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Understanding the removal of energy from turbulent fluctuations in a magnetized
plasma and the consequent energization of the constituent plasma particles is a
major goal of heliophysics and astrophysics. Previous work has shown that nonlinear
interactions among counterpropagating Alfvén waves – or Alfvén wave collisions –
are the fundamental building block of astrophysical plasma turbulence and naturally
generate current sheets in the strongly nonlinear limit. A nonlinear gyrokinetic
simulation of a strong Alfvén wave collision is used to examine the damping of the
electromagnetic fluctuations and the associated energization of particles that occurs
in self-consistently generated current sheets. A simple model explains the flow of
energy due to the collisionless damping and the associated particle energization, as
well as the subsequent thermalization of the particle energy by collisions. The net
particle energization by the parallel electric field is shown to be spatially localized,
and the nonlinear evolution is essential in enabling spatial non-uniformity. Using the
recently developed field–particle correlation technique, we show that particles resonant
with the Alfvén waves in the simulation dominate the energy transfer, demonstrating
conclusively that Landau damping plays a key role in the spatially localized damping
of the electromagnetic fluctuations and consequent energization of the particles in this
strongly nonlinear simulation.
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1. Introduction
The space and astrophysical plasmas that fill the heliosphere, and other more remote

astrophysical environments, are found generally to be both magnetized and turbulent.
Understanding the removal of energy from turbulent fluctuations in a magnetized
plasma and the consequent energization of the constituent plasma particles is a
major goal of heliophysics and astrophysics. Although plasma heating and particle
energization are governed by microscopic processes typically occurring at kinetic
length scales in the plasma, these important energy transport mechanisms can have
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a significant impact on the macroscopic evolution of the systems. For example, the
diffuse plasma of the solar corona is found to be nearly three orders of magnitude
hotter than the solar photosphere. The dissipation of turbulent fluctuations, through a
physical mechanism, that is poorly understood at present, is believed to be responsible
for this dramatic heating of the coronal plasma. This very high coronal temperature
leads to the supersonic solar wind that pervades the entire heliosphere (Parker 1958),
so the kinetic plasma physics governing the heating of the coronal plasma at small
scales indeed impacts the global structure of the heliosphere.

The low density and high temperature conditions of the plasma in many astro-
physical systems lead to a mean free path for collisions among the constituent
charged particles that is often much longer than the length scales of the turbulent
fluctuations. Under such weakly collisional plasma conditions, the dynamics of the
turbulence and its dissipation is governed by kinetic plasma physics. Unlike in the
more well-known case of fluid systems (which corresponds to the strongly collisional
regime), in weakly collisional plasmas, the dissipation of turbulent energy into plasma
heat is inherently a two-step process (Howes 2017). First, energy is removed from the
turbulent electromagnetic fluctuations through collisionless interactions between the
fields and particles, transferring that energy to non-thermal fluctuations in the particle
velocity distribution functions, a process that is reversible. Subsequently, arbitrarily
weak collisions can smooth out the small fluctuations in velocity space, leading to
entropy increase and irreversible heating of the plasma (Howes et al. 2006; Howes
2008; Schekochihin et al. 2009). In this two-step process, the removal of energy from
turbulent fluctuations and the subsequent conversion of that energy into plasma heat
may even occur at different locations (Navarro et al. 2016).

In fluid simulations of plasma turbulence using the magnetohydrodynamic (MHD)
approximation – a strongly collisional limit of the large-scale dynamics (relative to
the characteristic kinetic plasma length scales) – the nonlinear evolution leads to
the development of intermittent current sheets (Matthaeus & Montgomery 1980;
Meneguzzi, Frisch & Pouquet 1981). Furthermore, it has been found that the
dissipation of turbulent energy is largely concentrated in these intermittent current
sheets (Uritsky et al. 2010; Osman et al. 2011; Zhdankin et al. 2013). Numerous
studies have recently sought evidence for the spatial localization of plasma heating
by the dissipation of turbulence in current sheets through statistical analyses of
solar wind observations (Borovsky & Denton 2011; Osman et al. 2011, 2012; Perri
et al. 2012; Wang et al. 2013; Wu et al. 2013; Osman et al. 2014) and numerical
simulations (Wan et al. 2012; Karimabadi et al. 2013; TenBarge & Howes 2013; Wu
et al. 2013; Zhdankin et al. 2013).

The mechanisms of the spatially localized dissipation found in MHD simulations
are resistive (ohmic) heating and viscous heating (Zhdankin et al. 2013; Brandenburg
2014; Zhdankin, Uzdensky & Boldyrev 2015). However, resistivity and viscosity
arise from microscopic collisions in the strongly collisional (or small mean free
path) limit, a limit that is not applicable to the dynamics of dissipation in many
space and astrophysical environments (Howes 2017). Under the weakly collisional
conditions appropriate for most space and astrophysical plasmas, which physical
mechanisms are responsible for the damping of the turbulent fluctuations and the
consequent energization of the plasma particles remains an open question. Our
aim here is to identify the mechanisms governing the damping of the turbulent
fluctuations and the particle energization using a kinetic simulation code that follows
the three-dimensional evolution of a weakly collisional plasma in which current sheets
develop self-consistently.
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Early research on incompressible MHD turbulence in the 1960s (Iroshnikov 1963;
Kraichnan 1965) emphasized the wave-like nature of turbulent plasma motions,
suggesting that nonlinear interactions between counterpropagating Alfvén waves – or
simply Alfvén wave collisions – mediate the turbulent cascade of energy from large
to small scales. In fact, the physics of the nonlinear interactions among Alfvén waves
provides the foundation for modern scaling theories of plasma turbulence that explain
the anisotropic nature of the turbulent cascade (Goldreich & Sridhar 1995) and the
dynamic alignment of velocity and magnetic field fluctuations (Boldyrev 2006).

Following a number of previous investigations of weak incompressible MHD
turbulence (Sridhar & Goldreich 1994; Ng & Bhattacharjee 1996; Galtier et al. 2000),
the nonlinear energy transfer in Alfvén wave collisions in the weakly nonlinear limit
has been solved analytically (Howes & Nielson 2013), confirmed numerically with
gyrokinetic numerical simulations (Nielson, Howes & Dorland 2013), and verified
experimentally in the laboratory (Howes et al. 2012, 2013; Drake et al. 2013),
establishing Alfvén wave collisions as the fundamental building block of astrophysical
plasma turbulence. More recent research has found that Alfvén wave collisions in the
strongly nonlinear limit naturally generate current sheets (Howes 2016), providing
a first-principles explanation for the ubiquitous development of spatially localized
current sheets in plasma turbulence. This self-consistent generation of current sheets
is found to persist even in the more realistic case of strong collisions between
localized Alfvén wavepackets (Verniero, Howes & Klein 2018).

Here we explore the damping of the electromagnetic fluctuations and the associated
energization of particles that occurs in current sheets that are generated self-
consistently by strong Alfvén wave collisions. Previous work using a simulation
of kinetic Alfvén wave turbulence has shown that, although enhanced plasma heating
rates are well correlated with the presence of current sheets, the rate of heating as a
function of wavenumber is well predicted by assuming that linear Landau damping
is entirely responsible for the removal of energy from the turbulence (TenBarge &
Howes 2013). This result suggests that the physical mechanism governing the removal
of energy from turbulent fluctuations, even in spatially localized current sheets, is
Landau damping. Using nonlinear gyrokinetic simulations of strong Alfvén wave
collisions, we aim to answer two questions:

(i) Is the dissipation associated with current sheets that are generated by strong
Alfvén wave collisions spatially localized?

