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Abstract

Generalized Ramsey theory for graphs was formulated and developed in the previous papers in
this series. We extend the area here by introducing generalized Ramsey numbers for higher
dimensional simplicial complexes. In particular we calculate explicitly the Ramsey numbers for
several small "pure 2-complexes", or more briefly plexes, in which each edge is contained in some
2-cell.

1. Introduction

The classical Ramsey theory for graphs involves the occurrence of mono-
chromatic complete subgraphs in line-colored complete graphs. It follows from
the result known as Ramsey's theorem, first proved in Ramsey (1930), that for
any positive integers m and n, there exists an integer p such that in every
coloring of the lines of Kp, the complete graph on p points, with two colors,
green and red, either the green subgraph contains a copy of Km or the red
subgraph contains a copy of Kn. The Ramsey number r(m,n) is the smallest
value of p for which this is so. Despite a great deal of research, only a few
non-trivial Ramsey numbers are known [see Harary (1969), p. 17 or Graver and
Yackel (1968)].

Recently considerable attention has been devoted to a generalization of the
classical Ramsey theory. In this generalized theory, for each pair of graphs G
and H, the number r(G, H) denotes the least integer p such that in every
coloring of the lines of Kp with the colors green and red, the green subgraph
contains a copy of G or the red subgraph contains a copy of H. The existence of
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[2] Generalized Ramsey theory 401

these numbers for each G and H follows from the classical result. For surveys of
the large quantity of information that has already been collected on this topic see
Burr (1974) and Harary (1974).

A more general form of the original Ramsey theorem [see Ryser (1963), p.
39] implies that for any positive integers fc, m, and n and any coloring with green
and red of the fc-sets (that is, fc -element subsets) of a sufficiently large set A,
there exists either an m-set of A each of whose fc-sets is colored green or an
n-set of A each of whose fc-sets is colored red. For fc =2 this is the
graph-theoretic result described above. In general the statement can be reformu-
lated in the language of finite simplicial complexes, and we shall be interested
here in the case where fc = 3 for which we have the following version: given any
positive integers m and n, and any coloring with green and red of the 2-cells
(triples) of a complete 2-complex with sufficiently many vertices, there exists
either a complete 2-complex on m vertices each of whose 2-cells is green or a
complete 2-complex on n vertices each of whose 2-cells is red. For the purpose
of studying this case we adopt the following definitions. A fc-dimensional
simplicial complex Q is called a pure fc-complex provided that each of its
simplices of dimension less than fc is contained in a fc-simplex of Q [see Harary
(1955), p. 462]. (Such a complex is sometimes also referred to as a uniform
hypergraph or fc-graph in combinatorial literature.) The term plex will be used
for a pure 2-complex. If h is a graph in which each line is contained in a copy of
K3 in H, then there exists a plex called the plex of H, denoted by PH, whose
1-skeleton is H and whose 2-cells are the copies of K3 in H. Thus, for example,
PKn, the plex of the complete graph of order n, is the complete simplicial
2-complex on n vertices. A 2-coloring of PKn shall mean a coloring of the 2-cells
of PKn with two colors, green and red. For plexes Q and T, r(Q, T) will denote
the least integer n such that in every 2-coloring of PKn, there is either a green
copy of Q or a red copy of T. In this paper we study the generalized Ramsey
theory for plexes, obtaining exact values of r(Q, T) for certain small plexes Q
and T. The facts established here are analogous to the graph-theoretic results
obtained in Chvatal and Harary (1972), (1973), (1973a), and (1973b), and use is
made of many of these results for graphs as well as of the notation of those
papers.

2. The simplest cases

Although the methods described below could be used to determine the
values of r(Q, T) for a long list of pairs, and many such values have been
calculated, we shall concentrate on the pairs which can be formed from the seven
plexes shown in Figure 1. These seven include all of the 2-trees on fewer than six
vertices in the sense of Harary and Palmer (1968), and include the smallest
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members of several classes of plexes described below, which are also explored
further in another paper, Duke (1975).

