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Abstract
Although reasoning about equations over strings has been extensively studied for several decades, little
research has been done for equational reasoning on general clauses over strings. This paper introduces a
new superposition calculus with strings and present an equational theorem proving framework for clauses
over strings. It provides a saturation procedure for clauses over strings and show that the proposed super-
position calculus with contraction rules is refutationally complete. In particular, this paper presents a new
decision procedure for solving word problems over strings and provides a new method of solving unifica-
tion problems over strings w.r.t. a set of conditional equations R over strings if R can be finitely saturated
under the proposed inference system with contraction rules.
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1. Introduction
Strings are fundamental objects in mathematics and many fields of science, including computer
science and biology. Reasoning about equations over strings has been widely studied in the con-
text of string rewriting systems, formal language theory, word problems in semigroups, monoids,
and groups (Book and Otto, 1993; Epstein et al., 1992), etc. Roughly speaking, reasoning about
equations over strings replaces equals by equals w.r.t. a given reduction ordering �. For example,
if we have two equations over strings u1u2u3 ≈ s and u2 ≈ t with u1u2u3 � s and u2 � t, where u2
is not the empty string, then we may infer the equation u1tu3 ≈ s by replacing u2 in u1u2u3 ≈ s
with t. Meanwhile, if we have two equations over strings u1u2 ≈ s and u2u3 ≈ t with u1u2 � s
and u2u3 � t, where u2 is not the empty string, then we should also be able to infer the equation
u1t≈ su3. This can be done by concatenating u3 to both sides of u1u2 ≈ s (i.e., u1u2u3 ≈ su3) and
then replacing u2u3 in u1u2u3 ≈ su3 with t. Here, the monotonicity property of equations over
strings is assumed, that is, s≈ t implies usv≈ utv for strings s, t, u, and v.1

This reasoning about equations over strings is the basic ingredient for completion (Book and
Otto, 1993; Holt et al., 2005) of string rewriting systems. A completion procedure (Book and Otto,
1993) attempts to construct a finite convergent string rewriting system, where a finite convergent
string rewriting system provides a decision procedure for its corresponding equational theory.

Unlike reasoning about equations over strings, equational reasoning on general clauses over
strings has not been well studied, where clauses are often the essential building blocks for logical
statements.

This paper proposes a superposition calculus and an equational theorem proving procedure
with clauses over strings. The results presented here generalize the results about completion
of equations over strings (Book and Otto, 1993; Holt et al., 2005). Throughout this paper, the
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monotonicity property of equations over strings is assumed and considered in the proposed
inference rules. This assumption is natural and common to equations over strings occurring in
algebraic structures (e.g., semigroups and monoids), formal language theory, etc. The cancelation
property of equations over strings is not assumed, that is, su≈ tu implies s≈ t for strings s, t, and
a nonempty string u (cf. non-cancellative (Book and Otto, 1993) algebraic structures).

Now, the proposed superposition inference rule is given roughly as follows:

C ∨ u1u2 ≈ s D∨ u2u3 ≈ tSuperposition: C ∨D∨ u1t≈ su3
if u2 is not the empty string, and u1u2 � s and u2u3 � t.

Intuitively speaking, using the monotonicity property, C ∨ u1u2u3 ≈ su3 can be obtained
from the left premise C ∨ u1u2 ≈ s. Then the above inference by Superposition can be viewed
as an application of a conditional rewrite rule D∨ u2u3 ≈ t to C ∨ u1u2u3 ≈ su3, where u2u3
in C ∨ u1u2u3 ≈ su3 is now replaced by t, and D is appended to the conclusion. (Here, D can
be viewed as consisting of the positive and negative conditions.) Note that both u1 and u3 can
be the empty string in the Superposition inference rule. These steps are combined into a single
Superposition inference step. For example, suppose that we have three clauses 1: ab≈ d, 2: bc≈ e,
and 3: ae �≈ dc. We use the Superposition inference rule with 1 and 2, and obtain 4: ae≈ dc
from which we derive a contradiction with 3. The details of the inference rules in the proposed
inference system are discussed in Section 3.

The proposed superposition calculus is based on the simple string matching methods and
the efficient length-lexicographic ordering instead of using equational unification and the more
complex orderings, such as the lexicographic path ordering (LPO) (Dershowitz and Plaisted,
2001) and Knuth–Bendix ordering (KBO) (Baader and Nipkow, 1998).

This paper shows that a clause over strings can be translated into a clause over first-order
terms, which allows one to use the existing notion of redundancy in the literature (Bachmair and
Ganzinger, 1994; Nieuwenhuis and Rubio, 2001) for clauses over strings. Based on the notion of
redundancy, one may delete redundant clauses using the contraction rules (i.e., Simplification,
Subsumption, and Tautology) during an equational theorem proving derivation in order to
reduce the search space for a refutation.

The model construction techniques (Bachmair and Ganzinger, 1994; Nieuwenhuis and Rubio,
2001) is adapted for the refutational completeness of the proposed superposition calculus. This
paper also uses a Herbrand interpretation by translating clauses over strings into clauses over
first-order terms, where each nonground first-order clause represents all its ground instances.
Note that this translation is not needed for the proposed inference system itself.

The proposed equational theorem proving framework with clauses over strings also provides
a new decision procedure for solving word problems over strings and a new approach to solving
unification problems over strings w.r.t. a conditional equational theory R over strings if R can be
finitely saturated under the proposed inference system with contraction rules.

A preliminary version of this paper was presented in the proceedings of 17th International
Workshop on Logical and Semantic Frameworks with Applications (Kim, 2022). Among oth-
ers, Section 7 has been added to discuss the new results of unification in conditional equational
theories over strings. The present paper also includes a new method of deriving an equivalent
convergent (unconditional) string rewriting system from a conditional equational theory R over
strings if R can be finitely saturated under the proposed inference system with contraction rules.

2. Preliminaries
It is assumed that the reader has some familiarity with equational theorem proving
(Bachmair and Ganzinger, 1994; Nieuwenhuis and Rubio, 2001) and string rewriting systems
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(Book and Otto, 1993; Holt et al., 2005; Kapur and Narendran, 1985). The notion of conditional
equations and Horn clauses are discussed in Dershowitz (1991).

An alphabet � is a finite set of symbols (or letters). The set of all strings of symbols over � is
denoted �∗ with the empty string λ.

If s ∈�∗, then the length of s, denoted |s|, is defined as follows: |λ| := 0, |a| := 1 for each a ∈�,
and |sa| := |s| + 1 for s ∈�∗ and a ∈�.

Amultiset is an unordered collection with possible duplicate elements. We denote byM(x) the
number of occurrences of an object x in a multisetM.

An equation is an expression s≈ t, where s and t are strings, that is, s, t ∈�∗. A literal is either a
positive equation L, called a positive literal, or a negative equation ¬L, called a negative literal. We
also write a negative literal ¬(s≈ t) as s �≈ t. We identify a positive literal s≈ t with the multiset
{{s}, {t}} and a negative literal s �≈ t with the multiset {{s, t}}. A clause (over �∗) is a finite multiset
of literals, written as a disjunction of literals ¬A1 ∨ · · · ∨ ¬Am ∨ B1 ∨ · · · ∨ Bn or as an implica-
tion �→�, where � =A1 ∧ · · · ∧Am and �= B1 ∨ · · · ∨ Bn. We say that � is the antecedent
and � is the succedent of clause �→�. AHorn clause is a clause with at most one positive literal.
The empty clause, denoted�, is the clause containing no literals.

A conditional equation is a clause of the form (s1 ≈ t1 ∧ · · · ∧ sn ≈ tn)→ l≈ r. If n= 0, a con-
ditional equation is simply an equation. A conditional equation is naturally represented by a Horn
clause. A conditional equational theory is a set of conditional equations.

Any ordering �S on a set S can be extended to an ordering �mul
S on finite multisets over S as

follows:M �mul
S N if (i)M �=N and (ii) wheneverN(x)>M(x) thenM(y)>N(y), for some y such

that y�S x.
Given a multisetM and an ordering � onM, we say that x ismaximal (resp. strictly maximal)

inM if there is no y ∈M (resp. y ∈M \ {x}) with y� x (resp. y� x or x= y).
An ordering > on �∗ is terminating if there is no infinite chain of strings s> s1 > s2 > · · · for

any s ∈�∗. An ordering> on�∗ is admissible if u> v implies xuy> xvy for all u, v, x, y ∈�∗. An
ordering > on �∗ is a reduction ordering if it is terminating and admissible.

The lexicographic ordering �lex induced by a total precedence ordering�prec on� ranks strings
of the same length in �∗ by comparing the letters in the first index position where two strings dif-
fer using �prec. For example, if a= a1a2 · · · ak and b= b1b2 · · · bk, and the first index position
where a and b are differ is i, then a�lex b if and only if ai �prec bi.

The length-lexicographic ordering � on �∗ is defined as follows: s� t if and only if |s|> |t|, or
they have the same length and s�lex t for s, t ∈�∗. If � and �prec are fixed, then it is easy to see
that we can determine whether s� t for two (finite) input strings s ∈�∗ and t ∈�∗ in O(n) time,
where n= |s| + |t|. The length-lexicographic ordering � on �∗ is a reduction ordering. We also
write � for a multiset extension of � if it is clear from context. In this paper, we assume that a
total precedence �prec (simply written �) on � is always given, unless otherwise stated.

A string rewriting system R (over �∗) is a subset of �∗ ×�∗. Let R be a string rewriting system
over�∗. Then, u→R v if there exist x, y ∈�∗ such that u= xly and v= xry and l→ r ∈ R. By→∗R
(resp. ∗↔R), we denote the reflexive and transitive closure of R (resp. the reflexive, symmetric, and
transitive closure of R). Note that the relation ∗↔R is a congruence relation w.r.t. the concatenation
of strings over �∗, which is called the Thue congruence associated with R.
→R is confluent if for all s, t, u ∈�∗ with s→∗R t and s→∗R u there exists somew ∈�∗ such that

t→∗R w and u→∗R w.→R is terminating if there is no infinite sequence of strings si ∈�∗ with s0→R s1→R · · · .
A string rewriting system R (over �∗) is convergent if→R is both confluent and terminating.
We say that≈ has themonotonicity property over �∗ if s≈ t implies usv≈ utv for all s, t, u, v ∈

�∗. Throughout this paper, it is assumed that≈ has the monotonicity property over �∗.
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3. Superposition with Strings
3.1 Inference rules
The following inference rules for clauses over strings are parameterized by a selection function S
and the length-lexicographic ordering �, where S arbitrarily selects exactly one negative literal
for each clause containing at least one negative literal (see Section 3.6 in Nieuwenhuis and Rubio
(2001) or Section 6 in Bachmair and Ganzinger (1998)). In this strategy, an inference involving
a clause with a selected literal is performed before an inference from clauses without a selected
literal for a theorem proving process. The intuition behind the (eager) selection of negative
literals is that, roughly speaking, one may first prove the whole antecedent of each clause from
other clauses. Then clauses with no selected literals are involved in the main deduction process.
This strategy is particularly useful when we consider Horn completion in Section 6 and a decision
procedure for the word problems associated with it. In the following, the symbol �� is used to
denote either≈ or �≈.

