(x).)

There is a smooth function ψ : M → R with dψ nowhere vanishing such that the leaves
of F are precisely the level sets of ψ .

REMARK A.2. The Theorem only applies to foliations with leaves that each have empty
boundary. These are the foliations relevant to Theorem 1.7 by properties (I.b) and (I.c).

REMARK A.3. When M is a toroidal annulus in R
3 and the foliation F is generated by

a pair of commuting vector fields that are everywhere linearly independent it is easy to
see that property (ii) is satisfied. In fact, one can prove (non-constructively) that every
foliation on any manifold with boundary is transitive.

Theorem A.1 applies to the present work as follows.

THEOREM A.4 (global admissibility (alternate)). Assume Q is diffeomorphic to the
toroidal annulus S1 × S1 × [0, 1], where S1 = R/(2πZ) denotes the circle. Properties (I)
and (II) for a vector field u are equivalent.

(I.a) u is admissible and non-Killing with corresponding quasisymmetric magnetic field
B : Q → R

3.
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(I.b) u × B is nowhere-vanishing in Q.
(I.c) Both u and B are tangent to ∂Q.

(II.a) u is non-Killing and satisfies (1.8)–(1.10).
(II.b) (1 − π ‖) · u is nowhere vanishing in Q.
(II.c) Both u and im π ‖ are tangent to ∂Q.
(II.d’) The leaves of the foliation integrating span(u)⊕ ker S are each compact.

Proof. For our spatial domain Q we have considered regions in R
(n+1), n = 2,

diffeomorphic to the toroidal annulus S1 × S1 × [0, 1]. The space M ≡ Q is therefore a
compact connected (n + 1)-manifold that embeds in R

n+1.
If B is quasisymmetric with non-Killing infinitesimal generator u, u × B is nowhere

vanishing, and both u and B are tangent to ∂Q = ∂M, then Theorem 1.7 implies property
(II) from the statement of Theorem 1.7. In particular, there is a function ψ with ∇ψ
nowhere vanishing such that u · ∇ψ = 0 and e3 · ∇ψ = 0, where e3 = b. The level sets
ofψ are compact connected embedded submanifolds diffeomorphic to the 2-torus S1 × S1.
If Λ is one such level set then u · ∇ψ = e3 · ∇ψ = 0 implies Λ is tangent to the foliation
F = span(u, e3). Thus, Λ is an integral submanifold for F . Let L be any connected
integral submanifold that containsΛ and choose p ∈ L, p′ ∈ Λ. Since L is connected there
must be a smooth curve γ : [0, 1] → L with γ (0) = p, γ (1) = p′. The velocity of γ , γ ′(t),
is contained in span(u(γ (t)), e3(γ (t))). The derivative of ψ along γ is therefore

d
dt
ψ(γ (t)) = γ ′(t) · ∇ψ(γ (t)) = 0, (A8)

since u · ∇ψ = e3 · ∇ψ = 0. It follows that ψ( p) = ψ( p′). In other words, p ∈ Λ. Since
p ∈ L is arbitrary, this implies L = Λ. It follows that every leaf of the foliation is a level set
of ψ . Since the level sets of ψ are compact, we conclude that u satisfies property (II.d’).

Now suppose that u satisfies properties (II.a), (II.b), (II.c) and (II.d’). As mentioned in
the remark above, the foliation F that integrates span(u)⊕ ker S is transitive. By property
(II.d’) and Theorem A.1, there is a smooth function ψ : M → R with ∇ψ nowhere
vanishing such that u · ∇ψ = e3 · ∇ψ = 0, where e3 is a globally defined unit vector field
that takes values in ker S. (The proof of Theorem 1.7 explains why we can assume such an
e3 exists.) The latter is just property (II.d) from Theorem 1.7. Therefore u is admissible and
any quasisymmetric B with u as its infinitesimal generator has u × B nowhere vanishing
and u,B tangent to ∂M = ∂Q. �

REMARK A.5. Let e3 be a globally defined unit vector field with S · e3 = 0. One case in
which property (II.d’) is clearly satisfied occurs when the integral curves of the vector
fields u and e3 are each periodic. The integral curves of u satisfying property (II), and
therefore property (I), will always be periodic by arguments from Burby et al. (2020).
Since b = ±e3, periodic integral curves for e3 corresponds to quasisymmetric B with all
B-lines closed.