(ii) What is the physical mechanism governing the removal of energy from the
turbulence and the consequent energization of the particles?

In § 2, we describe the set-up of this nonlinear gyrokinetic simulation of a strong
Alfvén wave collision. Section 3 presents a detailed look at the evolution of the energy
in the simulation, in particular introducing a simple model of the energy flow in
this weakly collisional plasma system, shown in figure 4, and applying that model to
interpret the flow of energy from turbulence to ion and electron heat. The development
of current sheets and spatial localization of particle energization is explored in § 4,
followed by a detailed investigation of the physical mechanism of energy transfer from
turbulent fluctuations to particle energy using the field–particle correlation technique in
§ 5. We conclude in § 6 by summarizing the results of our investigation, demonstrating
that Landau damping plays a key role in the spatially non-uniform energization of
plasma particles near current sheets arising from strong Alfvén wave collisions.
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2. Simulation
Similar to a previous study showing the development of current sheets in strong

Alfvén wave collisions (Howes 2016), we employ the astrophysical gyrokinetics code
AstroGK (Numata et al. 2010) to perform a gyrokinetic simulation of the nonlinear
interaction between two counterpropagating Alfvén waves in the strongly nonlinear
limit. AstroGK evolves the perturbed gyroaveraged distribution function hs(x, y, z,λ, ε)
for each species s, the scalar potential ϕ, the parallel vector potential A‖ and the
parallel magnetic field perturbation δB‖ according to the gyrokinetic equation and
the gyroaveraged Maxwell’s equations (Frieman & Chen 1982; Howes et al. 2006).
Velocity-space coordinates are λ= v2

⊥/v
2 and ε= v2/2. The domain is a periodic box

of size L2
⊥ × L‖, elongated along the straight, uniform mean magnetic field B0 = B0ẑ,

where all quantities may be rescaled to any parallel dimension satisfying L‖/L⊥� 1.
Uniform Maxwellian equilibria for ions (protons) and electrons are chosen, with a
reduced mass ratio mi/me = 36 such that, even with the modest spatial resolution
of this simulation, the collisionless damping by ions and electrons is sufficiently
strong within the resolved range of length scales to terminate the nonlinear transfer
of energy to small scales. In appendix A, we discuss the implications of this reduced
mass ratio on the relative collisionless damping between ions and electrons. Spatial
dimensions (x, y) perpendicular to the mean field are treated pseudospectrally; an
upwind finite-difference scheme is used in the parallel direction, z. Collisions employ
a fully conservative, linearized collision operator with energy diffusion and pitch-angle
scattering (Abel et al. 2008; Barnes et al. 2009).

To set-up the simulation of an Alfvén wave collision, following Nielson et al.
(2013), we initialize two perpendicularly polarized, counterpropagating plane
Alfvén waves, z+ = z+ cos(k⊥x− k‖z−ω0t)ŷ and z− = z− cos(k⊥y+ k‖z−ω0t)x̂, where
ω0 = k‖vA, k⊥ = 2π/L⊥, k‖ = 2π/L‖ and perpendicular and parallel are determined
relative to the equilibrium magnetic field. Here z± = u ± δB/√4π(nimi + neme) are
the Elsasser fields (Elsasser 1950) which represent Alfvén waves that propagate up or
down the mean magnetic field at the Alfvén velocity vA=B0/

√
4π(nimi + neme) in the

MHD limit, k⊥ρi� 1. We specify a balanced collision with equal counterpropagating
wave amplitudes, z+= z−, such that the nonlinearity parameter is χ = k⊥z±/(k‖vA)= 1,
relevant to the regime of strong turbulence (Goldreich & Sridhar 1995). To
study the nonlinear evolution in the limit k⊥ρi � 1, we choose a perpendicular
simulation domain size L⊥ = 8πρi with simulation resolution (nx, ny, nz, nλ, nε, ns)=
(64, 64, 32, 128, 32, 2). The fully resolved perpendicular range in this dealiased
pseudospectral method covers 0.25 6 k⊥ρi 6 5.25, or 0.042 6 k⊥ρe 6 0.875 given the
chosen mass ratio mi/me = 36 and temperature ratio Ti/Te = 1. Here the ion thermal
Larmor radius is ρi= vti/Ωi, the ion thermal velocity is v2

ti= 2Ti/mi, the ion cyclotron
frequency is Ωi= qiB0/(mic) and the temperature is given in energy units. The plasma
parameters of the simulation are βi = 1 and Ti/Te = 1, typical of near-Earth solar
wind conditions. The linearized Landau collision operator (Abel et al. 2008; Barnes
et al. 2009) is employed with collisional coefficients νi = νe = 6× 10−4k‖vA, yielding
weakly collisional dynamics with νs/ω � 1. With these parameters, the two initial,
perpendicularly polarized, counterpropagating Alfvén waves have k⊥ρi = 0.25 and
k‖ρi � 1, since k‖L‖ = 2π and L⊥/L‖ = ε � 1, where ε is the small gyrokinetic
expansion parameter.

To prepare the simulation, the two initial Alfvén wave modes are evolved linearly
for five periods with enhanced collision frequencies νi = νe = 0.01k‖vA to eliminate
any transient behaviour arising from the initialization that does not agree with
the properties of the Alfvén wave mode (Nielson et al. 2013). The simulation is
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(a)

(b)

FIGURE 1. (a) The normalized frequency ω/k‖vA and (b) total collisionless damping rate
γtot/ω (black solid) versus k⊥ρi for Alfvén and kinetic Alfvén waves with mi/me=36 from
the linear collisionless gyrokinetic dispersion relation, including the separate contributions
to the linear collisionless damping rate from the ions γi/ω (red dotted) and the electrons
γe/ω (blue dashed). Squares indicate values computed from linear runs of AstroGK. Solid
vertical lines indicate the limits of the fully resolved perpendicular scales of the nonlinear
simulation at k⊥ρi = 0.25 and k⊥ρi = 5.25. The vertical dashed line indicates the highest
k⊥ρi value, k⊥ρi = 5.25

√
2' 7.42, of the modes in the corner of Fourier space.

then restarted with the nonlinear terms enabled, beginning the nonlinear evolution
of the strong Alfvén wave collision. Note that the two Alfvén waves are already
overlapping at the beginning of this simulation before the nonlinear evolution begins,
an idealized case which facilitates the comparison to an asymptotic analytical solution
in the weakly nonlinear limit (Howes & Nielson 2013; Howes 2016). The nonlinear
evolution of the development of current sheets is found to persist in the more realistic
case of collisions between two initially separated Alfvén wavepackets of finite parallel
extent (Verniero & Howes 2017; Verniero et al. 2018).