For graphs G and H we shall use G + nH to denote the join of G with the
graph consisting of n disjoint copies of H.

Let Fn, the n-fan, be the plex P(K^ + Pn<-i), that is, the plex of the graph
formed by taking the join of the path Pn+1 of length n with the trivial graph K,.
Continuing:

Wn, the n-wedge, is the plex P(Kt + nK2).
Bn, the n-book, is the plex P(K2+ nKt).
Dn, the n-disc, is the plex with vertices vo,Vi,---,vH whose 2-cells are those

spanned by the sets {v0, vt, vn} and {v0, vit vi+i} for I S i g n - l . For n > 3, Dn is

the plex of the graph known as a wheel, (see Harary (1969), p. 46).

PK3 F2

COMPLETE FAN
PLEX ( = BOOK B2)

W2

WEDGE
F,

FAN DISC
B,

BOOK
D.

DISC

Fig. 1. Seven Small Plexes

The next four results are analogous to simple properties of the Ramsey
numbers for graphs given in Chvatal and Harary (1962) and follow immediately
from the above definitions.

(1) r(Q,T)=r(T,Q)

(2) Q'CQ and T'QT imply r(Q', T) ^ r(Q, T)

(3) r(Q, T)gmax(V(O), V(T)), where V(A) denotes the
number of vertices in A.

(4) r(PK3, Q) = V(O) for any pure 2-complex Q.

If v is a vertex of the plex Q, then G(Q - v) shall denote the graph whose
lines are the edges of Q not containing v. If v is a vertex of each 2-cell of Q, we
shall call v an apex of Q. We then have the following result.

LEMMA 1. If Q and T are plexes having apexes a and b respectively, then
r(Q,T)^r(G(Q-a),G(T-b))+l.

PROOF. Let v be a vertex of PKn+l. Each 2-coloring of PKn+1 induces a
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line-coloring of G(PKn + l - u )= Kn in which each line of G(PKn+,- v) is
assigned the color of the 2-cell spanned by v and that line. If r(G(Q -a), G(T —
6))S= n, then there exists either a green copy of G(Q — a) or a red copy of
G(T — b) in G(PKn+1 — v), and hence either a green Q or a red T in PKn+1.

This lemma, together with (3) and the graphical Ramsey numbers
r(P,, P3) = 3, r(P3,2K2) = r(P,, P4) = r(P3, C4) = 4 given in Chvatal and Harary
(1972b) yields the following information about plexes.

THEOREM 1. r(F2, F2) = 4, r(F2,W2)= r(F2,F3)= r(F2, D<) = 5.

The upper bound given by Lemma 1 is not always attained, even for pairs
involving F2. Since r(P3, C3) = r(P3, K,.3) = 5 as shown in Chvatal and Harary
(1972b), the bound given by Lemma 1 for both r(F2, D3) and r(F2, B3) is 6. It is
easy to check, however, that r(F2, D3) = 4, and we consider next the value of
r(F2, B3).

THEOREM 2. r(F2, B3) = 5

PROOF. By (3), r(F2, B3) g 5. Thus we need show only that each 2-coloring
of PKs produces either a green F2 or a red B3.

Suppose PK5 is 2-colored in such a way that there is no green copy of F2. Let
the vertices of PKs be 1, 2, 3, 4, and 5 and consider the graph G = G(PK5-5).
The induced 2-coloring of the lines of G produces no green P3. Thus the red
lines in G form a copy of Kt, Kt — x, or C4. If G contains a red Kt or KA — x, then
PK5 clearly contains a red B3. Suppose the red lines of G are (1,2), (2,3), (3,4),
and (1,4), forming a copy of C4. Then since PK5 contains no green F2, the 2-cells
(1,2,3) and (1,2,4) must be red. But then PKs contains a red B3 consisting of
(1,2,3), (1,2,4), and (1,2,5).

THEOREM 3. r(W2, D3) = r(W2, B3) = 5.