C ∨ u1u2 ≈ s D∨ u2u3 ≈ tSuperposition: C ∨D∨ u1t≈ su3
if (i) u2 is not λ, (ii) C contains no selected literal, (iii) D contains no selected literal, (iv)
u1u2 � s, and (v) u2u3 � t.2

C ∨ u1u2u3 �� s D∨ u2 ≈ t
Rewrite: C ∨D∨ u1tu3 �� s
if (i) u1u2u3 �� s is selected for the left premise whenever �� is �≈, (ii) C contains no selected literal
whenever �� is≈, (iii) D contains no selected literal, and (iv) u2 � t.3

C ∨ s �≈ sEquality Resolution: C
if s �≈ s is selected for the premise.

The following Paramodulation and Factoring inference rules are used for non-Horn clauses
containing positive literals only (cf. Equality Factoring (Bachmair and Ganzinger, 1994;
Nieuwenhuis and Rubio, 2001) and Merging Paramodulation rule (Bachmair and Ganzinger,
1994)).

C ∨ s≈ u1u2 D∨ u2u3 ≈ t
Paramodulation: C ∨D∨ su3 ≈ u1t
if (i) u2 is not λ, (ii) C contains no selected literal, (iii) C contains a positive literal, (iv) D
contains no selected literal, (v) s� u1u2, and (vi) u2u3 � t.

C ∨ s≈ t ∨ su≈ tuFactoring: C ∨ su≈ tu

if C contains no selected literal.

In the proposed inference system, finding whether a string s occurs within a string t can be done
in linear time in the size of s and t by using the existing string matching algorithms such as the
Knuth–Morris–Pratt (KMP) algorithm (Cormen et al., 2001). For example, the KMP algorithm
can be used for finding u2 in u1u2u3 in the Rewrite rule and finding u2 in u1u2 in the Superposition
and Paramodulation rule.

In the remainder of this paper, we denote by S the inference system consisting of the
Superposition, Rewrite, Equality Resolution, Paramodulation, and the Factoring rule and denote
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by S a set of clauses over strings. Also, by the contraction rules we mean the following inference
rules–Simplification, Subsumption, and Tautology.

S∪ {C ∨ l1ll2 �� v, l≈ r}Simplification:
S∪ {C ∨ l1rl2 �� v, l≈ r}

if (i) l1ll2 �� v is selected for C ∨ l1ll2 �� v whenever �� is �≈, (ii) l1 is not λ, and (iii) l� r.

In the following inference rule, we say that a clause C subsumes a clause C′ if C is contained in
C′, where C and C′ are viewed as the finite multisets.

S∪ {C, C′}Subsumption: S∪ {C}
if C⊆ C′.

S∪ {C ∨ s≈ s}Tautology: S
Example 1. Let a� b� c� d� e and consider the following inconsistent set of clauses 1:
ad≈ b∨ ad≈ c, 2: b≈ c, 3: ad≈ e, and 4: c �≈ e. Now, we show how the empty clause is derived:
5: ad≈ c∨ ad≈ c (Paramodulation of 1 with 2)
6: ad≈ c (Factoring of 5)
7: c≈ e (Rewrite of 6 with 3)
8: e �≈ e (c �≈ e is selected for 4. Rewrite of 4 with 7)
9:� (e �≈ e is selected for 8. Equality Resolution on 8)

Note that there is no inference with the selected literal in 4 from the initial set of clauses 1, 2,
3, and 4. We produced clauses 5, 6, and 7 without using a selected literal. Once we have clause 7,
there is an inference with the selected literal in 4.

Example 2. Let a� b� c� d and consider the following inconsistent set of clauses 1: aa≈ a∨ bd �≈
a, 2: cd≈ b, 3: ad≈ c, 4: bd≈ a, and 5: dab �≈ db. Now, we show how the empty clause is derived:
6: aa≈ a∨ a �≈ a (bd �≈ a is selected for 1. Rewrite of 1 with 4)
7: aa≈ a (a �≈ a is selected for 6. Equality resolution on 6)
8: ac≈ ad (Superposition of 7 with 3)
9: add≈ ab (Superposition of 8 with 2)
10: ab≈ cd (Rewrite of 9 with 3)
11: dcd �≈ db (dab �≈ db is selected for 5. Rewrite of 5 with 10)
12: db �≈ db (dcd �≈ db is selected for 11. Rewrite of 11 with 2)
13:� (db �≈ db is selected for 12. Equality Resolution on 12)

3.2 Lifting properties
Recall that �∗ is the set of all strings over � with the empty string λ. We let T(� ∪ {⊥}) be the set
of all first-order ground terms over � ∪ {⊥}, where each letter from � is interpreted as a unary
function symbol and⊥ is the only constant symbol. (The constant symbol⊥ does not have a spe-
cial meaning (e.g., “false”) in this paper.) We remove parentheses for notational convenience for
each term in T(� ∪ {⊥}). Since ⊥ is the only constant symbol, we see that ⊥ occurs only once
at the end of each term in T(� ∪ {⊥}). We may view each term in T(� ∪ {⊥}) as a string ending
with⊥. Now, the definitions used in Section 2 can be carried over to the case when �∗ is replaced
by T(� ∪ {⊥}). In the remainder of this paper, we use the string notation for terms in T(� ∪ {⊥})
unless otherwise stated.

Let s≈ t be an equation over �∗. Then, we can associate s≈ t with the equation s(x)≈ t(x),
where s(x)≈ t(x) represents the set of all its ground instances over T(� ∪ {⊥}). (Here, λ(x)
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and λ⊥ correspond to x and ⊥, respectively.) First, s≈ t over �∗ corresponds to s⊥≈ t⊥ over
T(� ∪ {⊥}). Now, using the monotonicity property, if we concatenate string u to both sides of
s≈ t over �∗, then we have su≈ tu, which corresponds to su⊥≈ tu⊥.

There is a similar approach in string rewriting systems. If S is a string rewriting system over
�∗, then it is known that we can associate term rewriting system RS with S in such a way
that RS := {l(x)→ r(x) | l→ r ∈ S} (Book and Otto, 1993), where x is a variable and each letter
from � is interpreted as a unary function symbol. We may rename variables (by standardiz-
ing variables apart) whenever necessary. This approach is particularly useful when we consider
critical pairs between the rules in a string rewriting system. For example, if there are two rules
aa→ c and ab→ d in S, then we have cb← aab→ ad, where <cb, ad> (or <ad, cb>) is a
critical pair formed from these two rules. This critical pair can also be found if we associate
aa→ c ∈ S with a(a(x))→ c(x) ∈ RS and ab→ d ∈ S with a(b(x))→ d(x) ∈ RS. First, we rename
the rule a(b(x))→ d(x) ∈ RS into a(b(y))→ d(y). Then by mapping x to b(z) and y to z, we have
c(b(z))← a(a(b(z)))→ a(d(z)), where <c(b(z)), a(d(z))> is a critical pair formed from these two
rules. This critical pair can be associated with the critical pair <cb, ad> formed from aa→ c in S
and ab→ d in S.

However, if s �≈ t is a negative literal over strings, then we cannot simply associate s �≈ t with
the negative literal s(x) �≈ t(x) over first-order terms. Suppose to the contrary that we associate
s �≈ t with s(x) �≈ t(x). Then s �≈ t implies su �≈ tu for a nonempty string u because we can substi-
tute u(y) for x in s(x) �≈ t(x), and su �≈ tu can also be associated with s(u(y)) �≈ t(u(y)). Using the
contrapositive argument, this means that su≈ tu implies s≈ t for the nonempty string u. Recall
that we do not assume the cancelation property of equations over strings in this paper.4 Instead,
we simply associate s �≈ t with s⊥ �≈ t⊥. The following lemma is based on the above observations.
We denote by T(� ∪ {⊥}, X) the set of first-order terms built on � ∪ {⊥} and a denumerable set
of variables X, where each symbol from � is interpreted as a unary function symbol and ⊥ is the
only constant symbol.

Lemma 3. Let C := s1 ≈ t1 ∨ · · · ∨ sm ≈ tm ∨ u1 �≈ v1 ∨ · · · ∨ un �≈ vn be a clause over�∗ and P be
the set of all clauses that follow from C using the monotonicity property. Let Q be the set of all ground
instances of the clause s1(x1)≈ t1(x1)∨ · · · ∨ sm(xm)≈ tm(xm)∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥
over T(� ∪ {⊥}, X), where x1, . . . , xm are distinct variables in X and each letter from � is
interpreted as a unary function symbol. Then there is a one-to-one correspondence between P
and Q.

Proof. For each element D of P, D has the form D := s1w1 ≈ t1w1 ∨ · · · ∨ smwm ≈ tmwm ∨ u1 �≈
v1 ∨ · · · ∨ un �≈ vn for some w1, . . . ,wm ∈�∗. (If wi = λ for all 1≤ i≤m, then D is simply C.)
Now, we map each element D of P to D′ in Q, where D′ := s1w1⊥≈ t1w1⊥∨ · · · ∨ smwm⊥≈
tmwm⊥∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥. Since ⊥ is the only constant symbol in � ∪ {⊥}, it is
easy to see that this mapping is well defined and bijective.

Definition 4. (i) We say that every term in T(� ∪ {⊥}) is a g-term. (Recall that we remove paren-
theses for notational convenience.)
(ii) Let s≈ t (resp. s→ t) be an equation (resp. a rule) over �∗. We say that su⊥≈ tu⊥
(resp. su⊥→ tu⊥) for some string u is a g-equation (resp. a g-rule) of s≈ t (resp. s→ t).
(iii) Let s �≈ t be a negative literal over �∗. We say that s⊥ �≈ t⊥ is a (negative) g-literal of s �≈ t.
(iv) Let C := s1 ≈ t1 ∨ · · · ∨ sm ≈ tm ∨ u1 �≈ v1 ∨ · · · ∨ un �≈ vn be a clause over �∗. We say
that s1w1⊥≈ t1w1⊥∨ · · · ∨ smwm⊥≈ tmwm⊥∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥ for some strings
w1, . . . ,wm is a g-clause of clause C. Here, each wk⊥∈ T(� ∪ {⊥}) for nonempty string wk in the
g-clause is said to be a substitution part of C.
(v) Let π be an inference (w.r.t. S) with premises C1, . . . , Ck and conclusion D. Then a g-instance
of π is an inference (w.r.t. S) with premises C′1, . . . , C′k and conclusion D′, where C′1, . . . , C′k and
D′ are g-clauses of C1, . . . , Ck and D, respectively.
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Since each term in T(� ∪ {⊥}) is viewed as a string, we may consider inferences between
g-clauses using S. Note that concatenating a (nonempty) string at the end of a g-term is not
allowed for any g-term over T(� ∪ {⊥}). For example, abc⊥d is not a g-term, and a⊥ �≈ b⊥∨
abc⊥d≈ def⊥d is not a g-clause. We emphasize that we are only concerned with inferences
between (legitimate) g-clauses here.