For the plasma parameters of this gyrokinetic simulation, we solve the linear
collisionless gyrokinetic dispersion relation (Howes et al. 2006) for the Alfvén/kinetic
Alfvén wave mode to determine the linear frequency and collisionless damping
rate for this mode as a function of perpendicular wavenumber. Note that the
collisionless damping of this mode is due to the Landau resonances with the ions
and electrons. Figure 1(a) plots the normalized real frequency ω/k‖vA versus the
normalized perpendicular wavenumber k⊥ρi and (b) plots the total collisionless
damping rate normalized to the wave frequency γ /ω (solid black), as well as the
separate contributions to this linear collisionless damping rate from the ions (red
dotted) and electrons (blue dashed). These gyrokinetic results have been verified by
comparison with the solutions of the full Vlasov–Maxwell linear dispersion relation
using the PLUME solver (Klein & Howes 2015). Since gyrokinetic theory resolves
the Landau resonances but not the cyclotron resonances, this agreement between
the gyrokinetic and the Vlasov–Maxwell results confirms that the linear collisionless
damping is due to the Landau resonance.
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Figure 1 shows that the collisional damping by the ions (red dotted) has a relatively
broad peak over the range 0.5 . k⊥ρi . 2.0. The range of resonant parallel phase
velocities ω/k‖ associated with this broad peak in damping, normalized in terms of
the ion thermal velocity, is 1.0.ω/k‖vti . 1.5. Therefore, if Landau damping with the
ions is active, the energy transfer should be dominated by resonant ions with parallel
velocities in the range 1.0 . v‖/vti . 1.5. The collisionless damping by the electrons,
on the other hand, increases monotonically with perpendicular wavenumber, becoming
sufficiently strong with γe/ω& 0.1 at k⊥ρi & 1.2. From this point, up to the maximum
fully resolved perpendicular scale of k⊥ρi= 5.25, the range of resonant parallel phase
velocities ω/k‖ in terms of the electron thermal velocity is 0.17 . ω/k‖vte . 0.6.
Therefore, if the collisionless energy transfer from the turbulent electromagnetic fields
to the plasma particles is governed by a Landau resonant mechanism, we would
expect to see the transfer of energy localized at parallel velocities within this range
of resonant values.

3. Evolution of energy

Under weakly collisional plasma conditions typical of many heliospheric and
astrophysical plasmas, the removal of energy from turbulent fluctuations and
the eventual conversion of that energy into plasma heat, unlike in the more
familiar fluid limit, is a two-step process (Howes 2017). Specifically, the turbulent
fluctuations are first damped through reversible, collisionless interactions between
the electromagnetic fields and the plasma particles, leading to energization of the
particles. This non-thermal energization of the particle velocity distributions is
subsequently thermalized by arbitrarily weak collisions, thereby accomplishing the
ultimate conversion of the turbulent energy into particle heat. An analysis of the flow
of energy in this Alfvén wave collision simulation illustrates these two distinct steps
of the turbulent dissipation.

In a gyrokinetic system, the total fluctuating energy δW (Howes et al. 2006; Brizard
& Hahm 2007; Schekochihin et al. 2009) is given by1

δW =
∫

d3r

[
|δB|2 + |δE|2

8π
+
∑

s

∫
d3v

T0sδf 2
s

2F0s

]
, (3.1)

where the index s indicates the plasma species and T0s is the temperature of each
species’ Maxwellian equilibrium. The left-hand term represents the electromagnetic
energy and the right-hand term represents the microscopic fluctuating kinetic
energy of the particles of each plasma species s. Note that the elimination of the
parallel nonlinearity2 in the standard form of gyrokinetic theory means that the

1Note that in the gyrokinetic approximation, the electric field energy is relativistically small relative to the
magnetic field energy (Howes et al. 2006).

2The gyrokinetic approximation involves the limit k‖� k⊥, meaning that gradients parallel to the local
magnetic field direction are much smaller than gradients in the plane perpendicular to the field. The nonlinear
term in the gyrokinetic equation can be expressed in the form 〈dRs/dt〉Rs · ∂hs/∂Rs (Howes et al. 2006), where
Rs is the particle guiding centre position, 〈〉Rs denotes the gyroaverage, and hs(Rs, v⊥, v‖, t) is the perturbed
gyrokinetic ring distribution function. The term 〈dRs/dt〉Rs corresponds physically to the motion of the charged
rings (a charged ring is the representation of a charged particle upon averaging over its gyromotion), which
is influenced by forces due to the gyroaveraged electromagnetic fields. In the standard gyrokinetic formalism
(Rutherford & Frieman 1968; Frieman & Chen 1982; Howes et al. 2006), the parallel component of the gradient
of hs is one order higher in the small gyrokinetic expansion parameter than the perpendicular components, and
is therefore dropped. Eliminating the parallel component of this gradient precludes the possibility of computing
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appropriate conserved quadratic quantity in gyrokinetics is the Kruskal–Obermann
energy, E(δf )s ≡ ∫ d3r

∫
d3v T0sδf 2

s /2F0s (Kruskal & Oberman 1958; Morrison 1994),
in contrast to the usual kinetic theory definition of microscopic kinetic energy,∫

d3r
∫

d3v(msv
2/2)fs. Note also that δW includes neither the equilibrium thermal

energy,
∫

d3r(3/2)n0sT0s =
∫

d3r
∫

d3v(1/2)msv
2F0s, nor the equilibrium magnetic

field energy,
∫

d3rB2
0/8π. Thus, the terms of δW in (3.1) represent the perturbed

electromagnetic field energies and the microscopic kinetic energy of the deviations
from the Maxwellian velocity distribution for each species.

A more intuitive form of the total fluctuating energy δW can be obtained by
separating out the kinetic energy of the bulk motion of the plasma species from the
non-thermal energy in the distribution function that is not associated with bulk flows
(Li et al. 2016),

δW =
∫

d3r

[
|δB|2 + |δE|2

8π
+
∑

s

(
1
2

n0sms|δus|2 + 3
2
δPs

)]
, (3.2)

where n0s is the equilibrium density, ms is mass and δus is the fluctuating bulk flow
velocity. The non-thermal energy in the distribution function (not including the bulk
kinetic energy) is defined by (TenBarge et al. 2014)

E(nt)
s ≡

∫
d3r

3
2
δPs ≡

∫
d3r
[∫

d3v

(
T0sδf 2

s

2F0s

)
− 1

2
n0sms|δus|2

]
. (3.3)

The turbulent energy is defined as the sum of the electromagnetic field and the bulk
flow kinetic energies (Howes 2015; Li et al. 2016),

E(turb) ≡
∫

d3r

[
|δB|2 + |δE|2

8π
+
∑

s

1
2

n0sms|δus|2
]
. (3.4)

Therefore the total fluctuating energy is simply the sum of the turbulent energy and
species non-thermal energies, δW = E(turb) + E(nt)

i + E(nt)
e .

3.1. Evolution of turbulent and non-thermal energies
In figure 2, we plot the evolution of these three different contributions to the total
fluctuating energy normalized to the total initial fluctuating energy δW0 ≡ δW(t = 0).
In figure 2(a), we plot the total fluctuating energy δW/δW0 (black), the turbulent
energy E(turb)/δW0 (purple), the ion non-thermal energy E(nt)

i /δW0 (red) and the
electron non-thermal energy E(nt)

e /δW0 (blue). Note that collisions in AstroGK, as
well as in real plasma systems, convert non-thermal to thermal energy, representing
irreversible plasma heating with an associated increase of entropy. The energy lost
from δW by collisions is tracked by AstroGK and represents thermal heating of the
plasma species, but this energy is not fed back into the code to evolve the equilibrium
thermal temperature, T0s (Howes et al. 2006; Numata et al. 2010; Li et al. 2016). The
evolution in figure 2(a) makes clear that, over 7.5 periods of the initial Alfvén waves,
more than 60 % of the initial fluctuating energy in the simulation is lost to collisional
heating.

the conserved energy in a kinetic plasma in the usual way. In gyrokinetics (a reduced limit of full kinetic
theory), one may construct a quadratically conserved quantity with units of energy, the Kruskal–Obermann
energy (Kruskal & Oberman 1958; Morrison 1994), to which the usual conserved energy in kinetic theory
reduces in the gyrokinetic approximation.
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(a)

(b)

FIGURE 2. (a) Evolution of the normalized energy E/δW0 as a function of time t/T0
for the total fluctuating energy δW (black), the turbulent energy E(turb) (purple), the
ion non-thermal energy E(nt)

i (red) and the electron non-thermal energy E(nt)
e (blue). (b)

Evolution of the different components of the turbulent energy E(turb) (purple), dominated
by the perpendicular magnetic field energy EB⊥ (green dashed) and the perpendicular ion
bulk flow kinetic energy Ei,u⊥ (red dashed), with successively smaller contributions by the
perpendicular electron bulk kinetic energy Ee,u⊥ (blue dashed), the parallel magnetic field
energy EB‖ (green dotted), the parallel ion bulk flow kinetic energy Ei,u‖ (red dotted) and
the parallel electron bulk flow kinetic energy Ee,u‖ (blue dotted).