PROOF. AS before, each of these values is at least 5 by (3). Let the vertices of
PKS be 1, 2, 3, 4, and 5 and consider G = G(PKS - 5). Given a 2-coloring of PKS

which produces no green wedge W2, the induced red subgraph of G is K4,
K4 - x, KU3 + x, Kh3, or K3. If G contains a red K4, K4 - x, or Ki,3 + x, then PK5

contains a red disc D3 and a red book B3, each with apex at 5.
Suppose G contains a red KXi3 with lines (1,2), (1,3), and (1,4). Clearly PK<,

contains a red B3, and since there is no green W2, the 2-cell (1,2,3) must be red,
yielding a red D3, (1,2,3), (1,2,5), and (1,3,5).

Suppose the red lines of G are (1,2), (2,4), and (1,4), forming a K3. Then
PK5 has a red D3, and since (1,2,4) and (2,3,4) must also be red, there is a red B3

combining these 2-cells with (2,4,5).
The reasoning of the above proof could be extended to obtain the Ramsey
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numbers for the remaining pairs which consist of W2 and some one of the plexes
shown in Figure 1, but these values will be obtained more readily by combining
(2) with the next theorem.

THEOREM 4. r(F3, D3) = r (F3, D4) = 5

PROOF. By (3), r(F3,D3)g5 and r(F3,D4)g5.
Suppose that there is a 2-coloring of PKs which yields no green F3. Let v be

a vertex of PK5 and consider the graph G = G(PK5 - v). The red subgraph of G
in the induced 2-coloring is one of Kt, Kt- x, KU3 +x, C4, Ki,3, or K3. The
desired result is immediate in the first two cases, while a detailed analysis of the
sort used in the proofs of the two preceding theorems is required for each of the
remaining cases.

The results of Theorems 3 and 4 can now be combined with (2) to show that
r(W2, W2) = r(W2, F3) = r(W2, D4) = r(F3, F3) = 5.

THEOREM 5. r(F3, B3) = 6

PROOF. According to Chvatal and Harary (1972b), r(P4, KU3) = 5, hence by
Lemma 1, r(F3, B3)S6. To see that equality holds one need only consider the
2-coloring of PK5 in which the 2-cells (1,2,5), (1,3,5), (1,4,5), and (2,3,4) are
colored green and the remaining 2-cells are colored red. With this 2-coloring
there is no green F3 and no red B3.

THEOREM 6.

r(D3, D3) = r(D3, D4) = r(B3, D3) = r(D4, D4) = r(Dt, J33) = r(B3, B3) = 7.

PROOF. That each of these Ramsey numbers must be at least 7 follows from
consideration of a specific 2-coloring of PK6. In this 2-coloring the 2-cells of one
of the colors, say red, correspond to the blocks of a balanced incomplete block
design without repeated blocks and with parameters v = 6, b = 10, k = 3, and
A = 2, (see Hall (1967)). That is, the b = 10 red 2-cells may be viewed as blocks
(subsets) chosen from the i; = 6 vertices of PK6 in such a way that each block
contains exactly k = 3 vertices, and each pair of distinct vertices (each edge)
occurs in exactly A = 2 blocks (2 red 2-cells). For example, if the vertices of PK6

are 1, 2, 3, 4, 5, 6, then the 2-cells (1,2,4), (1,2,6), (1,3,4), (1,3,5), (1,5,6),
(2,3,5), (2,3,6), (2,4,5), (3,4,6), and (4,5,6) form such a triple system and may
be taken to be the red 2-cells. It follows that with this 2-coloring, for any vertex v
of PK6, the red 2-cells containing v and the green 2-cells containing v each form
a monochromatic D5 with apex at v. There exists no monochromatic D3 or D4 in
PK6. Since A = 2, while each edge of PK6 is contained in a total of four 2-cells,
there exists no monochromatic B3. Hence each of the Ramsey numbers listed in
the theorem must be at least 7.
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That r(D3, D3) = r(Dt, Dt) = r(D4, B3) = r(B3, B3) = 7 follows now from
Lemma 1 and the graphical Ramsey numbers

r{K3, K3) = r(C4> C«) = r(C4, KU3) = r(KU3, K,,3) = 6

listed in Chvatal and Harary (1972b).
It remains to show that r(B3, D3)S7 and r(D3, D4)^7.
For the first of these, suppose there is a 2-coloring of PK-, yielding no green