We may also use the length-lexicographic ordering �g on g-terms. Given a total precedence
ordering on � ∪ {⊥} for which ⊥ is minimal, it can be easily verified that �g is a total reduction
ordering on T(� ∪ {⊥}). We simply denote the multiset extension �mul

g of �g as �g for nota-
tional convenience.5 We denote ambiguously all orderings on g-terms, g-equations, and g-clauses
over T(� ∪ {⊥}) by �g . Now, we consider the lifting of inferences of S between g-clauses over
T(� ∪ {⊥}) to inferences ofS between clauses over�∗. Let C1, . . . , Cn be clauses over�∗ and let

C′1 . . . C′n
C′

be an inference between their g-clauses, where C′i is a g-clause of Ci for all 1≤ i≤ n. We say that
this inference between g-clauses can be lifted if there is an inference

C1 . . . Cn
C

such that C′ is a g-clause of C. In what follows, we assume that a g-literal L′i in C′i is selected in the
same way as Li in Ci, where Li is a negative literal in Ci and L′i is a g-literal of Li.

Lifting of an inference between g-clauses is possible if it does not correspond to a g-instance
of an inference (w.r.t. S) into a substitution part of a clause, which is not necessary (see,
e.g., Bachmair and Ganzinger (1995); Nieuwenhuis and Rubio (2001)). Suppose that there is an
inference between g-clauses C′1 . . . C′n with conclusion C′ and there is also an inference between
clauses C1 . . . Cn over �∗ with conclusion C, where C′i is a g-clause of Ci for all 1≤ i≤ n. Then,
the inference between g-clauses C′1 . . . C′n over T(� ∪ {⊥}) can be lifted to the inference between
clauses C1 . . . Cn over �∗ in such a way that C′ is a g-clause of C. This can be easily verified for
each inference rule inS.

Example 5. Consider the following Superposition inference with g-clauses:

ad⊥≈ cd⊥∨ aabb⊥≈ cbb⊥ abb⊥≈ db⊥
ad⊥≈ cd⊥∨ adb⊥≈ cbb⊥

where ad⊥≈ cd⊥∨ aabb⊥≈ cbb⊥ (resp. abb⊥≈ db⊥) is a g-clause of a≈ c∨ aa≈ c
(resp. ab≈ d) and aabb⊥�g cbb⊥ (resp. abb⊥�g db⊥). This Superposition inference between
g-clauses can be lifted to the following Superposition inference between clauses over �∗:

a≈ c∨ aa≈ c ab≈ d
a≈ c∨ ad≈ cb

where aa� c and ab� d. We see that conclusion ad⊥≈ cd⊥∨ adb⊥≈ cbb⊥ of the Superposition
inference between the above g-clauses is a g-clause of conclusion a≈ c∨ ad≈ cb of this inference.

Example 6. Consider the following Rewrite inference with g-clauses:

a⊥ �≈ d⊥∨ aabb⊥ �≈ cd⊥ abb⊥≈ cb⊥
a⊥ �≈ d⊥∨ acb⊥ �≈ cd⊥
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where aabb⊥ �≈ cd⊥ is selected and a⊥ �≈ d⊥∨ aabb⊥ �≈ cd⊥ (resp. abb⊥≈ cb⊥) is a g-clause of
a �≈ d∨ aabb �≈ cd (resp. ab≈ c) with abb⊥�g cb⊥. This Rewrite inference between g-clauses can
be lifted to the following Rewrite inference between clauses over �∗:

a �≈ d∨ aabb �≈ cd ab≈ c
a �≈ d∨ acb �≈ cd

where aabb �≈ cd is selected and ab� c. We see that conclusion a⊥ �≈ d⊥∨ acb⊥ �≈ cd⊥ of the
Rewrite inference between the above g-clauses is a g-clause of conclusion a �≈ d∨ acb �≈ cd of this
inference.

4. Redundancy and Contraction Techniques
By Lemma 3 and Definition 4, we may translate a clause C := s1 ≈ t1 ∨ · · · ∨ sm ≈ tm ∨ u1 �≈
v1 ∨ · · · ∨ un �≈ vn over �∗ with all its implied clauses using the monotonicity property into
the clause s1(x1)≈ t1(x1)∨ · · · ∨ sm(xm)≈ tm(xm)∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥ over T(� ∪
{⊥}, X) with all its ground instances, where x1, . . . , xm are distinct variables in X, each symbol
from � is interpreted as a unary function symbol, and⊥ is the only constant symbol. This allows
us to adapt the existing notion of redundancy found in the literature (Bachmair and Ganzinger,
1994; Nieuwenhuis and Rubio, 2001).

Definition 7. (i) Let R be a set of g-equations or g-rules. Then the congruence↔∗R defines an equal-
ity Herbrand interpretation I, where the domain of I is T(� ∪ {⊥}). Each unary function symbol
s ∈� is interpreted as the unary function sI, where sI(u⊥) is the g-term su⊥. (The constant sym-
bol ⊥ is simply interpreted as the constant ⊥.) The only predicate ≈ is interpreted by s⊥≈ t⊥ if
s⊥↔∗R t⊥. We denote by R∗ the interpretation I defined by R in this way. I satisfies (is amodel of)
a g-clause �→�, denoted by I |= �→�, if I �⊇ � or I ∩� �= ∅. In this case, we say that �→�

is true in I. We say that I satisfies a clause C over �∗ if I satisfies all g-clauses of C. We say that I
satisfies a set of clauses S over �∗, denoted by I |= S, if I satisfies every clause in S.
(ii) A g-clause C follows from a set of g-clauses {C1, . . . , Cn}, denoted by {C1, . . . , Cn} |= C, if C is
true in every model of {C1, . . . , Ck}.
Definition 8. Let S be a set of clauses over �∗.
(i) A g-clause C is redundant w.r.t. S if there exist g-clauses C′1, . . . , C′k of clauses C1, . . . , Ck in S,
such that {C′1, . . . , C′k} |= C and C�g C′i for all 1≤ i≤ k. A clause in S is redundant w.r.t. S if all its
g-clauses are redundant w.r.t. S.
(ii) An inference π with conclusion D is redundant w.r.t. S if for every g-instance of π with maximal
premise C′ (w.r.t. �g) and conclusion D′, there exist g-clauses C′1, . . . , C′k of clauses C1, . . . , Ck in S
such that {C′1, . . . , C′k} |=D′ and C′ �g C′i for all 1≤ i≤ k, where D′ is a g-clause of D.
Lemma 9. If an equation l≈ r simplifies a clause C ∨ l1ll2 �� v into C ∨ l1rl2 �� v using the
Simplification rule, then C ∨ l1ll2 �� v is redundant w.r.t. {C ∨ l1rl2 �� v, l≈ r}.
Proof. Suppose that l≈ r simplifiesD := C ∨ l1ll2 �≈ v into C ∨ l1rl2 �≈ v, where l1ll2 �≈ v is selected
for D. Then, every g-clause D′ of D has the form D′ := C′ ∨ l1ll2⊥ �≈ v⊥, where C′ is a g-
clause of C. Now, we may infer that {D′′, ll2⊥≈ rl2⊥} |=D′, where D′′ := C′ ∨ l1rl2⊥ �≈ v⊥ is
a g-clause of C ∨ l1rl2 �≈ v and ll2⊥≈ rl2⊥ is a g-equation of l≈ r. We also have D′ �g D′′ and
D′ �g ll2⊥≈ rl2⊥, and thus the conclusion follows.

Otherwise, suppose that l≈ r simplifies D := C ∨ l1ll2 ≈ v into C ∨ l1rl2 ≈ v. Then every g-
clause D′ of D has the form D′ := C′ ∨ l1ll2w⊥≈ vw⊥ for some w ∈�∗, where C′ is a g-clause
of C. Now, we have {D′′, ll2w⊥≈ rl2w⊥} |=D′, where D′′ := C′ ∨ l1rl2w⊥≈ vw⊥ is a g-clause of
C ∨ l1rl2 ≈ v for some w ∈�∗ and ll2w⊥≈ rl2w⊥ is a g-equation of l≈ r. We also have D′ �g D′′
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and D′ �g ll2w⊥≈ rl2w⊥ because l1 is not λ in the condition of the rule (i.e., l1ll2w⊥�g ll2w⊥),
and thus the conclusion follows.

Example 10. Suppose that a≈ b simplifies the clause ab �≈ c∨ bc≈ d∨ cd≈ e into bb �≈ c∨
bc≈ d∨ cd≈ e using the Simplification rule, where ab �≈ c is selected and a� b� c� d� e.
Then each g-clause of ab �≈ c∨ bc≈ d∨ cd≈ e has the form G := ab⊥ �≈ c⊥∨ bcw1⊥≈ dw1⊥∨
cdw2⊥≈ ew2⊥ for some w1,w2 ∈�∗ (see Definition 4(iv)). Now, we see that {ab⊥≈ bb⊥, bb⊥ �≈
c⊥∨ bcw1⊥≈ dw1⊥∨ cdw2⊥≈ ew2⊥} |=G, G�g ab⊥≈ bb⊥, and G�g bb⊥ �≈ c⊥∨ bcw1⊥≈
dw1⊥∨ cdw2⊥≈ ew2⊥. Here, ab⊥≈ bb⊥ is a g-clause of a≈ b and bb⊥ �≈ c⊥∨ bcw1⊥≈
dw1⊥∨ cdw2⊥≈ ew2⊥ is a g-clause of bb �≈ c∨ bc≈ d∨ cd≈ e. Thus, we may infer that ab �≈
c∨ bc≈ d∨ cd≈ e is redundant w.r.t. {a≈ b, bb �≈ c∨ bc≈ d∨ cd≈ e}.

We see that if C subsumes C′ with C and C′ containing the same number of literals, then they
are the same when viewed as the finite multisets, so we can remove C′. Therefore, we exclude this
case in the following lemma.

Lemma 11. If a clause C subsumes a clause D and C contains fewer literals than D, then D is
redundant w.r.t. {C}.
Proof. Suppose that C subsumes D and C contains fewer literals than D. Then D can be denoted
by C ∨ B for some nonempty clause B. Now, for every g-clause D′ := C′ ∨ B′ of D, we have {C′} |=
D′ with D′ �g C′, where C′ and B′ are g-clauses of C and B, respectively. Thus, D is redundant
w.r.t. {C}.
Lemma 12. A tautology C ∨ s≈ s is redundant.

Proof. It is easy to see that for every g-clause C′ ∨ su⊥≈ su⊥ of C ∨ s≈ s, we have |= C′ ∨ su⊥≈
su⊥, where u ∈�∗ and C′ is a g-clause of C. Thus, C ∨ s≈ s is redundant.

5. Refutational Completeness
In this section, we adapt the model construction and equational theorem proving techniques used
in Bachmair and Ganzinger (1994), Nieuwenhuis and Rubio (2001), and Kim and Lynch (2021)
and show thatS with the contraction rules is refutationally complete.

Definition 13. A g-equation s⊥≈ t⊥ is reductive for a g-clause C :=D∨ s⊥≈ t⊥ if s⊥≈ t⊥ is
strictly maximal (w.r.t. �g) in C with s⊥�g t⊥.
Definition 14. (Model Construction) Let S be a set of clauses over �∗. We use induction on �g to
define the sets RC, EC, and IC for all g-clauses C of clauses in S. Let C be such a g-clause of a clause in
S and suppose that EC′ has been defined for all g-clauses C′ of clauses in S for which C�g C′. Then
we define by RC =⋃

C�gC′ EC′ . We also define by IC the equality interpretation R∗C, which denotes
the least congruence containing RC.