In figure 2(b), we plot the different components that contribute to the turbulent
energy E(turb). In order of decreasing magnitude, these contributions are the perpen-
dicular magnetic energy EB⊥ (green dashed), perpendicular ion kinetic energy Eui,⊥ (red
dashed), perpendicular electron kinetic energy Eue,⊥ (blue dashed), parallel magnetic
energy EB‖ (green dotted), parallel ion kinetic energy Eui,‖ (red dotted) and parallel
electron kinetic energy Eue,‖ (blue dotted). The turbulent energy is dominated by the
perpendicular magnetic energy and perpendicular ion kinetic energy. This is expected
for Alfvénic fluctuations at k⊥ρi� 1: transverse motion of the plasma dominated by
ion kinetic energy is first arrested by magnetic tension, followed by the acceleration
of the plasma back toward the equilibrium point by magnetic tension, thereby leading
to the oscillatory transfer of energy back and forth between perpendicular magnetic
energy and perpendicular ion kinetic energy, as evident in figure 2(b). Note that
this energy is integrated over the entire simulation domain, so neither of these
energies is expected to drop to zero, as would occur for the energy density at a
single point in space as an Alfvén wave passes through that point. In the MHD limit
k⊥ρi � 1, Alfvénic fluctuations also have very little parallel motion, u‖ � u⊥ and a
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FIGURE 3. Ion collisional heating rate Qi/Q0 (red), electron collisional heating rate Qe/Q0
(blue) and total collisional heating rate Qtot = Qi + Qe (black) and as a function of
time t/T0 for the nonlinear simulation (thick lines). Also plotted (thin lines) is the linear
evolution from the same initial conditions.

very small parallel magnetic field fluctuation, δB‖ � δB⊥. Furthermore, the electron
kinetic energies are down from the respective ion kinetic energies approximately by a
factor of the mass ratio, me/mi= 1/36, so electrons make a subdominant contribution
to the turbulent energy. Finally, note that although the volume-integrated energy of
each component of E(turb) shows oscillations with the period T0, their sum varies
smoothly in time, suggesting that this definition of turbulent energy is physically well
motivated.

3.2. Evolution of collisional heating
In figure 3, we present the evolution of the collisional heating rate per unit volume
of ions Qi (red) and electrons Qe (blue) as well as the total collisional heating rate
Qtot=Qi+Qe (black) for this nonlinear Alfvén wave collision simulation (thick lines).
The heating rates are normalized by a characteristic heating rate per unit volume, Q0=
(n0iT0ivti/L‖)(π/8)(L⊥/L‖)2. The total fluctuating energy δW in figure 2(a) diminishes
in time due to thermalization by collisions. This collisional energy loss from δW is
tracked in AstroGK by this collisional heating rate, enabling energy conservation to
be measured in the simulation.

Note that the rapid initial rise in the collisional damping rate for the electrons
Qe at t/T0 . 0.5 in figure 3 is due to the fact that the linear initialization uses
higher collision coefficients, νs = 0.01k‖vA, than the subsequent nonlinear evolution,
νs= 6× 10−4k‖vA. When the collisional coefficients are reduced, smaller velocity scale
structures in the velocity distribution must develop (through the kinetic evolution)
before the collisional heating is able to effectively thermalize the non-thermal energy
contained in those fluctuations.

Also plotted in figure 3 is the evolution of the collisional heating rates in a
linear simulation (thin lines), where the simulation is started from the same initial
conditions but the nonlinear terms are turned off. In this linear simulation, there
is no nonlinear transfer of energy to other Fourier modes – meaning that there is
no nonlinear turbulent cascade of energy to small scales – so the evolution of the
energy is solely due to linear Landau damping of the initial Alfvén waves and the
subsequent collisional thermalization of the fluctuations in the velocity distribution
functions that were generated by this linear Landau damping. It is important to
note that the nonlinear evolution eventually leads to a higher collisional heating rate,
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FIGURE 4. Diagram of the energy flow in weakly collisional turbulent plasmas, showing
that interactions between the electromagnetic fields and plasma particles Ė( fp)

s can
reversibly transfer energy between the turbulent energy E(turb) and the non-thermal energy
in the velocity distribution function of each species E(nt)

s . Collisional heating Qs then can
irreversibly convert this non-thermal energy, represented by fluctuations in velocity space
of each species, into heat of each plasma species s. This is the two-step process of
reversible particle energization and subsequent irreversible thermalization of that particle
energy.

presumably through the nonlinear transfer of energy to smaller-scale fluctuations that
have higher collisionless damping rates than the initial Alfvén waves, although we
do not directly analyse that nonlinear cascade of energy in this study.

3.3. Model of energy flow
A physical interpretation of the two-step energy flow in this strong Alfvén wave
collision simulation is illustrated by the diagram in figure 4. The energy of turbulent
fluctuations E(turb), consisting of the sum of the electromagnetic field fluctuations
and the kinetic energy of the bulk flows (first velocity moment) of each plasma
species (Howes 2015, 2017), can be removed by collisionless interactions Ė( fp)

s
between the electromagnetic fields and the plasma particles. This energy is converted
to non-thermal energy of the ions and electrons, E(nt)

s . This non-thermal energy is
represented by fluctuations in the particle velocity distribution functions that have no
associated bulk flow (first moment), and therefore do not contribute to the turbulent
motions. A key property of this collisionless energy transfer Ė( fp)

s is that it is reversible
(two-headed arrows in figure 4), representing the electromagnetic work done on the
particles by the fields, which can be positive or negative. Note that this diagram of
the energy flow applies to any collisionless damping process: resonant processes, such
as Landau damping (Landau 1946; Mouhot & Villani 2011), transit-time damping
(Barnes 1966) or cyclotron damping (Coleman 1968; Isenberg & Hollweg 1983);
non-resonant processes, such as stochastic ion heating (Chen, Lin & White 2001;
Chandran et al. 2010); or particle energization associated with collisionless magnetic
reconnection (Birn et al. 2001; Treumann & Baumjohann 2015).

The non-thermal energy E(nt)
s is contained in fluctuations in velocity space of the

particle velocity distribution functions for each species, δfs(v). If these fluctuations
reach sufficiently small scales in velocity space, arbitrarily weak collisions can smooth
out those fluctuations, thermalizing their energy and thereby realizing irreversible
plasma heating, Qs. The kinetic equation for each species governs two mechanisms
that facilitate the transfer of energy to ever smaller scales in velocity space: linear
phase mixing and nonlinear phase mixing.