Now for a proof of Theorem A.1.
First we make a quotient space out of M from F . We say that points x, y ∈ M are

equivalent if they belong to the same leaf. The quotient of M by this equivalence relation
is the space of leaves of F . It will be convenient to identify F with its leaf space. There
is therefore a well-defined quotient map π : M → F sending each point x ∈ M to the leaf
that contains it. We topologize F by equipping it with the quotient topology, wherein
U ⊂ F is open in F if π−1(U) is open in M. Note that if L is any leaf then π−1({L}) = L.
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When F is equipped with this topology, π : M → F is continuous. Since M is compact
and connected and π is a continuous surjection, it immediately follows that F is compact
and connected.

We aim to prove that F is a second-countable Hasudorff topological space that
can be given the structure of a smooth connected compact 1-manifold with non-empty
boundary and that π is a smooth submersion with respect to this structure. This will prove
Theorem A.1 because every compact connected 1-manifold with non-empty boundary
is diffeomorphic to [0, 1]. If Ψ : F → [0, 1] is such a diffeomorphism then function ψ
guaranteed by Theorem A.1 is

ψ = Ψ ◦ π : M → [0, 1]. (A9)

The proof will proceed by constructing an appropriate atlas of charts on F out of
F -adapted charts on M.

DEFINITION A.6. Given x ∈ M, a coordinate chart (U, ϕ) is F -adapted at x if there is
ε > 0 such that

(i) ϕ(x) = 0,
(ii) ϕ(U) = (−ε, ε)n × I, where

I =
{

[0, ε), if x ∈ ∂M,
(−ε, ε) otherwise.

(A10)

(iii) For each leaf L that meets U there is a unique subset CL ⊂ I with ϕ(U ∩ L) =
(−ε, ε)n × CL.

As we will show, each leaf L enters a given adapted chart (U, ϕ) at most once. We
formalize this result by proving that CL is a singleton. There is therefore a well-defined
real-valued function h on the set of leaves L that meet U defined according to CL = {h(L)}.
The atlas on F will comprise charts of the form (π(U), h). We will first show that these
charts are well-defined before demonstrating that the corresponding smooth structure on
F has the desired properties.

In order for (π(U), h) to be a chart on F it must certainly be true that π(U) is open in
F . We will establish this first result by showing that π is an open map. To do so, we first
prove an algebraic Lemma.

LEMMA A.7. Let DiffF (M) denote the set of diffeomorphisms F : M → M such that
F(L) = L for each leaf L ∈ F . If A ⊂ M is any subset then

π−1(π(A)) =
⋃

{F(A) | F ∈ DiffF (M)}. (A11)

Proof. Let S1 = π−1(π(A)) and S2 = ⋃{F(A) | F ∈ DiffF (M)}. We will show S1 ⊂ S2
and S2 ⊂ S1.

If y ∈ S2 there is some F ∈ DiffF (M) such that y ∈ F(A). Choose x ∈ A such that
F(x) = y. Since F preserves every leaf in F , π( y) = π(F(x)) = π(x) ∈ π(A). This shows
S2 ⊂ S1.

If y ∈ S1 there is some x ∈ A such that π( y) = π(x). Because F is transitive there is
F ∈ DiffF (M) with y = F(x) ∈ F(A) ⊂ S2. Thus, S1 ⊂ S2. �
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LEMMA A.8. The map π : M → F is open.

Proof. We must show that the image π(U) of any open U ⊂ M is open in F . By definition
of the quotient topology on F , this is equivalent to showing that π−1(π(U)) is open in M.
But by Lemma A.7, π−1(π(U)) = ⋃{F(U) | F ∈ DiffF (M)} is a union of the open sets
F(U). �

In order for (π(U), h) to be a chart on F it must also be true that h : π(U) → R is
a well-defined homeomorphism onto its image. The following technical results provide a
framework for rigorously establishing this property.