B3 and no red D3. Then each edge of PK-, is adjacent to at least 3 red 2-cells.
There are 21 edges in Pk7 and each 2-cell is adjacent to 3 edges, so it follows that
there must be at least 21 red 2-cells. On the other hand, since there exists no red
D3, each copy of PK4 in PK-, must include at least 2 green 2-cells. But since each
2-cell is in 4 of the 35 copies of PKt in PKy, there must be at least 18 green
2-cells. These conclusions contradict the fact that PK7 has only 35 2-cells in all.

Now suppose PK7 is 2-colored in such a way that there exists no green copy
of D3 and no red copy of D4. As above there must be at least 18 2-cells colored
red. It follows that some vertex is adjacent to at least 8 red 2-cells. Let the
vertices of PK-, be 1,2, • ••, 7, with 7 incident with at least eight red 2-cells. Then
the graph G = G(PK7-7) has at least eight red lines in the induced 2-coloring.
Some point of G is adjacent to at least three red lines. We may assume that
(1,2), (1,4), and (1,6) are red lines of G. Since G contains no red C4, at least two
of the lines (2,3), (3,4), and (3,6) must be green. We may suppose (2,3) and (3,4)
are green. Since G has no green C3, (2,4) must then be red. Now one of the lines
(2,5) and (4,5), say (4,5), is green. Since (3,4) and (4,5) are green, (3,5) must be
red. Since (1,2), (1,6), and (2,4) are red, (4,6) must be green. Since (3,4), (4,5),
and (4,6) are green, (3,6) and (5,6) must be red, and hence (2,5) and (1,3) must
be green. Now one of (1,5) and (2,6) must be green, since (1,2) and (5,6) are red.
By the symmetry of the colors indicated thus far, we may assume that (1,5) is
green. Thus the 2-cells (1,3,7) (2,3,7), (3,4,7), (1,5,7), (4,5,7) and (2,5,7) are
green in PKy. Since there is no green £>3, (1,2,3), (1,3,4), (1,4,5), and (1,2,5)
must be red. But these 2-cells then form a red D4. This contradiction shows that
r(D3, D4)^7, and hence concludes the proof of the theorem.

The above results taken together give the Ramsey numbers for all of the 28
pairs that can be drawn from the list of plexes shown in Figure 1 and this
information is summarized in the table.

3. Some pairs involving PK4

By (4), r(PK3, PKt) = 4. It is clear that r(F2, PK,)>4. The fact that any
2-coloring of PK5 with more than two green 2-cells contains a green F2 leads
immediately to r(F2, PK4) = 5. The next theorem gives several other values for
such pairs.
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PK,
F2

w2
F,
D,

B,
Dt

PK,

3

TABLJi 1

Ramsey numbers for some small plexes

F2

4
4

w2

5
5
5

F,

5
5
5
5

D,

4
4
5
5
7

5
5
5
6
7
7

D4

5
5
5
5
7
7
7

THEOREM 7.

(i) r(W2,PX4) = 6; (ii) r(F3,PKi) = 7

(iii) r(B3,P^4) = 8; (iv) r(D,, PK,) = 8

PROOF OF (i). A 2-coloring of PK, in which only the 2-cells of a single PKt

are colored green has no green W2 and no red PKt. Thus r(W2,PK4)S6.
Suppose PKf, is 2-colored in such a way that there exists no green W2. Let

the vertices of PK6 be 1,2, • • •, 6, and consider the graph G = G(PK6 - 6). Since
r(2K2, Kt- x) = 5, the induced 2-coloring of G yields a red K4- x. Suppose the
lines (1,2), (2,3), (1,3), (3,5) and (1,5) form such a red K4 - x. Then if either of
the 2-cells (1,2,3) or (1,3,5) is red, PK6 contains a red PKt spanned by this 2-cell
and the vertex 6. Suppose then that (1,2,3) and (1,3,5) are green. Since (1,3,5)
forms a copy of W2 with (3,4,6) and with (4,5,6), both of these must be red.
Likewise, since (1,2,3) is green, (3,4,5) must be red. Thus each 2-cell of the PK4

with vertices 3, 4, 5, and 6 is red.