Now, let C :=D∨ s⊥≈ t⊥ such that C is not a g-clause of a clause with a selected literal in S.
Then C produces EC = {s⊥→ t⊥} if the following conditions aremet: (1) IC �|= C, (2) IC �|= t⊥≈ t′⊥
for every s⊥≈ t′⊥ in D, (3) s⊥≈ t⊥ is reductive for C, and (4) s⊥ is irreducible by RC. We say that
C is productive and produces EC if it satisfies all of the above conditions. Otherwise, EC =∅. Finally,
we define IS as the equality interpretation R∗S, where RS =

⋃
C EC is the set of all g-rules produced by

g-clauses of clauses in S.

Lemma 15. (i) RS has the Church–Rosser property.
(ii) RS is terminating.
(iii) For g-terms u⊥ and v⊥, IS |= u⊥≈ v⊥ if and only if u⊥↓RS v⊥.
(iv) If IS |= s≈ t, then IS |= usv≈ utv for nonempty strings s, t, u, v ∈�∗.
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Proof. (i) RS is left-reduced because there are no overlaps among the left-hand sides of rewrite
rules in RS, and thus RS has the Church–Rosser property.
(ii) For each rewrite rule l⊥→ r⊥ in RS, we have l⊥�g r⊥, and thus RS is terminating.
(iii) Since RS has the Church–Rosser property and is terminating by (i) and (ii), respectively, RS is
convergent. Thus, IS |= u⊥≈ v⊥ if and only if u⊥↓RS v⊥ for g-terms u⊥ and v⊥.
(iv) Suppose that IS |= s≈ t for nonempty strings s and t. Then, we have IS |= svw⊥≈ tvw⊥ for all
strings v andw byDefinition 7(i). Similarly, since IS is an equality Herbrand interpretation, we also
have IS |= usvw⊥≈ utvw⊥ for all strings u, which means IS |= usv≈ utv by Definition 7(i).

Lemma 15(iv) says that the monotonicity assumption used in this paper holds w.r.t. a model
constructed by Definition 14.

Definition 16. Let S be a set of clauses over�∗. We say that S is saturated underS if every inference
byS with premises in S is redundant w.r.t. S.

Definition 17. Let C := s1 ≈ t1 ∨ · · · ∨ sm ≈ tm ∨ u1 �≈ v1 ∨ · · · ∨ un �≈ vn be a clause over �∗,
and C′ = s1w1⊥≈ t1w1⊥∨ · · · ∨ smwm⊥≈ tmwm⊥∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥ for some
strings w1, . . . ,wm be a g-clause of C. We say that C′ is a reduced g-clause of C w.r.t. a rewrite
system R if every wi⊥, 1≤ i≤m, is not reducible by R.

In the proof of the following lemma, we write s[t]suf to indicate that t occurs in s as a suffix and
(ambiguously) denote by s[u]suf the result of replacing the occurrence of t (as a suffix of s) by u.

Lemma 18. Let S be saturated under S not containing the empty clause and C be a g-clause of a
clause in S. Then C is true in IS. More specifically,
(i) If C is redundant w.r.t. S, then it is true in IS.
(ii) If C is not a reduced g-clause of a clause in S w.r.t. RS, then it is true in IS.
(iii) If C := C′ ∨ s⊥≈ t⊥ produces the rule s⊥→ t⊥, then C′ is false and C is true in IS.
(iv) If C is a g-clause of a clause in S with a selected literal, then it is true in IS.
(v) If C is nonproductive, then it is true in IS.

Proof. We use induction on �g and assume that (i)–(v) hold for every g-clause D of a clause in S
with C�g D.

(i) Suppose that C is redundant w.r.t. S. Then there exist g-clauses C′1, . . . , C′k of clauses
C1, . . . , Ck in S, such that {C′1, . . . , C′k} |= C and C�g C′i for all 1≤ i≤ k. By the induction
hypothesis, each C′i, 1≤ i≤ k, is true in IS. Thus, C is true in IS.

(ii) Suppose that C is a g-clause of a clause B := s1 ≈ t1 ∨ · · · ∨ sm ≈ tm ∨ u1 �≈ v1 ∨ · · · ∨ un �≈
vn in S but is not a reduced g-clause w.r.t. RS. Then C is of the form C := s1w1⊥≈ t1w1⊥∨
· · · ∨ smwm⊥≈ tmwm⊥∨ u1⊥ �≈ v1⊥∨ · · · ∨ un⊥ �≈ vn⊥ for w1, . . . ,wm ∈�∗ and some wk⊥ is
reducible by RS. Now, consider C′ = s1w′1⊥≈ t1w′1⊥∨ · · · ∨ smw′m⊥≈ tmw′m⊥∨ u1⊥ �≈ v1⊥∨
· · · ∨ un⊥ �≈ vn⊥, where w′i⊥ is the normal form of wi⊥ w.r.t. RS for each 1≤ i≤m. Then, C′ is a
reduced g-clause of Bw.r.t. RS and is true in IS by the induction hypothesis. Since eachwi⊥≈w′i⊥,
1≤ i≤m, is true in IS by Lemma 15(iii), we may infer that C is true in IS.

In the remainder of the proof of this lemma, we assume that C is neither redundant w.r.t. S nor
is it a reducible g-clause w.r.t. RS of some clause in S. (Otherwise, we are done by (i) or (ii).)

(iii) Suppose that C := C′ ∨ s⊥≈ t⊥ produces the rule s⊥→ t⊥. Since s⊥→ t⊥∈ EC ⊂ RS,
we see that C is true in IS. We show that C′ is false in IS. Let C′ := �→�. Then IC �|= C′ by
Definition 14, which implies that IC ∩�=∅, IC ⊇ �, and thus IS ⊇ �. It remains to show that
IS ∩�=∅. Suppose to the contrary that � contains an equation s′⊥ ≈ t′⊥ which is true in IS.
Since IC ∩�=∅, we must have s′⊥ ≈ t′⊥ ∈ I \ IC, which is only possible if s⊥= s′⊥ and IC |=
t⊥≈ t′⊥, contradicting condition (2) in Definition 14.

(iv) Suppose that C is of the form C := B′ ∨ s⊥ �≈ t⊥, where s⊥ �≈ t⊥ is a g-literal of a selected
literal in a clause in S and B′ is a g-clause of B.
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(iv.1) If s⊥= t⊥, then B′ is an equality resolvent of C and the Equality Resolution inferences
can be lifted. By saturation of S underS and the induction hypothesis, B′ is true in IS. Thus, C is
true in IS.

(iv.2) If s⊥ �= t⊥, then suppose to the contrary that C is false in IS. Then we have IS |= s⊥≈ t⊥,
which implies that s⊥ or t⊥ is reducible by RS by Lemma 15(iii). Without loss of generality, we
assume that s⊥ is reducible by RS with some rule lu⊥→ ru⊥ for some u ∈�∗ produced by a
productive g-clauseD′ ∨ lu⊥≈ ru⊥ of a clauseD∨ l≈ r ∈ S. This means that s⊥ has a suffix lu⊥.
Now, consider the following inference by Rewriting:

B∨ s[lu]suf �≈ t D∨ l≈ r
B∨D∨ s[ru]suf �≈ t

where s[lu]suf �≈ t is selected for the left premise. The conclusion of the above inference has a
g-clause C′ := B′ ∨D′ ∨ s⊥[ru⊥]suf �≈ t⊥. By saturation of S underS and the induction hypoth-
esis, C′ must be true in IS. Moreover, we see that s⊥[ru⊥]suf �≈ t⊥ is false in IS by Lemma 15(iii),
and D′ are false in IS by (iii). This means that B′ is true in IS, and thus C (i.e., C= B′ ∨ s⊥ �≈ t⊥)
is true in IS, which is the required contradiction.

(v) If C is nonproductive, then we assume that C is not a g-clause of a clause with a selected
literal. Otherwise, the proof is done by (iv). This means that C is of the form C := B′ ∨ su⊥≈ tu⊥,
where su⊥≈ tu⊥ is maximal in C and B′ contains no selected literal. If su⊥= tu⊥, then we are
done. Therefore, without loss of generality, we assume that su⊥�g tu⊥. As C is nonproductive, it
means that (at least) one of the conditions in Definition 14 does not hold.

If condition (1) does not hold, then IC |= C, so we have IS |= C, that is, C is true in IS. If
condition (1) holds but condition (2) does not hold, then C is of the form C := B′1 ∨ su⊥≈
tu⊥∨ svw⊥≈ t′vw⊥, where su= svw (i.e., u= vw) and IC |= tu⊥≈ t′vw⊥.

Suppose first that tu⊥= t′vw⊥. Then we have t= t′ since u= vw. Now, consider the following
inference by Factoring:

B1 ∨ s≈ t ∨ sv≈ tv
B1 ∨ sv≈ tv

The conclusion of the above inference has a g-clause C′ := B′1 ∨ svw⊥≈ tvw⊥, that is, C′ :=
B′1 ∨ su⊥≈ tu⊥ since u= vw. By saturation of S under S and the induction hypothesis, C′ is
true in IS, and thus C is true in IS.

Otherwise, suppose that tu⊥ �= t′vw⊥. Then we have tu⊥↓RC t′vw⊥ by Lemma 15(iii) and
tu⊥�g t′vw⊥ because su⊥≈ tu⊥ is maximal in C. This means that tu⊥ is reducible by RC
by some rule lτ⊥→ rτ⊥ produced by a productive g-clause D′ ∨ lτ⊥≈ rτ⊥ of a clause
D∨ l≈ r ∈ S. Now, we need to consider two cases:

(v.1) If t has the form t := u1u2 and l has the form l := u2u3, then consider the following
inference by Paramodulation:

B∨ s≈ u1u2 D∨ u2u3 ≈ r
B∨D∨ su3 ≈ u1r

The conclusion of the above inference has a g-clause C′ := B′ ∨D′ ∨ su3τ⊥≈ u1rτ⊥ with
u= u3τ . By saturation of S underS and the induction hypothesis, C′ is true in IS. Since D′ is false
in IS by (iii), either B′ or su3τ⊥≈ u1rτ⊥ is true in IS. If B′ is true in IS, so is C. If su3τ⊥≈ u1rτ⊥ is
true in IS, then su⊥≈ tu⊥ is also true in IS by Lemma 15(iii), where t= u1u2 and u= u3τ . Thus,
C is true in IS.

(v.2) If t has the form t := u1u2u3 and l has the form l := u2, then consider the following
inference by Rewrite:
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B∨ s≈ u1u2u3 D∨ u2 ≈ r
B∨D∨ s≈ u1ru3

The conclusion of the above inference has a g-clause C′′ := B′ ∨D′ ∨ su⊥≈ u1ru3u⊥ with
τ = u3u. By saturation of S under S and the induction hypothesis, C′′ is true in IS. Since D′ is
false in IS by (iii), either B′ or su⊥≈ u1ru3u⊥ is true in IS. Similarly to case (v.1), if B′ is true in IS,
so is C. If su⊥≈ u1ru3u⊥ is true in IS, then su⊥≈ tu⊥ is also true in IS by Lemma 15(iii), where
t= u1u2u3. Thus, C is true in IS.