Fix an F -adapted chart (U, ϕ) on M. Define FU = π(U). For L ∈ FU let CL ⊂ R denote
the set such that ϕ(U ∩ L) = (−ε, ε)n × CL, cf. Definition A.6. The following argument
builds to a proof that CL is a singleton. First we show that CL is discrete.

LEMMA A.9. For each L ∈ FU the set CL is discrete.

Proof. Recall that we assume all leaves in F are compact. Also recall that each leaf
of a foliation is an immersed submanifold. Consequently, L is a compact immersed
submanifold of M. By proposition 5.21 in Lee (2012), it follows that L is an embedded
submanifold of M.

Since U ⊂ M is open, L ∩ U is an embedded submanifold of U with dimension n. Since
ϕ is a diffeomorphism, ϕ(L ∩ U) = (−ε, ε)n × CL is an embedded submanifold of ϕ(U)
with dimension n. For c ∈ CL, (−ε, ε)n × {c} is also an embedded submanifold of ϕ(U)
with dimension n. Clearly, (−ε, ε)n × {c} ⊂ (−ε, ε)n × CL. So (−ε, ε)n × {c} is an open
subset of (−ε, ε)n × CL.

Since (−ε, ε)n × CL is an embedded submanifold of ϕ(U), its open sets are restrictions
of open subsets of ϕ(U). Since (−ε, ε)n × {c} is open in (−ε, ε)n × CL it follows that there
is an open set V ⊂ ϕ(U) such that

(−ε, ε)n × {c} = ((−ε, ε)n × CL) ∩ V. (A12)

Choose δ > 0 small enough so that Rδ(c) = (0, c)+ (−δ, δ)n+1 ⊂ V . We have

((−ε, ε)n × CL) ∩ Rδ(c) ⊂ ((−ε, ε)n × CL) ∩ V = (−ε, ε)n × {c}, (A13)

and also

((−ε, ε)n × CL) ∩ Rδ(c) = (−δ, δ)n × (CL ∩ (−δ + c, c + δ)) . (A14)

So CL ∩ (−δ + c, c + δ) = {c}. In other words the c ∈ CL are isolated by open intervals,
as claimed. �

Next we show leaves that enter an adapted chart at least twice must satisfy a nesting
property that will ultimately prove to be incompatible with discreteness of CL.

LEMMA A.10. Suppose L ∈ FU and there exists a, b ∈ CL with a < b.

(a) For each a < m < b with m �∈ CL there is a leaf L′ and an a < m̃ < b, distinct from
m, such that m, m̃ ∈ CL′ .

(b) There is an L′ ∈ FU, distinct from L, and a′, b′ ∈ CL′ such that a < a′ < b′ < b and
(b′ − a′) < 3(b − a)/4.
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Proof. First we will show (a). The subset ϕ−1((−ε, ε)n × {m}) ⊂ M is an integral
manifold for the n-plane distribution associated with F . Let L′ denote the unique leaf
in F (i.e. maximal integral manifold) that contains ϕ−1((−ε, ε)n × {m}). By construction,
L′ is disjoint from L, L′ ∈ FU, and m ∈ CL′ . Suppose there were not a distinct m̃ ∈ (a, b)
with m̃ ∈ CL′ . Then the curve κ : [a, b] → M given by κ(t) = ϕ−1(0, t), t ∈ [a, b], would
have the following properties:

(i) κ(t) ∈ L′ if and only if t = m.
(ii) κ ′(m) is transverse to L′.

(iii) κ(a), κ(b) ∈ L.