The first mechanism is linear phase mixing governed by the ballistic term in the
kinetic equation, which couples spatial variations with velocity-space fluctuations and
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can lead to the transfer of energy to small scales in velocity space.3 In linear Landau
damping, for example, the energy of a damped wave is first transferred collisionlessly
into non-thermal velocity-space fluctuations, which subsequently phase mix linearly to
small enough scales in velocity space that weak collisions can irreversibly convert the
non-thermal energy into plasma heat. Boltzmann’s H theorem proves that the entropy
increase associated with irreversible plasma heating is ultimately collisional (Howes
et al. 2006).

In addition to this linear phase-mixing process, at perpendicular spatial scales
comparable to the particle thermal Larmor radii, k⊥ρs & 1, a nonlinear phase-mixing
process (Dorland & Hammett 1993), also known as the entropy cascade (Schekochihin
et al. 2009; Tatsuno et al. 2009; Plunk et al. 2010; Plunk & Tatsuno 2011; Kawamori
2013), can be very effective at transferring energy to ever smaller scales in velocity
space. Ultimately, when the non-thermal particle energy in the velocity distribution
functions δfs(v) has reached sufficiently small scales in velocity, due to some
combination of linear and nonlinear phase mixing, collisions may thermalize that
particle energy, completing the final step in the conversion of turbulent energy into
plasma heat. In AstroGK, this collisional heating removes energy from fluctuating
energy in the plasma, δW.

It is worthwhile to contrast this two-step mechanism in weakly collisional plasmas
– collisionless particle energization followed by collisional thermalization – with the
more familiar picture of turbulent dissipation in the fluid (strongly collisional) limit.
A dimensionless measure of the collisionality is the ratio of the thermal collision rate
to the frequency of typical fluctuations in the plasma, ν/ω. In the strongly collisional
limit, ν/ω � 1, collisions can directly remove energy from both the bulk plasma
flows through viscosity and the plasma currents through resistivity. Because both
viscosity and resistivity are collisional, entropy increases through these mechanisms,
and the energy from the turbulent electromagnetic field and plasma flow fluctuations
is immediately thermalized to plasma heat. Thus, the dissipation of turbulence in
the strongly collisional, fluid limit is a single-step process. Consider the example of
resistive MHD, where Ohm’s law gives the electric field in terms of the plasma fluid
velocity, magnetic field and current density, E+U/c×B= ηj (Spitzer 1962; Kulsrud
1983). The work done by the electric field is j · E = −j · (U/c × B) + ηj2, where
the second term is the non-negative ohmic heating due to resistive dissipation of the
current, showing that the resistivity leads directly to plasma heating.

The strong Alfvén wave collision simulation presented here has ν/ω∼ 6× 10−4� 1,
firmly in the weakly collisional limit. Unlike in the MHD Ohm’s law above, where
the current density j and electric field E due to the resistive term are in phase, and
thereby yield a zero or positive change in energy, in the weakly collisional case the
current density j and electric field E need not be in phase, enabling the work done
by collisionless interactions between the fields and particles to give energy to or take
energy from the particles. In fact, if the current and electric field are exactly 90
degrees out of phase, there is zero net energy transfer between fields and particles
over one complete oscillation, corresponding to undamped wave motion. The bottom
line, a point that cannot be overstated, is that in a weakly collisional plasma, the
electromagnetic work j · E does not correspond to irreversible plasma heating, but
rather to reversible work done on the particles by the fields, or vice versa.

3It has been recently suggested that, under particular conditions in a turbulent plasma of sufficiently
low collisionality, a turbulent anti-phase-mixing process can prevent velocity-space fluctuations from reaching
sufficiently small scales to enable thermalization by collisions (Parker et al. 2016; Schekochihin et al. 2016).
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Developing a detailed understanding of particle energization and plasma heating
in heliospheric plasmas is grand challenge problem in heliophysics, and this simple
model of the energy flow provides important constraints to focus efforts in that
endeavour. Note that the final step of the process in figure 4, the thermalization
of the particle energy, is fundamentally collisional, independent of what mechanism
(which we have not specified here) removed energy from the turbulent fluctuations
initially. The key question in understanding particle energization and plasma heating
in heliospheric plasmas is therefore to understand the first step: what collisionless
and reversible mechanism is responsible for the removal of energy from the turbulent
fluctuations and conversion of that energy into non-thermal energy of the plasma
species?

3.4. Rate of energy transfer
Now we use the strong Alfvén wave collision simulation presented here to analyse the
channels of energy transfer shown in figure 4. For each species, the rate of change of
non-thermal energy is given by

Ė(nt)
s = Ė( fp)

s −Qs, (3.5)

where the irreversible collisional heating Qs > 0 but the reversible collisionless field–
particle energy transfer Ė( fp)

s can be either positive or negative. In addition, the rate of
change of turbulent energy must be the sum of the collisionless field–particle energy
transfer for each species,

− Ė(turb) = Ė( fp)
i + Ė( fp)

e . (3.6)

Note that we have not specified the physical mechanism governing the field–particle
energy transfer, but we are simply showing that the transfers of energy indeed follow
the diagram in figure 4.

Numerically, the collisional heating Qs is evaluated for each species in AstroGK by
multiplying the linearized Landau collision operator (Abel et al. 2008; Barnes et al.
2009) by msv

2/2 and then integrating over velocity space and over the simulation
domain. The rate of change of non-thermal energy Ė(nt)

s is determined by numerically
evaluating E(nt)

s as a function of time using (3.3) and then differencing to obtain the
time derivative. Similarly, the rate of change of turbulent energy Ė(turb) is determined
by numerically evaluating E(turb) as a function of time using (3.4) and then taking the
time derivative. The rate of energy transfer by collisionless field–particle interactions
for each species Ė( fp)

s is then computed using (3.5).
In figure 5, we present the terms of these energy transfer relations for the (a) ions

and (b) electrons, as well as (c) the balance between the loss of turbulent energy and
the field–particle energy transfer to each species. A few very interesting aspects of
figure 5 are worth highlighting. First, although the change of turbulent energy E(turb)

and non-thermal energies E(nt)
s in figure 2 appears to be smooth, the time derivative,

which gives the rate of change, indeed varies rapidly, including a significant fluctuation
with period T0/2.4

4The likely physical explanation of the T0/2 periodicity in the fluctuations in the energy transfer rate is
related to the lowest-order nonlinear Fourier mode that arises in this Alfvén wave collision simulation. Previous
work (Howes & Nielson 2013; Nielson et al. 2013) has shown that this Fourier mode has a wavevector
(kx/k⊥, ky/k⊥, kz/k‖)= (1, 1, 0) and a period T = T0/2, so it is likely that these fluctuations in the energy
transfer rate arise from nonlinear interactions involving this dominant nonlinear mode.
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(a)

(b)

(c)

FIGURE 5. The rate of energy transfer by field–particle interactions Ė( fp)
s (solid), the rate

of change of non-thermal energy Ė(nt)
s (dotted) and the collisional heating rate Qs (dashed)

for (a) ions (red) and (b) electrons (blue). (c) The energy balance between the loss of
turbulent energy −Ė(turb) (purple solid) and the summed transfer of energy to both ions
and electrons, Ė( fp)

i + Ė( fp)
e (black dashed).