If conditions (1) and (2) hold but condition (3) does not hold, then su⊥≈ tu⊥ is only maximal
but is not strictly maximal, so we are in the previous case. (Since �g is total on g-clauses, condi-
tion (2) does not hold.) If conditions (1)–(3) hold but condition (4) does not hold, then su⊥ is
reducible by RC by some rule lτ⊥→ rτ⊥ produced by a productive g clause D′ ∨ lτ⊥≈ rτ⊥ of a
clause D∨ l≈ r ∈ S. Again, we need to consider two cases:

(v.1’) If s has the form s := u1u2 and l has the form l := u2u3, then consider the following
inference by Superposition:

B∨ u1u2 ≈ t D∨ u2u3 ≈ r
B∨D∨ u1r≈ tu3

The conclusion of the above inference has a g-clause C′ := B′ ∨D′ ∨ u1rτ⊥≈ tu3τ⊥ with
u= u3τ . By saturation of S underS and the induction hypothesis, C′ is true in IS. Since D′ is false
in IS by (iii), either B′ or u1rτ⊥≈ tu3τ⊥ is true in IS. If B′ is true in IS, so is C. If u1rτ⊥≈ tu3τ⊥ is
true in IS, then su⊥≈ tu⊥ is also true in IS by Lemma 15(iii), where s= u1u2 and u= u3τ . Thus,
C is true in IS.

(v.2’) If s has the form s := u1u2u3 and l has the form l := u2, then consider the following
inference by Rewrite:

B∨ u1u2u3 ≈ t D∨ u2 ≈ r
B∨D∨ u1ru3 ≈ t

The conclusion of the above inference has a g-clause C′′ := B′ ∨D′ ∨ u1ru3u⊥≈ tu⊥ with
τ = u3u. By saturation of S under S and the induction hypothesis, C′′ is true in IS. Since D′ is
false in IS by (iii), either B′ or u1ru3u⊥≈ tu⊥ is true in IS. Similarly to case (v.1’), If B′ is true in IS,
so is C. If u1ru3u⊥≈ tu⊥ is true in IS, then su⊥≈ tu⊥ is also true in IS by Lemma 15(iii), where
s= u1u2u3. Thus, C is true in IS.

Definition 19. (i) A theorem proving derivation is a sequence of sets of clauses S0 = S, S1, . . . over
�∗ such that:

(i.1) Deduction: Si = Si−1 ∪ {C} if C can be deduced from premises in Si−1 by applying an infer-
ence rule inS.

(i.2) Deletion: Si = Si−1 \ {D} if D is redundant w.r.t. Si−1.6
(ii) The set S∞ :=⋃

i (
⋂

j≥i Sj) is the limit of the theorem proving derivation:

S∪ {C ∨ l1ll2 �� v, l≈ r}
S∪ {C ∨ l1rl2 �� v, l≈ r}

We see that the soundness of a theorem proving derivation w.r.t. the proposed inference system
is straightforward, that is, Si |= Si+1 for all i≥ 0.

Definition 20. A theorem proving derivation S0, S1, S2, . . . is fair w.r.t. the inference system S if
every inference byS with premises in S∞ is redundant w.r.t.

⋃
j Sj.
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Lemma 21. Let S and S′ be sets of clauses over �∗.
(i) If S⊆ S′, then any clause which is redundant w.r.t. S is also redundant w.r.t. S′.
(ii) If S⊆ S′ and all clauses in S′ \ S are redundant w.r.t. S′, then any clause or inference which is
redundant w.r.t. S′ is also redundant w.r.t. S.
Proof. The proof of part (i) is obvious. For part (ii), suppose that a clause C is redundant w.r.t. S′
and let C′ be a g-clause of it. Then there exists a minimal set N := {C′1, . . . , C′n} (w.r.t. �g) of
g-clauses of clauses in S′ such that N |= C′ and C′ �g C′i for all 1≤ i≤ n. We claim that all
C′i in N are not redundant w.r.t. S′, which shows that C′ is redundant w.r.t. S. Suppose to the
contrary that some C′j is redundant w.r.t. S′. Then there exist a set N′ := {D′1, . . . ,D′m} of g-
clauses of clauses in S′ such that N′ |= C′j and C′j �g D′i for all 1≤ i≤m. This means that we have
{C′1, . . . , C′j−1,D′1, . . . ,D′m, C′j+1, . . . , C′n} |= C′, which contradicts our minimal choice of the set
N = {C′1, . . . , C′n}.

Next, suppose an inference π with conclusionD is redundant w.r.t. S′ and let π ′ be a g-instance
of it such that B is the maximal premise and D′ is the conclusion of π ′ (i.e., a g-clause of D).
Then there exists a minimal set P := {D′1, . . . ,D′n} (w.r.t. �g) of g-clauses of clauses in S′ such that
P |=D′ and B�g D′i for all 1≤ i≤ n. As above, we may infer that all D′i in P are not redundant
w.r.t. S′, and thus π ′ is redundant w.r.t. S.

Lemma 22. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. S. Then S∞ is saturated
underS.

Proof. If S∞ contains the empty clause, then it is obvious that S∞ is saturated underS. Therefore,
we assume that the empty clause is not in S∞.

If a clause C is deleted in a theorem proving derivation, then C is redundant w.r.t. some Sj. By
Lemma 21(i), it is also redundant w.r.t.

⋃
j Sj. Similarly, every clause in

⋃
j Sj \ S∞ is redundant

w.r.t.
⋃

j Sj.
By fairness, every inference π by S with premises in S∞ is redundant w.r.t.

⋃
j Sj. Using

Lemma 21(ii) and the above, π is also redundant w.r.t. S∞, which means that S∞ is saturated
underS.

Theorem 23. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. S. If S∞ does not contain
the empty clause, then IS∞ |= S0 (i.e., S0 is satisfiable.)

Proof. Suppose that S0, S1, . . . is a fair theorem proving derivation w.r.t. S and that its limit S∞
does not contain the empty clause. Then S∞ is saturated under S by Lemma 22. Let C′ be a g-
clause of a clause C in S0. If C ∈ S∞, then C′ is true in IS∞ by Lemma 18. Otherwise, if C /∈ S∞,
then C is redundant w.r.t. some Sj. It follows that C redundant w.r.t.

⋃
j Sj by Lemma 21(i), and

thus redundant w.r.t. S∞ by Lemma 21(ii). This means that there exist g-clauses C′1, . . . , C′k of
clauses C1, . . . , Ck in S∞ such that {C′1, . . . , C′k} |= C′ and C′ �g C′i for all 1≤ i≤ k. Since each C′i,
1≤ i≤ k, is true in IS∞ by Lemma 18, C′ is also true in IS∞ , and thus the conclusion follows.

The following theorem states that S with the contraction rules is refutationally complete for
clauses over �∗.
Theorem 24. Let S0, S1, . . . be a fair theorem proving derivation w.r.t. S. Then S0 is unsatisfiable
if and only if the empty clause is in some Sj.

Proof. Suppose that S0, S1, . . . be a fair theorem proving derivation w.r.t. S. By the soundness of
the derivation, if the empty clause is in some Sj, then S0 is unsatisfiable. Otherwise, if the empty
clause is not in Sk for all k, then S∞ does not contain the empty clause by the soundness of the
derivation. Applying Theorem 23, we conclude that S0 is satisfiable.
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u1u2 ≈ s u2u3 ≈ tSuperposition: u1t≈ su3
if (i) u2 is not λ, (ii) u1u2 � s, and (iii) u2u3 � t.

C ∨ u1u2u3 �≈ s u2 ≈ t
Rewrite: C ∨ u1tu3 �≈ s
if (i) u1u2u3 �≈ s is selected for the left premise, and (ii) u2 � t.

C ∨ s �≈ sEquality Resolution: C
if s �≈ s is selected for the premise.

Above, C is a conditional equation over �∗.

Figure 1. The inference systemS for conditional equations over�∗.

6. Conditional Completion
In this section, we present a saturation procedure underS for a set of conditional equations over
�∗, where a conditional equation is naturally written as an equational Horn clause. A saturation
procedure underS (with contraction rules) can be viewed as conditional completion (Dershowitz,
1991) for a set of conditional equations over �∗. If a set of conditional equations over �∗ is
simply a set of equations over �∗, then the proposed saturation procedure under S (with con-
traction rules) corresponds to a completion procedure for a string rewriting system. Conditional
string rewriting systems were considered in Deiß (1992) in the context of embedding a finitely
generated monoid with decidable word problem into a monoid presented by a finite convergent
conditional presentation. It neither discusses a conditional completion (or a saturation) proce-
dure nor considers the word problems for conditional equations over �∗ in general.

First, it is easy to see that a set of equations over �∗ is consistent. Similarly, a set of condi-
tional equations R over �∗ is consistent because each conditional equation has always a positive
literal and we cannot derive the empty clause from R using a saturation procedure under S that
is refutationally complete (cf. Section 9 in Dershowitz and Plaisted (2001)).

Figure 1 shows the inference rules ofS (with selection) for equational Horn clauses. Since we
only consider equational Horn clauses in this section, we neither need to consider the Factoring
rule nor the Paramodulation rule in S. In the remainder of this section, by a conditional
equational theory R, we mean a set of conditional equations R over �∗.
Definition 25. Given a conditional equational theory R and two finite words s, t ∈�∗, a word
problem w.r.t. R is of the form φ := s≈? t. The goal of this word problem is s �≈ t. We say that a
word problem s≈? t w.r.t. R is decidable if there is a decision procedure for determining whether
s≈ t is entailed by R (i.e., R |= s≈ t) or not (i.e., R �|= s≈ t) .

Given a conditional equational theory R, let G := s �≈ t be the goal of a word problem s≈? t
w.r.t. R. (Note that G does not have any positive literal.) Then we see that R∪ {s≈ t} is consistent
if and only if R∪ {G} is inconsistent. This allows one to decide a word problem w.r.t. R using the
equational theorem proving procedure discussed in Section 5.

Lemma 26. Let R be a conditional equational theory finitely saturated under S. Then Rewrite
together with Equality Resolution is terminating and refutationally complete for R∪ {G}, where G is
the goal of a word problem w.r.t. R.
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Proof. Since R is already saturated under S, inferences among Horn clauses in R are redundant
and remain redundant in R∪ {G} for a theorem proving derivation starting with R∪ {G}. (Here,
{G} can be viewed as a set of support (Bachmair and Ganzinger, 1994) for a refutation of R∪ {G}.)
Now, observe that G is a negative literal, so it should be selected. The only inference rules in S
involving a selected literal are the Rewrite and Equality Resolution rule. Furthermore, the derived
literals from G w.r.t. Rewrite will also be selected eventually. Therefore, it suffices to consider pos-
itive literals as the right premise (because they contain no selected literal), and G and its derived
literals w.r.t. Rewrite as the left premise for the Rewrite rule. Observe also that if G′ is an imme-
diate derived literal from G w.r.t. Rewrite, then we see that G�G′. If G or its derived literal from
G w.r.t. Rewrite becomes of the form u �≈ u for some u ∈�∗, then it will also be selected and an
Equality Resolution inference yields the empty clause. Since � is terminating and there are only
finitely many positive literals in R, wemay infer that the Rewrite and Equality Resolution inference
steps on G and its derived literals are terminating. (The number of positive literals in R remains
the same during a theorem proving derivation starting with R∪ {G} using our selection strategy.)

Finally, since S is refutationally complete by Thereom 24, Rewrite together with Equality
Resolution is also refutationally complete for R∪ {G}.

Given a finitely saturated conditional equational theory R under S, we provide a decision
procedure for the word problems w.r.t. R in the following theorem.

Theorem 27. Let R be a conditional equational theory finitely saturated under S. Then the word
problems w.r.t. R are decidable by Rewrite together with Equality Resolution.