But this κ cannot exist for the following reason. Embed L and L′ in R
n+1. By the

Jordan–Brower separation Theorem, the set R
n+1 − L′ is the disjoint union of two

connected open sets C+,C−. Moreover, there is a smooth function f : R
n+1 → R such that

0 is a regular value for f , f −1({0}) = L′, f | C+ > 0, and f | C− < 0. Since κ transversally
intersects L′ when t = m the continuous function F : [a, b] → R : t �→ f (κ(t)) changes
sign at t = m. Since the intersection of κ with L′ is unique the restricted curves κ | [a,m),
κ | (m, b] do not intersect L′. This implies F | [a,m) and F | (m, b] have distinct constant
signs. In particular, the signs of F(a) and F(b) differ. Therefore κ(a), κ(b) ∈ L must lie in
distinct connected components of R

n+1 − L′. This is impossible because (I) connectedness
of L implies there is continuous curve c : [0, 1] → L with c(0) = κ(a), c(1) = κ(b), (II)
the value of f ◦ c must change sign and (III) the intermediate value theorem implies there
is some λ ∈ [0, 1] with f (c(λ)) = 0, which says c(λ) ∈ L ∩ L′ = ∅. Thus, there must be
m̃ ∈ (a, b), distinct from m, with m̃ ∈ CL′ .

Now we show (b). Set m0 = (a + b)/2. If m0 ∈ CL use discreteness of CL to find a nearby
m′

0 �∈ CL with |m0 − m′
0| < (b − a)/4 and set m = m′

0. Otherwise set m = m0. Note that
m ∈ (a, b)− CL and that m is at least a distance (b − a)/4 from either endpoint a, b. Part
(a) therefore implies there is an a < m̃ < b, distinct from m, and a leaf L′ such that m, m̃ ∈
CL′ . By reflecting the interval (a, b) about the midpoint m0 if necessary, we may assume
m̃ > m. Let a′ = m and b′ = m̃. Since L′ is disjoint from L and m, m̃ ∈ CL′ , we have a <
a′ < b′ < b. Since m > m0 − (b − a)/4 and m < m̃ < b we also have

b′ − a′ = m̃ − m < b −
(

m0 − b − a
4

)
= 3

4
(b − a). (A15)

�

We may now show that CL is always a singleton.

LEMMA A.11. If (U, ϕ) is an F -adapted chart and L ∈ FU then CL is a singleton.

Proof. Suppose not. Then there is a leaf L0 ∈ FU and a0, b0 ∈ CL0 with a0 < b0. Applying
Lemma A.10, there is a second leaf L1, distinct from L0, and a1, b1 ∈ CL1 with a0 < a1 <
b1 < b0 and b1 − a1 < 3(b0 − a0)/4. Continuing inductively, there are sequences {an}n∈N,
{bn}n∈N, and a sequence of leaves {Ln}n∈N such that for all n ∈ N

an, bn ∈ CLn, (A16)

an < an+1 < bn+1 < bn, (A17)

bn − an <

(
3
4

)n−1

(b0 − a0). (A18)
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Thus, there is some � ∈ I such that limn→∞ an = limn→∞ bn = �. Let L∗ denote the unique
leaf in FU with � ∈ CL∗ .

The set CL∗ is discrete by Lemma A.9. Since an → � and bn → �, there must therefore be
some n0 ∈ N such that an, bn �∈ CL∗ for all n > n0. This implies, in particular, disjointness
of Ln and L∗, for all n > n0. As such, Lemma A.10 implies there is an �n ∈ (an, bn),
distinct from �, with �n ∈ CL∗ , for each n > n0. This contradicts discreteness of CL∗ because
limn→∞ �n = �. �

With the preceding theoretical framework in place, we can now prove that h : π(U) →
R is a well-defined homeomorphism onto its image. This result establishes that the leaf
space F has the structure of a (possibly non-Hausdorff) connected, compact, topological
1-manifold with boundary.

LEMMA A.12. Let (U, ϕ) be an F -adapted chart. There is a well-defined homeomorphism
h : π(U) → I (cf. Definition A.6) such that, for each L ∈ FU, CL = {h(L)}. Moreover, the
function H : π−1(π(U)) → I given by H = h ◦ π is smooth, has no critical points, and is
constant along each L ∈ π(U).