Second, in figure 5(b), the energy transferred into electron non-thermal energy at the
rate Ė( fp)

e (solid) is very quickly thermalized by collisions into electron heat (dashed);
the time lag between these two curves is 1t= 0.6T0 (not shown), suggesting that non-
thermal energy transferred into the electron velocity distribution is rapidly transferred
by phase mixing to sufficiently small velocity-space scales to be thermalized by the
weak collisions. For the ions in figure 5(a), on the other hand, the time lag between
the energy transferred into non-thermal ion energy Ė( fp)

i and the thermalization of that
ion energy is approximately 1t = 3.6T0, a factor of

√
mi/me = 6 longer, suggesting

that the phase mixing occurs more slowly for ions by the ratio of the electron-to-ion
thermal velocity. Note also that the collisionless field–particle energy transfer to ions
indeed becomes negative at a few points in time, as allowed for a reversible process.

Furthermore, note that the magnitudes of Ė( fp)
i and Ė( fp)

e are fairly similar, as
expected because the linear damping rates, shown in figure 1, are fairly similar for
ions and electrons, γi ' γe, over the range of spatial scales k⊥ρi < 1 that contain
most of the energy in the simulation. Finally, in figure 5(c), we see that the energy
lost by the turbulence −Ė(turb) (purple solid) is indeed balanced by the sum of the
field–particle energy transfer to ions and electrons (black dashed).
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3.5. Evolution of the total energy budget
Plots of the total energy budget as a function of time in the simulation nicely
summarize the flow of energy in the simulation. First, we account for the energy lost
from δW in the AstroGK simulation to collisional plasma heating by accumulating
the thermalized energy in each species over time, E(coll)

s (t)= ∫ t
0 dt′QS(t′).

In figure 6(a), we plot the evolution of the energy budget over the course of the
simulation, showing that turbulent energy E(turb), which dominates at the beginning of
the simulation, is largely converted to ion heat E(coll)

i and electron heat E(coll)
e by the

end of the simulation, with a smaller fraction of the lost turbulent energy persisting
as non-thermal ion energy E(nt)

i and electron energy E(nt)
e . Also indicated in figure 6(a)

is the evolution of the total fluctuating energy δW (thick black line), showing that
60 % of this energy has been lost to plasma heating over 7.5 periods of the initial
Alfvén waves. Another interesting point is that, although electrons are heated twice
as much as ions, the non-thermal electron energy content of the simulation always
remains very small. This point is consistent with the idea, introduced in § 3.4 above,
that non-thermal energy transferred into the electron velocity distribution function
by collisionless damping of the turbulence is very rapidly thermalized into electron
heat. This analysis of the evolution of the total energy budget shows that energy is
conserved to within 0.1 % over the course of the simulation.

One can alternatively divide the contributions to the energy budget in terms of
(3.1), as shown in figure 6(b), showing the perpendicular magnetic field energy EB⊥
(green), the parallel magnetic field energy EB‖ (cyan), the total fluctuating ion kinetic
energy E(δf )i (red) and the total fluctuating electron kinetic energy E(δf )e (blue). Note
that, as anticipated from the contributions to the turbulent energy in figure 2(b),
the turbulent energy in figure 6(a) is largely composed of perpendicular magnetic
energy EB⊥ and kinetic energy of the perpendicular ion bulk flows Ei,u⊥ . The wiggly
boundary between EB⊥ and Ei,u⊥ is a consequence of the Alfvénic fluctuations, and
their nonlinear interactions, in the simulation.

One final point is that, although one may choose to decompose the different
contributions to the energy using (3.1) in figure 6(b), by organizing the energies
instead according to the turbulent energy E(turb) = ∫

d3r[(|δB|2 + |δE|2)/8π +∑
s (1/2)n0sms|δus|2] and the species non-thermal energies E(nt)

s , the interpretation
of the energy flow is much more physically motivated, as illustrated by figure 4.
By simply plotting E(δf )i as a function of time, one does not see the important split
between the large fraction of the total fluctuating ion kinetic energy E(δf )i that is
associated with turbulent fluctuations of the bulk ion velocity and the remainder that
corresponds to the non-thermal energy that is not associated with those turbulent
fluctuations.

4. Development of current sheets and spatially localized particle energization
In the limit of strong nonlinearity, χ ∼ 1 – corresponding to the important case of

critically balanced, strong MHD turbulence (Goldreich & Sridhar 1995) – recent work
has shown that Alfvén wave collisions self-consistently develop spatially localized
current sheets (Howes 2016). This finding may indeed explain the ubiquitous current
sheets found to develop in simulations of plasma turbulence (Wan et al. 2012;
Karimabadi et al. 2013; TenBarge & Howes 2013; Wu et al. 2013; Zhdankin et al.
2013) and inferred from spacecraft observations of the solar wind (Borovsky &
Denton 2011; Osman et al. 2011, 2012; Perri et al. 2012; Wang et al. 2013; Wu
et al. 2013; Osman et al. 2014). Yet how this self-consistent development of current
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(a)

(b)

FIGURE 6. (a) The energy budget of the simulation versus time, showing the turbulent
energy E(turb), non-thermal ion energy E(nt)

i , non-thermal electron energy E(nt)
e , ion heat

E(coll)
i and electron heat E(coll)

e . (b) The same energy budget decomposed according to (3.1),
showing the perpendicular magnetic field energy EB⊥ , parallel magnetic field energy EB‖

(cyan, not labelled, appearing between EB⊥ and E(δf )i ), total fluctuating ion kinetic energy
E(δf )i , total fluctuating electron kinetic energy E(δf )e , ion heat E(coll)

i and electron heat E(coll)
e .

The total fluctuating energy δW is shown in both panels (thick black line).

https://doi.org/10.1017/S0022377818000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818000053


16 G. G. Howes, A. J. McCubbin and K. G. Klein

0 5 10 15 20 25
0

5

10

15

20

25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

5

10

15

20

25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

5

10

15

20

25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
0

5

10

15

20

25

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) (b)

(c) (d )

FIGURE 7. Plots of parallel current j‖/j0 (colour bar) and contours of the parallel vector
potential A‖ (contours, positive black, negative white) at times t/T0 = (a) 1.38, (b) 1.75,
(c) 1.86 and (d) 2.03.

sheets influences the physical mechanisms that remove energy from plasma turbulence
remains unanswered. We show in this section that the simulation reported here indeed
develops localized current sheets (localized in both time and space), and in § 5 we
employ the field–particle correlation technique to examine the physical mechanism
that removes energy from the turbulent fluctuations.

In figure 7 we plot the current density parallel to the mean magnetic field
j‖/j0 (colour bar) and contours of parallel vector potential A‖ (positive black,
negative white) in the plane z/L‖ = −0.25, where the simulation domain spans
−L‖/2 6 z 6 L‖/2 and j0 = n0qivtiL⊥/L‖. We plot the evolution of the current in this
plane at four different times in the evolution of the strong Alfvén wave collision,
t/T0 = (a) 1.38, (b) 1.62, (c) 1.86 and (d) 2.10. Here T0 = 2π/ω is the period
of the initial Alfvén waves, where the gyrokinetic linear dispersion relation gives
ω/k‖vA = 0.995 and γ /k‖vA = −6.10 × 10−3. These plots show the presence of
spatially non-uniform, elongated sheets of localized current density. Over a single
initial Alfvén wave period T0, two current sheets form at slightly different times,
become thinner and more intense, and then disappear. One of these current sheets
appears in the upper right quadrant of the plane z/L‖ = −0.25, and the other in
the lower left quadrant, as shown in figure 7. During this time, their cross-sections
in the plane plotted in figure 7 moves slowly across the quadrant of the domain
in which each appears (but these spatially localized current sheets do not cross the
entire domain, as would be expected from a strictly linear fluctuation). The general
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(a) (b)

(c) (d )

FIGURE 8. Plots of j‖E‖ (colour bar) and contours of the parallel vector potential A‖
(contours, positive solid, negative dashed) at times t/T0= (a) 1.75, (b) 1.86, and (c) 2.03,
as well as (d) 〈j‖E‖〉τ , the rate of electromagnetic work per unit volume averaged over
approximately one full wave period, τ = 0.992T0, centred at time t/T0 = 1.86.

picture of current sheet development and evolution in a strong Alfvén wave collision
is described in more quantitative detail by Howes (2016); although the parameters of
this simulation are slightly different, the evolution of the current sheets is qualitatively
similar here.