Proof. Let φ := s≈? t be a word problem w.r.t. R and G be the goal of φ. We know that by
Lemma 26, Rewrite together with Equality Resolution is terminating and refutationally com-
plete for R∪ {G}. Let R0 := R∪ {G}, R1, . . . , Rn be a fair theorem proving derivation w.r.t. Rewrite
together with Equality Resolution such that Rn is the limit of this derivation. If Rn contains the
empty clause, then Rn is inconsistent, and thus R0 is inconsistent, that is, {s �≈ t} ∪ R is inconsis-
tent by the soundness of the derivation. Since R is consistent and {s �≈ t} ∪ R is saturated underS,
we may infer that R |= s≈ t.

Otherwise, if Rn does not contain the empty clause, then Rn is consistent, and thus R0 is con-
sistent by Theorem 24, that is, {s �≈ t} ∪ R is consistent. Since R is consistent and {s �≈ t} ∪ R is
saturated underS, we may infer that R �|= s≈ t.

The following corollary is a consequence of Theorem 27 and the following observation. Let
R= R0, R1, . . . , Rn be a finite fair theorem proving derivation w.r.t. S for an initial conditional
equational theory R with the limit R̄ := Rn. Then R∪ {G} is inconsistent if and only if R̄∪ {G} is
inconsistent by the soundness of the derivation and Theorem 24.

Corollary 28. Let R= R0, R1, . . . be a fair theorem proving derivation w.r.t. S for a conditional
equational theory R. If R can be finitely saturated under S, then the word problems w.r.t. R are
decidable.

Example 29. Let a� b� c and R be a conditional equational theory consisting of the fol-
lowing conditional equations 1: aa≈ λ, 2: bb≈ λ, 3: ab≈ λ, 4: ab �≈ ba∨ ac≈ ca, and 5:
ab �≈ ba∨ ac �≈ ca∨ bc≈ cb. We first saturate R underS:

6: λ �≈ ba∨ ac≈ ca (ab �≈ ba is selected for 4. Rewrite of 4 with 3)
7: λ �≈ ba∨ ac �≈ ca∨ bc≈ cb (ab �≈ ba is selected for 5. Rewrite of 5 with 3)
8: a≈ b (Superposition of 1 with 3)
9: λ �≈ bb∨ ac≈ ca (λ �≈ ba is selected for 6. Rewrite of 6 with 8)
10: λ �≈ λ∨ ac≈ ca (λ �≈ bb is selected for 9. Rewrite of 9 with 2)
11: ac≈ ca (λ �≈ λ is selected for 10. Equality Resolution on 10)
12: λ �≈ bb∨ ac �≈ ca∨ bc≈ cb (λ �≈ ba is selected for 7. Rewrite of 7 with 8)
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13: λ �≈ λ∨ ac �≈ ca∨ bc≈ cb (λ �≈ bb is selected for 12. Rewrite of 12 with 2)
14: ac �≈ ca∨ bc≈ cb ( λ �≈ λ is selected for 13. Equality Resolution on 13)
15: ca �≈ ca∨ bc≈ cb ( ac �≈ ca is selected for 14. Rewrite of 14 with 11)
16: bc≈ cb (ca �≈ ca is selected for 15. Equality Resolution on 15)
· · ·
After some simplification steps, we have a saturated set R̄ for R underS using our selection strategy
(i.e., the selection of negative literals). We may infer that the positive literals in R̄ are as follows.
1′ : bb≈ λ, 2′ : a≈ b, and 3′ : bc≈ cb. Note that only the positive literals in R̄ are now needed to
solve a word problem w.r.t. R because of our selection strategy.

Now, consider the word problem φ := acbcba≈? bccaba w.r.t. R, where the goal of φ is
G := acbcba �≈ bccaba. We only need the Rewrite and Equality Resolution steps on G and its derived
literals from G using 1′, 2′, and 3′. Note that all the following literals are selected except the empty
clause.

4′: bcbcbb �≈ bccbbb (Rewrite steps of G and its derived literals from G using 2′).
5′: bcbc �≈ bccb (Rewrite steps of 4′ and its derived literals from 4′ using 1′).
6′: ccbb �≈ ccbb (Rewrite steps of 5′ and its derived literals from 5′ using 3′).
7′:� (Equality Resolution on 6′)

Since R̄∪G is inconsistent, we see that R∪G is inconsistent by the soundness of the derivation,
where R and R̄ are consistent. Therefore, we may infer that R |= acbcba≈ bccaba.

7. Unification in Conditional Equational Theories
This section is concerned with unification in conditional equational theories over strings. It
presents a complete method of solving unification problems over strings w.r.t. a conditional
equational theory over strings if it is finitely saturated underS with contraction rules.

Definition 30. (i) A binary relation ∼ on �∗ is closed under monotonicity if s∼ t implies usv∼
utv for all s, t, u, v ∈�∗.
(ii) Let S be a set of conditional equations over �∗. A binary relation ∼ on �∗ is closed under the
conditional equations in S if (s1 ≈ t1 ∧ · · · ∧ sn ≈ tn)→ l≈ r ∈ S and si ∼ ti for all 1≤ i≤ n imply
l∼ r.7
(iii) Let S be a set of conditional equations over�∗. We denote by≈S on�∗ the smallest equivalence
relation closed under both monotonicity and the conditional equations in S (c.f. Kaplan (1987)).

Definition 31. Given a conditional equational theory S over �∗ and two finite words u, v ∈�∗, a
unification problem w.r.t. S is of the form φ := ux≈?

S vy for some variables x, y ∈ X. We say that a
unification problem φ := ux≈?

S vy has an S-unifier if there is a substitution {x �→w1, y �→w2} for
some w1,w2 ∈�∗ such that uw1 ≈S vw2.

Example 32. (i) Let S= {ab≈ cdd}. Then the unification problem ax≈?
S cy has an S-unifier {x �→

b, y �→ dd} since ab≈S cdd.
(ii) Let S= {a≈ b, ad≈ bd→ cab≈ dab}. Then the unification problem cx≈?

S dx has an S-unifier
{x �→ ab} since a≈S b, ad≈S bd (closed under monotonicity), and cab≈S dab (closed under the
conditional equations in S).

Definition 33. Given a conditional equational theory S over �∗, we denote by R(S) the (uncondi-
tional) rewrite system obtained by orienting each nontrivial equation over �∗ in S using �. (Recall
that � is a reduction order total on �∗ and an equation over �∗ is trivial if it has the form s≈ s.)

In what follows, by the contraction rules, we mean the contraction rules in Section 3 for Horn
clauses. We assume that the contraction rules are applied eagerly during a theorem proving
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derivation w.r.t. S with the contraction rules, that is, the contraction rules are applied to a Horn
clause set as soon as they become applicable. In this case, we see that the application of the Rewrite
rule inS can be replaced by the application of the Simplification rule for Horn clauses.

Lemma 34. Let S= S0, S1, . . . be a fair theorem proving derivation w.r.t. S with the contraction
rules for an initial conditional equational theory S over �∗. If Sn for some n is finitely saturated
underS with the contraction rules, then R(Sn) is convergent on �∗.
Proof. First, it is easy to see that R(Sn) is terminating because→R(Sn)⊂�. Since Sn is finitely sat-
urated under S with the the contraction rules, it suffices to consider the overlaps between the
rewrite rules in R(Sn) of the form u1u2→ s ∈ R(Sn) and u2u3→ t ∈ R(Sn), where u2 is not λ.
Now, the critical pair u1t≈ su3 (in an equation form) are joinable using the Superposition rule
in S (see Figure 1). Observe that u1t≈ su3 could be further simplified, but it is still joinable by
R(Sn). Also, we do not need to consider the overlaps of the form u1u2u3→ s ∈ R(Sn) and u2→
t ∈ R(Sn) because Sn is saturated under S with the contraction rules. Here, u1u2u3→ s ∈ R(Sn)
cannot occur in R(Sn) because u1u2u3 ≈ s with u1u2u3 � s would be simplified eagerly by u2 ≈ t
with u2 � t.

Lemma 35. Let S= S0, S1, . . . be a fair theorem proving derivation w.r.t. S with the contraction
rules for an initial conditional equational theory S over �∗. If Sn for some n is finitely saturated
underS with the contraction rules, then ≈S and ≈R(Sn) coincide, where the rewrite system R(Sn) is
viewed as a set of equations over �∗.
Proof. We first show that a conditional equation generated by each inference rule in S does not
modify ≈Si for all 0≤ i< n, where S0 = S. Consider the Superposition rule and let u1u2 ≈ s ∈ Sk
and u2u3 ≈ t ∈ Sk for some 0≤ k< n. Then, we have u1u2 ≈Sk s and u2u3 ≈Sk t. The conclusion
of this inference is u1t≈ su3 ∈ Sk+1. Since ≈Sk is an equivalence relation closed under mono-
tonicity, we also have u1u2u3 ≈Sk su3 and u1u2u3 ≈Sk u1t, and thus u1t≈Sk su3.8 Next, consider
the Equality Resolution rule and let C ∨ s �≈ s ∈ Sk. Since s≈Sk s, the conclusion of this inference
does not modify≈Sk . For the other contraction rules, removing or replacing the redundant Horn
clauses by the contracted clauses does not change≈Sk , and thus≈S and≈Sn coincide.

Next, we show that≈Sn and≈R(Sn) coincide. Since Sn is saturated underSwith the contraction
rules, each clause in Sn with the nonempty conditional part is now redundant in Sn. By Lemma 34,
R(Sn) is convergent, and thus≈R(Sn) and ↓R(Sn) coincide. Now, we see that the unconditional part
of each clause in Sn having the nonempty conditional part does not modify/expand ≈R(Sn) by
Definition 30(iii). Since≈Sn and≈R(Sn) also coincide, the conclusion follows.

The above lemma provides a method of deriving an equivalent convergent (unconditional)
rewrite system over �∗ from a conditional equational theory over �∗ if it can be finitely saturated
underSwith the contraction rules. In what follows, a rewrite system R over�∗ oriented by� can
also be viewed as a set of equations over �∗ (i.e., an equational theory over �∗).

If a conditional equational theory S= S0 over �∗ can be finitely saturated by a fair theorem
proving derivation w.r.t. S with the contraction rules in some Sn, then solving unification prob-
lems over strings w.r.t. S can be reduced to solving unification problems over strings w.r.t. ≈R(Sn)
by Lemma 35. In this case, a unification problem ux≈?

S vy is reduced to the unification problem
ux≈?

R(Sn) vy for two finite words u, v ∈�∗ and x, y ∈ X.
Figure 2 shows the proposed inference system for solving unification problems over strings

w.r.t. ≈R(Sn) over strings, which is adapted from the rule-based E-unification algorithm for an
unconditional equational theory E in Baader and Snyder (2001). The computation of solving a
unification problem can now be proceeded by applying the inference rules in Figure 2 with the
initial system of the form {ux≈? vy};∅ in an attempt to reach some terminal system of form ∅;Q
representing an R(Sn)-unifier σQ of u and v, which will be discussed in more detail.
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{ux≈? ux} ∪ P′;Q
Trivial: if u ∈�∗ and x ∈ X.P′;Q

{sux≈? sty} ∪ P′;QDecomposition: if s ∈�∗ \ {λ}, u ∈�∗, and x, y ∈ X.{ux≈? ty} ∪ P′;Q

{uy≈? x} ∪ P′;Q
Orientation: if u ∈�∗ \ {λ} and x, y ∈ X.{x≈? uy} ∪ P′;Q

{x≈? uy} ∪ P′;Q
Variable Elimination: if u ∈�∗, x, y ∈ X, and x �= y.