PROOF OF (ii). The 2-coloring of PK6 in which the only green 2-cells are
(1,2,4), (1,2,6), (1,3,5), (2,3,5), (3,4,6), and (4,5,6) has no green F3 and no red
PK4. Thus r(F3,PK,)S7.

Suppose there is a 2-coloring of PK7 in which there is no green F} and no red
PK4. Each of the 35 copies of PKt has at least one green 2-cell, and each green
2-cell is in four of these copies. Hence there must be at least nine green 2-cells,
and some PK4 must contain at least two green 2-cells. Suppose (1,2,3) and
(1,2,4) are both green. These two 2-cells together with any one of (1,4,5),
(1,4,6), or (1,4,7) would form a F3 with apex at 4. We may suppose then that
(1,4,5), (1,4,6), and (1,4,7) are red. Similarly, the 2-cells (2,4,5), (2,4,6),
(2,4,7), (1,3,5), (1,3,6), (1,3,7), (2,3,5), (2,3,6), and (2,3,7) must all be red.
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Each PKt having one vertex in the set {1,2}, one in {3,4}, and two vertices in
{5,6,7} must contain a green 2-cell, so either both (1,5,6) and (2,5,6) are green
or both (3,5,6) and (4,5,6) are green. Likewise (1,5,7) and (2,5,7) are both
green or (3,5,7) and (4,5,7) are both green, and (1,6,7) and (2,6,7) are both
green or (3,6,7) and (4,6,7) are both green. Thus the green 2-cells include at
least two of the pairs {(1,5,6), (2,5,6)}, {(1,5,7), (2,5,7)}, and {(1,6,7), (2,6,7)}
or two of the pairs {(3,5,6), (4,5,6)}, {(3,5,7), (4,5,7)}, and {(3,6,7), (4,6,7)}. In
either case we have a green F3.

PROOF OF (iii). To show that r(B3, PKJ s 8 we need a 2-coloring of PK7

which produces no green B3 and no red PK4. Such a 2-coloring can be obtained
by letting the 2-cells colored green be those corresponding to the blocks or
triples of two disjoint Setiner triple systems on v = 7 vertices, each with b = 1
distinct blocks. An example of such a pair of triple systems is {(1,2,4), (1,3,5),
(1,6,7), (2,3,6), (2,5,7), (3,4,7), (4,5,6)} and {(1,2,6), (1,3,4), (1,5,7), (2,3,7),
(2,4,5), (3,5,6), (4,6,7)}.

Each pair of vertices (each edge) is then contained in exactly A = 1 block in
each triple system, and each vertex is in 3 blocks in each system. For each vertex
u of PK7 with this 2-coloring, the green 2-cells containing u form a copy of D6

with apex at u, three of whose 2-cells are in one of the triple systems and three in
the other. Thus PK7 contains no green B3 (or D3, D4, or D5). Suppose that there
exists a PK4, say (1,2,3,4), having no green 2-cell. Each edge of this PK* is on
exactly two green 2-cells, each with its third vertex in the set {5,6,7}. But the
edges joining the vertices of (1,2,3,4) to the other vertices are also each on
exactly two green 2-cells, so each of 5, 6, and 7 must be on four green 2-cells
whose other vertices are in (1,2,3,4). This leads to three green copies of D4 with
apexes at 5, 6, and 7 and all other vertices in (1,2,3,4). But as indicated, PK7

contains no green D4 with such a 2-coloring.