Proof. By Lemma A.11, given L ∈ FU the set CL ⊂ I, defined such that ϕ(U ∩ L) =
(−ε, ε)n × CL, is a singleton. There is therefore a unique function h : π(U) → I such
that CL = {h(L)} for each L ∈ FU. Pulling back h : π(U) → I along π | π−1(π(U)) :
π−1(π(U)) → π(U) defines an associated function H : π−1(π(U)) → I : x �→ h(π(x))
on π−1(π(U)) ⊂ M.

It is clear that H is constant along each leaf L ∈ FU. Observe that the (n + 1)st
component of the diffeomorphism ϕ : U → (−ε, ε)n × I is related to H according to
ϕn+1(x) = h(π(x)) = H(x). This shows H | U = ϕn+1. For y0 ∈ π−1(π(U)), there is a
leaf-preserving diffeomorphism F : M → M such that F−1(U) contains y0. So for all y ∈
F−1(U) we have H( y) = H(F( y)) = ϕn+1(F( y)). This shows that H : π−1(π(U)) → I is
smooth. Since F is a diffeomorphism and ϕn+1 is a submersion, it also shows that H has
no critical points.

We claim the function h : π(U) → I is continuous. Let J ⊂ I be open. The preimage
π−1(h−1(J)) = H−1(J) is open in π−1(π(U)), and therefore M, because H is continuous.
By the definition of the quotient topology on F , this means the set h−1(J) is open in F .
So h is continuous, as claimed.

We claim h : π(U) → I is also an open map. Let V ⊂ π(U) be open in π(U). Since π
is open by Lemma A.8, V ⊂ F is the intersection of an open set in F with the open set
π(U) ⊂ F . Thus V is open in F and π−1(V) is open in M. Since ϕn+1 is an open map, it
follows that ϕn+1(U ∩ π−1(V)) ⊂ I is open in I. But since H | U = ϕn+1,

ϕn+1(U ∩ π−1(V)) = H(U ∩ π−1(V)) = h(π(U ∩ π−1(V))) = h(π(π−1(V))) = h(V).
(A19)

Note we have used the fact that every leaf in π−1(V) meets U. It follows that h is open, as
claimed.

Finally, we claim h : π(U) → I is bijective, which shows h is a homeomorphism since
every continuous open bijection is a homeomorphism. For surjectivity, we simply note that
h(π(U)) = H(U) = ϕn+1(U) = I. For injectivity, suppose L1,L2 ∈ π(U) and h(L1) =
h(L2). Then ϕ(L1 ∩ U) = ϕ(L2 ∩ U). But since Li is the maximal integral manifold that
contains ϕ(Li ∩ U), this implies L1 = L2. Thus, h is bijective, as claimed. �

We may now establish our central claim by showing that F is in fact a Hasudorff,
second-countable, smooth 1-manifold with boundary.
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LEMMA A.13. The leaf space F is Hausdorff.

Proof. We first claim the following. Let L ∈ F and U an open neighbourhood of L in M.
There exists an open neighbourhood U of L in F such that π−1(U) ⊂ U.

For x ∈ L there is an F -adapted chart (U0, ϕ) containing x such that U0 ⊂ U. By
Lemma A.12, there is a smooth function H : π−1(π(U0)) → R that is constant along
leaves and that has no critical points. Now consider the open neighbourhood of L given
by V = U ∩ π−1(π(U0)). Fix a Riemannian metric g on V and consider the vector field
N = ∇H/‖∇H‖2. By the flowout theorem and the boundary flowout theorem (Lee 2012,
Theorems 9.20 and 9.24) and the compactness of L, there is a δ > 0 and an embedding
Σ : L × I → V , where I = [0, δ) if x ∈ ∂M and I = (−δ, δ) otherwise, such that for each
y ∈ L the curve Σy : [0, δ) → V : t �→ Σ( y, t) is an N-integral curve. Since dH(N) = 1,
we have (H ◦Σy)(t) = H(x)+ t. Since L is compact and connected, this implies the
images Σ(L × {c}) for c ∈ I are leaves of F . The open subset Σ(L × I) is therefore a
union of leaves contained in V , and thus U. That is, Σ(L × I) = π−1(U) for some open
neighbourhood U of L in F with π−1(U) ⊂ U, as claimed.