P′{x �→ uy};Q{x �→ uy} ∪ {x≈ uy}

{e[ux]} ∪ P′;QLazy Paramodulation: if u ∈�∗ \ {λ}, x ∈ X, l→ r ∈ R(Sn),{lz≈? ux, e[rz]} ∪ P′;Q}
lz→ rz is a first-order representation of l→ r using a fresh variable z ∈ X, and either u is a
prefix of l or l is a prefix of u.

Above, R(Sn) is the rewrite system obtained by orienting each equation in Sn using �,
where Sn is a set of conditional equations finitely saturated underS with contraction rules.

Figure 2. The rules of deduction for rule-based R(Sn)-unification.

We denote by I the inference system consisting of Trivial, Decomposition, Orientation,
Variable Elimination, and Lazy Paramodulation (see Figure 2). We denote by =⇒ a transforma-
tion on the systems P;Q, where a multiset P consists of R(Sn)-unification problems and a multiset
Q consists of the equations in solved form. A set of equations {x1 ≈ t1, . . . , xn ≈ tn} is in solved
form (Baader and Snyder, 2001) if each variable xi has a single occurrence in the set. A substitu-
tion {x1 �→ t1, . . . , xn �→ tn} may be represented by a set of equations in solved form, so for any
set of equations Q in solved form, we denote by the corresponding substitution σQ. By

∗=⇒ we
denote a sequence of transformations on the systems P;Q including the empty sequence.

Definition 36. (i) Let u ∈�∗ and x ∈ X. We say that uxθ is an instance of ux if uxθ ∈�∗.
(ii) Let u ∈�∗ and x ∈ X. We say that uxθ is a reduced instance of ux w.r.t. a rewrite system R over
�∗ if uxθ is an instance of ux and xθ is in R-normal form.
(iii) Let R be a rewrite system over �∗. We say that lxθ→ rxθ for some substitution θ and x ∈ X is
an instance of l→ r ∈ R if xθ ∈�∗. It is a reduced instance of l→ r ∈ Rw.r.t. R if xθ is in R-normal
form.
(iv) Given a conditional equational theory S and a set of variables V ⊆ X, we say that a substitution
θ is an instance of a substitution σ on V w.r.t. S if there exists some w ∈�∗ such that xθ ≈S xσw
for all x ∈V. We write σ �V

S θ if θ is an instance of σ on V w.r.t. S.

Example 37. Let S= {abb≈ cdd} and φ : ax≈?
S cdy. Then, an S-unifier θ = {x �→ bba, y �→ da} is

an instance of an S-unifier σ = {x �→ bb, y �→ d} on V, that is, σ �V
S θ , where V = {x, y}.

https://doi.org/10.1017/S0960129524000112 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000112


Mathematical Structures in Computer Science 1073

Recall that we write s[t]suf to indicate that t occurs in s as a suffix and (ambiguously) denote by
s[u]suf the result of replacing the occurrence of t (as a suffix of s) by u. The following definition is
adapted from Baader and Snyder (2001).

Definition 38. Let R be a convergent rewrite system over �∗ oriented by �, and let uxθ be
an instance of ux for some substitution θ , where u ∈�∗ and x ∈ X. A rewrite step uxθ→R u′ is
constrained on ux w.r.t. R if the string introduced by the substitution (i.e., xθ) in uxθ is in R-normal
form. A rewrite sequence uxθ ∗−→R t is constrained on ux w.r.t. R if either uxθ = t or it starts with a
rewrite step constrained on ux w.r.t. R, for example,

uxθ = uxθ[lzρ]suf →R uxθ[rzρ]suf = ux[rz]suf θρ = ux[rz]suf θ ′
∗−→R t

and the remainder is constrained on ux[rz]suf w.r.t. R, where θ ′ = θρ, lz→ rz is a first-order
representation of l→ r ∈ R using a fresh variable z ∈ X and lzρ→ rzρ is a reduced instance of
l→ r ∈ R w.r.t. R. A rewrite proof sxθ ∗−→R · ∗←−R tyτ is constrained for sxθ and tyτ w.r.t. R if the
left-hand side is constrained on sx w.r.t. R and the right-hand side is constrained on ty w.r.t. R.

Lemma 39. Let R be a convergent rewrite system over�∗ oriented by�. For any s, t ∈�∗, x, y ∈ X,
where sxθ (resp. tyθ) is a reduced instance of sx (resp. ty) w.r.t. R for some substitution θ , the
following are equivalent:

(i) sxθ ≈R tyθ , where R is viewed as a set of equations over �∗.
(ii) There exists a constrained rewrite proof for sxθ and tyθ w.r.t. R.

Proof. Since R is convergent on �∗ by Lemma 34, sxθ ≈R tyθ if and only if there exists a rewrite
proof for sxθ and tyθ using instances of rules from R.

It remains to show that such a rewrite proof can be a constrained rewrite proof for sxθ and tyθ
w.r.t. R. Since R is convergent on �∗, we choose the rightmost reduction strategy for R, where the
rightmost reduction strategy always contracts a rightmost redex (i.e., a redex occurring as a suffix)
in a reducible string over �∗ using instances of rules from R. At each step of a rewrite proof,
among all the possible instances of rules from R that could be used for rightmost reduction, we
choose one that is minimal w.r.t. �lex (i.e., the lexicographic extension of� to pairs of strings over
�∗). This means that for any instance lzρ→ rzρ of l→ r ∈ R with a fresh variable z ∈ X used in
a rewrite proof for sxθ and tyθ , lzρ→ rzρ must be a reduced instance of l→ r w.r.t. R. Also, sxθ
and tyθ are reduced instances of sx and ty w.r.t. R, respectively, so we may infer that there exists a
constrained rewrite proof for sxθ and tyθ w.r.t. R.

The following theorem shows the completeness of I for solving an S-unification problem over
�∗ if a conditional equational theory S over �∗ can be finitely saturated under S with the con-
traction rules.9 Note that unification in conditional equational theories over strings is undecidable
in general because unification in (unconditional) equational theories over strings is undecid-
able (Otto et al., 1998). In what follows, given a set of S-unification problems P and a set of
equations in solved form Q, by Vars(P) and Vars(Q), we denote the set of variables occurring
in P and Q, respectively. Also, Vars(P,Q) denotes the set of all variables occurring in P or Q. By
Pθ , we denote a substitution θ applied to P in such a way that θ is applied to each of the equations
in P. By Dom τ for a substitution τ , we denote Dom τ := {x ∈ X | xτ �= x}. We say that a substitu-
tion θ is an S-solution of P;Q if θ is an S-unifier of each of the equations in P and Q. It is a reduced
S-solution of P;Q over �∗ if xθ is in R(S)-normal form for all x ∈Vars(P,Q).
Theorem 40. Let S= S0, S1, . . . be a fair theorem proving derivation w.r.t. S with the contrac-
tion rules and let Sn for some n be finitely saturated under S with the contraction rules. If θ is an
S-solution of P;∅, then there exists a sequence P;∅ ∗=⇒∅;Q (with Q in solved form) by the calculus I
such that σQ �V

S θ for V =Vars(P).
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Proof. Since Sn is finitely saturated underS with the contraction rules,≈S and≈R(Sn) coincide by
Lemma 35. If θ is an S-solution of P;∅, then we may instead consider a reduced R(Sn)-solution θ ′
of P;∅ with Dom θ ′ =Dom θ and xθ ′ ≈S xθ for all x ∈Dom θ ′.

We now define a measure of P;Q and its solution τ using a quadruple <m, n1, n2, n3 >

(cf. Baader and Snyder (2001)), ordered by the well-founded lexicographic ordering on quadru-
ples of natural numbers. Here,

m= The total number of rewrite steps by R(Sn) in all the minimal-length constrained
rewrite proofs for equations in Pτ w.r.t. R(Sn);

n1 = The number of distinct variables occurring in equations ux≈? vy ∈ P, where u, v ∈�∗,
x, y ∈ X, uxτ = vyτ , and uxτ is in R(Sn)-normal form;

n2 = The number of symbols occurring in equations ux≈? vy ∈ P, where u, v ∈�∗, x, y ∈ X,
uxτ = vyτ , and uxτ is in R(Sn)-normal form;

n3 = The number of equations in P of the form uy≈? x, where u ∈�∗ \ {λ}, x, y ∈ X,
uyτ = xτ , and uyτ is in R(Sn)-normal form.

We show by induction using this measure in such a way that if θ ′ is a R(Sn)-reduced solution of
a system P;Q′ (with Q′ in solved form), then there exists a transformation sequence P;Q′ ∗=⇒∅;Q
by the calculus I, where σQ �V

R(Sn) θ
′ for V =Vars(P,Q′).

Let θ ′ be a R(Sn)-reduced solution of a system P;Q′. The base case is ∅;Q, which is
straightforward because a fortiori σQ �V

R(Sn) θ
′ for V =Vars(Q). For the induction step, suppose

P= {ux≈? vy} ∪ P′ for some u, v ∈�∗ and x, y ∈ X. If uxθ ′ = vyθ ′ and uxθ ′ is in R(Sn)-normal
form, then we proceed a transformation step P;Q′ =⇒ P′;Q′′ using the Trivial, Decomposition,
Orientation, or the Variable Elimination rule. Since P′;Q′′ is a smaller system w.r.t. the mea-
sure having the same R(Sn)-reduced solution θ ′ with Vars(P′,Q′′)⊆Vars(P,Q′), the induction
hypothesis yields P′;Q′′ ∗=⇒∅;Q. Thus, we have P;Q′ =⇒ P′;Q′′ ∗=⇒∅;Q such that σQ �V

R(Sn) θ
′ for

V =Vars(P,Q′).
Otherwise, by Lemmas 34 and 39, there exists a constrained rewrite proof of the mini-

mal length for uxθ ′ and vyθ ′ w.r.t. R(Sn). Without loss of generality, consider a rewrite step
from uxθ ′ in a minimal-length constrained rewrite proof uxθ ′[u′xθ ′]suf →R(Sn) uxθ ′[rzρ]suf =
ux[rz]suf θ ′ρ

∗−→R(Sn) · ∗←−R(Sn) vyθ ′ w.r.t. R(Sn), where lzρ→ rzρ is a reduced instance of l→
r ∈ R(Sn) w.r.t. R(Sn) and u′xθ ′ = lzρ. Let θ ′′ = θ ′ρ. Then, there exists a transformation step
{ux[u′x]suf ≈? vy} ∪ P′;Q′ =⇒ {lz≈? u′x, ux[rz]suf ≈? vy} ∪ P′;Q′ by Lazy Paramodulation to a
new system having a smaller complexity measure (in the first component) w.r.t. its new solu-
tion θ ′′. By the induction hypothesis, we have {lz≈? u′x, ux[rz]suf ≈? vy} ∪ P′;Q′ ∗=⇒∅;Q such
that σQ �V ′

R(Sn) θ
′′ with V ′ =Vars(l, r, P,Q′). Since xθ ′ = xθ ′′ for every x ∈Vars(P,Q′), we have

σQ �V
R(Sn) θ

′ with V =Vars(P,Q′).
Now, we have σQ �V

S θ ′ forV =Vars(P,Q′) and θ ′ �V
S θ forV =Vars(P,Q′), and thus σQ �V

S θ

for V =Vars(P,Q′), where≈S and≈R(Sn) coincide by Lemma 35.