Now suppose that there exists a 2-coloring of PK8 in which there is no green
B3 and no red PKt. Each copy of PKt contains at least one green 2-cell. Since
there are 70 such copies of PKA and each 2-cell is in exactly five of these, there
are at least 14 green 2-cells. Some vertex must be in at least six green 2-cells.
Suppose 8 is such a vertex and consider the graph G = G(PKg — 8). This graph
has at least six green lines in the induced 2-coloring, while each point is adjacent
to at most two green lines since there is no green B3 in PKg. Hence the partition
(or degree sequence) of the green subgraph, H, of G must be (2,2,2,2,2,2,2),
(2,2,2,2,2,1,1), or (2,2,2,2,2,2,0) (see Harary (1969), p. 57). If the partition is
(2,2,2,2,2,2,2), H is either (a) the cycle C7 or (b) the disjoint union of K3 and
C If the partition is (2,2,2,2,2,1,1), H is (c) the path P7, (d) the disjoint union
of K2 and C5, (e) the disjoint union of P3 and C , or (f) the disjoint union of F4
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and C3. If the partition is (2,2,2,2,2,2,0), H is either (g) the disjoint union of
two copies of K3 plus an isolated point, or (h) C6 plus an isolated point.

Suppose there were red lines in G forming three copies of K3 all with a
single line in common. Each of these copies of K3 would correspond to a red D3

in PK&. The fourth 2-cell in the PKt which contains any one of these D3 would
have to be green. This would produce three green 2-cells sharing a common
edge, the line common to the three copies of K3 in G. but this produces a green
B3 which was assumed not to exist. Thus no such configuration of red lines is
possible in G. It follows that the green subgraph of G can not be of types (b), (c),
(e), (f), or (g).

If there are red lines in G which form two line-disjoint copies of Kt - x
having only one or both of their points of degree two in common, then there are
four red copies of D3 in PK8. Again the fourth 2-cell of the PKt that contains one
of these copies of D3 must be green. The lines joining the two points of degree
three in each K4 - x can be on no more than two green 2-cells in PK8. Hence all
of the 2-cells in the copy of PK4 which has a vertices the four points of degree
three in the two copies of K4 — x must be red. But there is no red PK4, so no such
configuration of red lines exists in G. The green subgraph of G can not be of the
remaining types (a), (d), or (h). This contradiction completes the proof of (iii).

PROOF OF (iv). Consideration of the 2-coloring of PK-, described in the
proof of (iii) shows that r(D3, PK4) g 8.

An argument similar to those given for (i), and (ii), but considerably longer,
may be used to complete the proof in this case. One begins by showing, with the
aid of (iii), that if there exists a 2-coloring of PKS which yields no green D3 and
no red PK4, then in this 2-coloring some edge must be incident with exactly three
green 2-cells. It follows next that a certain nine of the 2-cells which share edges
with these green 2-cells must be red. Continuing to determine in turn the colors
required for a large number of the other 2-cells, one is able to show in the end
that no such 2-coloring exists.

The Ramsey numbers just considered are given in the next table which,
together with Table 1 above, contains all of our exact results.

TABLE 2

Ramsey numbers of the complete plex PK4

PK3 Ft W2 F , D3

PK, 4 5 6 7 8
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The existence of the 2-coloring of PK7 described in the proof of part (iii) of
Theorem 7 shows that r(Dt, PKJ g 8. It seems likely that r(D*, PK4) is at least 9,
although this has not been shown. It may be that some of the results or
techniques of Theorem 6 will be useful in determining the value of r(PK*, PK4),
or at least in improving the known bounds for this Ramsey number, but at
present the best bounds still seem to be those of Sobczyk (1967) who showed that
14 Sr(PK4,PK<)^ 18.

The techniques introduced here are used in Duke (1975) to derive formulae
giving the Ramsey number for several of the families of pairs which can be
constructed using plexes from among the Wn, Fn, Bn, Dn, and PKn. The Ramsey
numbers for the smallest pairs in these families occur in the tables above, and in
several cases these first values are exceptions to the general formulae.

In the proofs of Theorems 6 and 7 use was made of examples from the study
of block designs. In Duke (1975) further attention is devoted to the close
relationship between certain formulae for Ramsey numbers of pairs of plexes
and various results and open questions involving Steiner triple systems and other
designs.
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