4.1. Spatial distribution of parallel electromagnetic work, j‖E‖
As shown in § 3, over the full time of the simulation, 7.5T0, 60 % of the fluctuating
energy δW of the initial Alfvén waves is removed from the fluctuations in the plasma.
Figure 3 shows that this energy is ultimately irreversibly converted into electron and
ion heat through the weak but finite collisionality in the plasma. As the model
of energy flow illustrated in figure 4 shows, this energy is initially removed from
the turbulent electromagnetic fluctuations (Howes 2015, 2017) through collisionless
interactions between the electromagnetic fields and the individual plasma particles. In
a kinetic plasma, the rate of electromagnetic work done on the particles by the fields
is given by dW/dt = ∫ d3rj · E (Howes, Klein & Li 2017; Klein 2017). Therefore,
plotting the rate of electromagnetic work j · E as a function of position provides
useful insights into the particle energization in the plasma.

As shown in appendix B, in this simulation the dominant electromagnetic work is
done by the component of the electric field parallel to the magnetic field, E‖, so
in figure 8 we plot the instantaneous value of dimensionless rate of work per unit
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volume j‖E‖/Q0 as a function of position in the plane z/L‖=−0.25 at three different
times during the simulation t/T0 = (a) 1.75, (b) 1.86 and (c) 2.03. Note that the
value of j‖E‖ is physically interpreted as the rate of transfer of spatial energy density
between the parallel electric field E‖ and the plasma ions and electrons. Since this
electromagnetic work is reversible, its value can be positive or negative, where positive
means work done on the particles by the field, and negative means work done on the
field by the particles.

As emphasized in Howes et al. (2017), the instantaneous energy transfer between
fields and particles has two components: (i) an oscillating energy transfer back and
forth between fields and particles that is typical of undamped linear wave motion in a
kinetic plasma, and (ii) a secular energy transfer that represents the energy lost from
the electromagnetic fluctuations to the plasma particles through collisionless damping.
To determine the particle energization, it is the secular energy transfer that is of
interest, but the challenge is that the oscillating energy transfer often has a much
larger amplitude than the secular energy transfer. However, if a time average is taken
over a suitably chosen averaging interval, the oscillating energy transfer will largely
cancel out, exposing the smaller secular energy transfer that is sought. In this strong
Alfvén wave collision simulation, the linear period T0 of the initial Alfvén waves is
an appropriate choice for this time averaging, and we plot in figure 8(d) the time
average of 〈j‖E‖〉τ over an interval τ = 0.992T0 centred at time t/T0 = 1.86.

The plots shown in figure 8 convey a number of valuable insights into the particle
energization in this simulation. First, the plots in figure 8(a–c) show clearly that the
instantaneous rate of energy transfer is both spatially and temporally non-uniform,
with the energy transfer localized in sheet-like structures reminiscent of the current
sheets plotted in figure 7. An example of the temporal variation is illustrated by
observing the changes in the instantaneous energy transfer rate at point A marked
on each plot. At (a) t/T0 = 1.75, the plasma is energized by E‖, but later at (b)
t/T0 = 1.86 the plasma is losing energy to E‖ and finally at (c) t/T0 = 2.03 there is
very little energy transfer either direction. Averaged over one period, figure 8(d) shows
that the plasma gains energy from the parallel electric field at point A. Curiously,
the instantaneous energy transfer from fields to particles at t/T0 = 1.86 in figure 8(b)
is negative at point A, but the single-period average, centred at that same time
t/T0 = 1.86 in figure 8(d) shows a positive transfer of energy to the particles at the
same position. This plot stresses the importance of appropriate time averaging to
properly understand the net particle energization in a turbulent plasma.

Second, the net plasma energization over one period in figure 8(d) is also spatially
localized, with plasma energization at point A, a net loss of energy at point B and
little energy change at point C. It is also worthwhile pointing out that the magnitude
of the time-averaged energy transfer is smaller in magnitude than the instantaneous
energy transfer, as expected if some fraction of this energy transfer is oscillatory
and largely cancels out when averaged over one period T0. Together, the four panels
demonstrate the key point that that the particle energization is spatially non-uniform,
both instantaneously as well as when averaged over one period T0 of the initial
Alfvén waves.

Third, something that cannot be appreciated by the single time slice in figure 8(d),
is the surprising result that the single-period-averaged plasma energization has very
little temporal variation as the centre of the time-average window is advanced over one
period. In figure 9, we present 〈j‖E‖〉τ time averaged over an interval τ = 0.992T0
centred at times t/T0 = (a) 1.75, (b) 2.03 and (c) 2.85 and (d) 3.84. Although
the instantaneous spatial distribution of j‖E‖ changes significantly over the wave
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(a) (b)

(c) (d )

FIGURE 9. Plots of 〈j‖E‖〉τ averaged over approximately one full wave period, τ =
0.992T0, centred at times t/T0= (a) 1.75, (b) 2.03 and (c) 2.85 and (d) 3.84, showing that
the qualitative spatial pattern of time-averaged particle energization is remarkably static
over the evolution of the simulation.

period, for example shown at t/T0 = (a) 1.75, (b) 1.86 and (c) 2.03 in figure 8, the
corresponding single-period-averaged plasma energization 〈j‖E‖〉τ centred at the same
times changes little, shown in figure 9(a) at t/T0 = 1.75, figure 8(d) at t/T0 = 1.86
and figure 9(b) at t/T0 = 2.03. In fact, one observes only a very slow evolution of
this particle energization pattern over a number of periods, as seen in figure 8(d)
at t/T0 = 1.86, in figure 9(c) at t/T0 = 2.85 and in figure 9(d) at t/T0 = 3.84. The
very small variations are in large part due to the long-term evolution which involves
the inevitable accumulated loss of fluctuating energy δW over the course of the
simulation.

A final point is that the plasma energization – the sum of the energy transfer to both
ions and electrons – has a net positive value when integrated over the entire simulation
domain, as demonstrated by the sum Ė( fp)

i + Ė( fp)
e plotted in figure 5(c). Therefore,

although there is a loss of plasma energy in some regions of the domain, the net effect
is that plasma species gain energy at the expense of the turbulent electromagnetic field
and bulk plasma flow fluctuations, as depicted in the energy flow diagram in figure 4.

Further insight into the effect of the nonlinear evolution on the resulting plasma
energization can be gained by comparing a linear simulation starting from identical
initial conditions. The AstroGK code has the capability of simply turning off the
nonlinear term in the gyrokinetic equation (Howes et al. 2006; Numata et al. 2010),
enabling strictly linear evolution from identical conditions with the same simulation
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(a) (b)

FIGURE 10. Comparison of time averaged 〈j‖E‖〉τ over an interval τ = 0.992T0 centred
at time t/T0 = 1.86 for both (a) a nonlinear run and (b) a linear run, starting from
identical initial conditions, showing a much more spatially localized distribution of plasma
energization in the nonlinear case.

code. In the linear case, no energy is transferred to other Fourier modes, and all of the
particle energization is due to linear collisionless damping via the Landau resonance.
In figure 10, we plot the time averaged 〈j‖E‖〉τ over an interval τ = 0.992T0 centred
at time t/T0 = 1.86 for both (a) the nonlinear run and (b) the linear run. This figure
directly demonstrates the striking fact that the spatial non-uniformity of particle
energization arises due to the nonlinear transfer of energy to other Fourier modes.
This is fully consistent with the picture of current sheet generation by constructive
interference among the initial Alfvén wave modes and the nonlinearly generated
fluctuations (Howes 2016). In § 5, the field–particle correlation technique will be used
to identify the nature of the collisionless energy transfer that yields this spatially
non-uniform particle energization.