Example 41. Consider the conditional equational theory S consisting of the following conditional
equations 1: bb≈ λ, 2: a≈ b, and 3: bb �≈ λ∨ a �≈ b∨ bc≈ cb with a� b� c. We have a saturated
set Sn for some n under S with the contraction rules. It is easy to see that the rewrite system R(Sn)
consists of the following rules 1′ : bb→ λ, 2′ : a→ b, and 3′ : bc→ cb. We may infer that it is also
convergent on �∗. Now, consider the unification problem problem φ := ccbx≈? cbay for x, y ∈ X
w.r.t. S. We have the following inference steps by I using R(Sn).

(i) Let P0;∅, where P= P0 = {ccbx≈? cbay}.
(ii) Decomposition: P1;∅, where P1 = {cbx≈? bay}.
(iii) Lazy Paramodulation: P2;∅, where P2 = {az1 ≈? ay} ∪ {cbx≈? bbz1}. Here, the “Lazy
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Paramodulation” rule is applied to ay in P1 using 2′ with a fresh variable z1 ∈ X (i.e., az1→ bz1).
(iv) Decomposition: P3;∅, where P3 = {z1 ≈? y} ∪ {cbx≈? bbz1}.
(v) Lazy Paramodulation: P4;∅, where P4 = {bbz2 ≈? bbz1} ∪ {z1 ≈? y} ∪ {cbx≈? z2}. Here, the
“Lazy Paramodulation” rule is applied to bbz1 in P3 using 1′ with a fresh variable z2 ∈ X (i.e.,
bbz2→ z2).
(vi) Decomposition: P5;∅, where P5 = {z2 ≈? z1} ∪ {z1 ≈? y} ∪ {cbx≈? z2}.
(vii) Variable Elimination: P6;Q1, where P6 = {z1 ≈? y} ∪ {cbx≈? z1} and Q1 = {z2 ≈ z1}.
(viii) Variable Elimination: P7;Q2, where P7 = {cbx≈? y} and Q2 = {z2 ≈ y} ∪ {z1 ≈ y}.
(ix) Orientation: P8;Q2, where P8 = {y≈? cbx} and Q2 = {z2 ≈ y} ∪ {z1 ≈ y}.
(x) Variable Elimination: P9;Q3, where P9 =∅ and Q3 = {z2 ≈ cbx} ∪ {z1 ≈ cbx} ∪ {y≈ cbx}.

Now, we have the general form of S-unifiers {y �→ cbx} for φ := ccbx≈? cbay, where x can be
mapped to any string w ∈�∗. For instance, {x �→ λ, y �→ cb} is an S-unifier for φ.

8. Related Work
Equational reasoning on strings has been studied extensively in the context of string rewriting
systems and Thue systems (Book and Otto, 1993) and their related algebraic structures. The
monotonicity assumption used in this paper is found in string rewriting systems and Thue sys-
tems in the form of a congruence relation (see, e.g., Book and Otto (1993); Kapur and Narendran
(1985)). See Book and O’Dunlaing (1981); Cremanns and Otto (2002); Madlener et al. (1991);
Otto et al. (1997) also for the completion of algebraic structures and decidability results using
string rewriting systems, in particular cross sections for finitely presented monoids discussed by
Otto et al. Otto et al. (1997). However, those systems are not concerned with equational theorem
proving for general clauses over strings. If the monotonicity assumption is discarded, then equa-
tional theorem proving for clauses over strings can be handled by traditional superposition calculi
or SMT with the theory of equality with uninterpreted functions (EUF) and their variants (Barrett
et al., 2009) using a simple translation into first-order ground terms. Also, efficient SMT solvers
for various string constraints were discussed in the literature, see for example Liang et al. (2016).

Meanwhile, equational theorem proving modulo associativity was studied in Rubio (1996),
and equational theorem proving modulo equational theories satisfying certain properties was dis-
cussed in Kim and Lynch (2021). See also Kutsia (2002) for equational theorem proving with
sequence variables and fixed or variadic arity symbols. In particular, the inference rules and the
redundancy criteria used in both Rubio (1996) and Kim and Lynch (2021) are not directly appli-
cable to equational theorem proving for general clauses over strings discussed in this paper.
These approaches are not tailored toward strings, so we need an additional encoding for each
string. Also, they are probably less efficient since they are not tailored toward (ground) strings.
Furthermore, they neither provide a similar decision procedure for solving word problems in con-
ditional equational theories over strings in Section 6 nor discuss a similar unification procedure
in conditional equational theories over strings in Section 7.

An associative commutative (AC) congruence closure algorithm (Kapur, 2023) is concerned
with the word problem for a finite set of ground equations containingAC symbols. (The AC prop-
erties are not considered in the proposed inference systemS for clauses over strings.) However, it
is not yet known that it can be extended for an equational theorem proving procedure for general
clauses, possibly using a string encoding for flat terms.

The proposed calculus is the first sound and refutationally complete equational theorem prov-
ing calculus for general clauses over strings under themonotonicity assumption. Onemay attempt
to use the existing superposition calculi for clauses over strings with the proposed translation
scheme, which translates clauses over strings into clauses over first-order terms discussed in
Section 3.2. However, this does not work because of the Equality Factoring rule (Bachmair and
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Ganzinger, 1994; Nieuwenhuis and Rubio, 2001) or the Merging Paramodulation rule (Bachmair
and Ganzinger, 1994), which is essential for first-order superposition theorem proving calculi
in general. For example, consider a clause a≈ b∨ a≈ c with a� b� c, which is translated into a
first-order clause a(x)≈ b(x)∨ a(y)≈ c(y). The Equality Factoring rule yields b(z) �≈ c(z)∨ a(z)≈
c(z) from a(x)≈ b(x)∨ a(y)≈ c(y), which cannot be translated back into a clause over strings (see
Lemma 3). Similarly, a first-order clause produced by Merging Paramodulation may not be trans-
lated back into a clause over strings. If one is only concerned with refutational completeness, then
the existing superposition calculi10 can be adapted by using the proposed translation scheme. In
this case, a saturated set may not be translated back into clauses over strings in some cases, which
is an obvious drawback for its applications (see programs in Bachmair and Ganzinger (1994)).

As far as the author knows, conditional completion and unification in conditional equational
theories over strings, assuming themonotonicity property of equations over strings, have not been
considered in the literature.

Although conditional string rewriting systems were considered in Deiß (1992) for embedding
a finitely generated monoid with decidable word problem into a monoid presented by a finite
convergent conditional presentation, they are neither concerned with a conditional completion
procedure nor concerned with the word problems for conditional equations over �∗ in general.

Conditional completion and unification in conditional equational theories over �∗ discussed
in this paper are natural extension of completion of string rewriting systems (Book andOtto, 1993)
and the first-order unification in equational theories over �∗ (Otto et al., 1998), respectively, for
conditional settings.

9. Conclusion
This paper has presented a new refutationally complete superposition calculus with strings and
provided a framework for equational theorem proving for clauses over strings. The results
presented in this paper generalize the results on completion of string rewriting systems and equa-
tional theorem proving using equations over strings. The proposed superposition calculus is based
on the simple string matching methods and the efficient length-lexicographic ordering that allows
one to compare two finite strings in linear time for a fixed signature with its precedence.

The proposed approach translates for a clause over strings into the first-order representation
of the clause by taking the monotonicity property of equations over strings into account. Then
the existing notion of redundancy and model construction techniques for the equational theorem
proving framework for clauses over strings has been adapted.

This paper has provided a new decision procedure for solving word problems over strings
and a new method of solving unification problems over strings w.r.t. a conditional equational
theory S over strings if S can be finitely saturated under the proposed inference system with
contraction rules. Here, a conditional equational theory S over �∗ can be transformed into an
equivalent (unconditional) string rewriting system over �∗, where an (unconditional) string
rewriting system over �∗ is often simpler and easier to handle in comparison with a conditional
equational theory over �∗. This transformation can be achieved by rewriting and contracting
the conditional part of each (Horn) clause eagerly using unconditional equations during a the-
orem proving derivation if S can be finitely saturated under the proposed inference system with
contraction rules. Furthermore, it aims to make the results of (unconditional) string rewriting
systems applicable to conditional equational theories over �∗.

Since strings are fundamental objects in mathematics, logic, and computer science including
formal language theory, developing applications based on the proposed superposition calculus
with strings may be a promising future research direction. Also, the results in this paper may have
potential applications in verification systems and solving satisfiability problems (Armando et al.,
2003). In addition, it would be an interesting future research direction to extend our superposition
calculus with strings to superposition calculi with strings using built-in equational theories, such
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as commutativity, idempotency (Book and Otto, 1993), nilpotency (Guo et al., 1996), and their
various combinations. For example, research on superposition theorem proving for commutative
monoids (Rosales et al., 1999) is one such direction. Finally, it would be another potential future
research direction to see whether the results discussed in Meseguer (2023) can be adapted for
unification in conditional equational theories over strings.

Notes
1 Note that it suffices to assume the right monotonicity property of equations over strings, that is, s≈ t implies su≈ tu for
strings s, t, and u, when finding overlaps between equations over strings under the monotonicity assumption.
2 We do not require that u1u2 ≈ s (resp. u2u3 ≈ t) is strictly maximal in the left premise (resp. the right premise) because of
the assumption on the monotonicity property of equations over strings (see also Lemma 3 in Section 3.2).
3 Note that u2 � t implies that u2 cannot be the empty string λ.
4 One may assume the cancelation property and associate s �≈ t over strings with s(x) �≈ t(x) over first-order terms, which is
beyond the scope of this paper.
5 Similarly to an equation s≈ t and a negative literal s �≈ t over �∗, a g-equation s⊥≈ t⊥ is identified with the multiset
{{s⊥}, {t⊥}}, while a negative g-literal s⊥ �≈ t⊥ is identified with the multiset {{s⊥, t⊥}}, and so on (see Section 2). For exam-
ple, g-equation ab⊥≈ bb⊥ is identified with {{ab⊥}, {bb⊥}}, while negative g-literal ab⊥ �≈ c⊥ is identified with {{ab⊥, c⊥}},
so ab⊥ �≈ c⊥�g ab⊥≈ bb⊥, where a� b� c�⊥.
6 Here, an inference by Simplification combines the Deduction step for C ∨ l1rl2 �� v and the Deletion step for C ∨ l1ll2 �� v
(see the Simplification rule).
7 Note that if∼ is closed under the conditional equations in S, then l≈ r ∈ S simply implies l∼ r.
8 Recall that for Horn clauses, the application of the Rewrite rule inS can be replaced by the application of the Simplification
rule for the eager application of the contraction rules during a theorem proving derivation w.r.t. Swith the contraction rules,
so we do not need to consider the Rewrite rule here.
9 The soundness of I can be proved by a straightforward induction on the length of transformation sequences and hence is
omitted (see Gallier and Snyder (1989)).
10 The reader is also encouraged to see AVATAR modulo theories (Reger et al., 2016), which is based on the concept of
splitting.
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