Now suppose L1,L2 ∈ F are distinct leaves. Then L1 ∩ L2 = ∅. By leaf compactness,
there are disjoint open sets U1,U2 ⊂ M containing L1,L2, respectively. Applying the above
claim, for each i ∈ {1, 2}, there is an open neighbourhood Ui of Li in F such that π−1(Ui) ⊂
Ui. Therefore π−1(U1) ∩ π−1(U2) = ∅. Because π is surjective it follows that U1 ∩ U2 = ∅.
Thus, F is Hausdorff, as claimed. �

LEMMA A.14. The leaf space F is second countable.

Proof. For each L ∈ F there is an open neighbourhood W of L in F , an interval I ⊂ R

and a homeomorphism h : W → I. Because I ⊂ R and R is second countable, W is second
countable. Moreover, because F is compact, it is covered by finitely many such subsets.
Thus, F is second countable. �

LEMMA A.15. When equipped with the atlas given by the charts (π(U), h) from Lemma
A.12, the leaf space F is smooth 1-manifold with boundary.

Proof. Since we have already shown that F is a topological 1-manifold with boundary,
we only need to show smoothness of transition maps.

Let (U1, ϕ1), (U2, ϕ2), denote F -adapted charts on M with π(U1) ∩ π(U2) �= ∅.
Let hi : π(Ui) → Ii, i = 1, 2, denote the corresponding homeomorphisms described in
Lemma A.12. Define h12 : h1(π(U1) ∩ π(U2)) → h2(π(U1) ∩ π(U2)) according to h12 =
h2 ◦ h−1

1 | h1(π(U1) ∩ π(U2)). For each t0 ∈ h1(π(U1) ∩ π(U2)) we will find an open
neighbourhood J0 	 t0 and a formula for h12 | J0 that is manifestly smooth.

For t0 ∈ h1(π(U1) ∩ π(U2)) there is an x0 ∈ U1 and a y0 ∈ U2 with π(x0) = π( y0) and
t0 = h1(π(x0)) = H(x0) = ϕn+1

1 (x0). Choose a leaf-preserving diffeomorphism F : M →
M with F(x0) = y0. For t ∈ R let γ0(t) = (ϕ1

1(x0), . . . , ϕ
n
1(x0), t). Since x0 = ϕ−1

1 (γ0(t0)) ∈
U1 and F is continuous, there is an open neighbourhood J0 ⊂ h1(π(U1) ∩ π(U2)) of t0
such that, for all t ∈ J0,

ϕ−1
1 (γ0(t)) ∈ U1, F(ϕ−1

1 (γ0(t))) ∈ U2. (A20)

The overlap h12 | J0 may therefore be computed according to

h2 ◦ h−1
1 = h2 ◦ h−1

1 ◦ ϕn+1
1 ◦ ϕ−1

1 ◦ γ0

= h2 ◦ h−1
1 ◦ H ◦ ϕ−1

1 ◦ γ0
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= h2 ◦ h−1
1 ◦ h1 ◦ π ◦ ϕ−1

1 ◦ γ0

= h2 ◦ π ◦ ϕ−1
1 ◦ γ0

= H ◦ ϕ−1
1 ◦ γ0, (A21)

which is the composition of smooth functions. �

LEMMA A.16. With the smooth structure given by Lemma A.15, the map π : M → F is a
smooth submersion.

Proof. For x0 ∈ M choose an F -adapted chart (U, ϕ) at x0 and let h : π(U) → R denote
the corresponding chart on F . Since h ◦ π | U = H | U : U → R is a smooth submersion
by Lemma A.12 and h is a chart on F it follows that π is a smooth submersion at x0. �
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