The rate of plasma energization is the sum of the rates of ion and electron
energization, j‖E‖ = j‖iE‖ + j‖eE‖, and, in appendix B, we plot in figures 18 and 19
the separate ion and electron energization contributing to figure 8. In this simulation,
the single-period-averaged particle energization in the plane z/L‖ = −0.25 shown in
figure 8 yields approximately twice the energy transfer to electrons relative to the
ions at t/T0 = 1.86.

5. Analysis of energy transfer mechanism using field–particle correlations
The rates of total energy transfer as a function of time between the turbulent

fluctuations and the ions and electrons, plotted in figure 5, give the desired information
about the net collisionless particle energization over the entire simulation domain.
However, this simple approach cannot be applied to the analysis of spacecraft
measurements to understand heating in heliospheric plasmas, because spacecraft
measure the particle velocity distributions and electromagnetic fields at only one or
a few points in space, so it is not possible to integrate the plasma heating over the
entire plasma volume. In addition, such an energy flow analysis alone, such as that
given in the diagram in figure 4, tells us nothing of the mechanism leading to the
particle energization.

The electromagnetic work, j · E, can be computed with single-point measurements,
providing more insight into the nature of the particle energization mechanism and the
spatial distribution of energy transfer than an energy analysis alone, but the newly
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developed field–particle correlation technique (Klein & Howes 2016; Howes et al.
2017), which yields the distribution of the energy transfer as a function of particle
velocity, gives far greater detail about the nature of the energy transfer mechanism.
This technique requires only a single-point time series of both field and velocity
distribution function measurements, which can be obtained using modern spacecraft
instrumentation.

The field–particle correlation technique has been successfully applied to examine
the electron energization due to the damping of electrostatic fluctuations in a one
dimension in space-one dimension in velocity space (1D-1V) Vlasov–Poisson plasma
(Klein & Howes 2016; Howes et al. 2017), to determine the transfer of free energy
in kinetic instabilities from unstable particle velocity distributions to electrostatic
fluctuations (Klein 2017), and to explore the particle energization caused by the
collisionless damping of strong, broadband, gyrokinetic plasma turbulence (Klein,
Howes & TenBarge 2017). Here we apply the technique to discover the nature of the
physical mechanism responsible for the spatially non-uniform transfer of energy from
the turbulent fluctuations to the non-thermal energy of the ions and electrons in the
plasma.

Specifically, since we know from figure 17 in appendix B that the net energy
transfer is dominated by the parallel electric field, we will evaluate the correlation
of the ion and electron fluctuations with the parallel electric field. The correlation of
the parallel electric field, E‖, with a species s is defined by

CE‖,s(v, t, τ )=C

(
−qs

v2
‖

2
∂fs(r0, v, t)

∂v‖
, E‖(r0, t)

)
. (5.1)

This unnormalized correlation is taken over an appropriately chosen correlation
interval τ to suppress the signal of the oscillatory energy transfer relative to the
secular energy transfer (Howes et al. 2017). Defining the phase-space energy density
by ws(r, v, t)=msv

2fs(r, v, t)/2, this unnormalized correlation yields the phase-space
energy transfer rate between the parallel electric field E‖ and species s given by the
Lorentz term in the Vlasov equation (Howes 2017; Klein et al. 2017). A key aspect
of this novel analysis method is that it retains the dependence of the energy transfer
on velocity space. Note that integrating this correlation over velocity space simply
yields the parallel contribution to the electromagnetic work, j‖E‖ =

∫
dvCE‖(v, t, τ )

(Howes et al. 2017; Klein et al. 2017).
For the application of this technique to data from our gyrokinetic simulation using

AstroGK, we note that the gyrokinetic distribution function hs(x, y, z, v⊥, v‖) is related
to the total distribution function fs via (Howes et al. 2006)

fs(r, v, t)= F0s(v)

(
1− qsφ(r, t)

T0s

)
+ hs(r, v‖, v⊥, t), (5.2)

where the F0s(v) is the Maxwellian equilibrium distribution function. As a technical
step, we transform from the gyrokinetic distribution function hs to the complementary
perturbed distribution function

gs(r, v‖, v⊥)= hs(r, v‖, v⊥)− qsF0s

T0s

〈
φ − v⊥ ·A⊥

c

〉
Rs

, (5.3)

where 〈 · · · 〉 is the gyroaveraging operator (Schekochihin et al. 2009). The complemen-
tary distribution function gs describes perturbations to the background distribution in
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the frame of reference moving with the transverse oscillations of an Alfvén wave.
Field–particle correlations calculated using hs or fs yield qualitatively and quantitatively
similar results to those computed with gs (Klein et al. 2017).

Below, we present the correlations between the complementary perturbed distribution
function and the parallel electric field E‖ at a single point r0

CE‖,s(v‖, v⊥, t, τ )=C

(
−qs

v2
‖

2
∂gs(r0, v‖, v⊥, t)

∂v‖
, E‖(r0, t)

)
. (5.4)

To explore the particle energization over time, we can also integrate over the
perpendicular velocity v⊥ to obtain a reduced parallel correlation

CE‖,s(v‖, t, τ )=
∫
v⊥ dv⊥CE‖,s(v‖, v⊥, t, τ ). (5.5)

This reduced parallel correlation CE‖,s(v‖, t, τ ) can be plotted as a function of (v‖, t) to
illustrate the time evolution particle energization using a timestack plot of the energy
transfer as a function of the parallel velocity of the particles.

5.1. Timestack plots of field–particle correlations
Here we present the results of the field–particle technique applied at three points in
the simulation domain, labelled A, B and C in figure 8. From figure 8(d), we see
that, averaged over one period τ/T0= 0.992 centred at t/T0= 1.86, there is a net gain
of energy by the plasma at point A, a net loss of energy by the plasma at point B
and little net change in the plasma energy at point C. Note that the reduced parallel
correlation CE‖,s(v‖, t, τ ) in the plots presented in this section is normalized by the
energy transfer rate per unit volume per unit velocity, Q0/vti.

In figure 11(b), we present a timestack plot of the reduced parallel field–particle
correlation for the ions CE‖,i(v‖, t, τ ) at position A with a correlation interval τ/T0 =
0.992, showing the distribution of the energy transfer to the ions as a function of the
parallel velocity v‖/vti versus normalized time t/T0. Vertical solid and dashed black
lines indicate the limits of resonant parallel phase velocities from figure 1, 1.0 .
|ω/k‖vti|. 1.5 for ions; there are both positive and negative ranges of parallel phase
velocities, corresponding to Alfvén waves travelling up or down the mean magnetic
field. Also plotted in figure 11(a) is the velocity-space-integrated correlation, ∂wi/∂t=∫

dv‖CE‖i(v‖, t, τ ), equivalent to the parallel ion contribution of the electromagnetic
work j‖iE‖ at position A, showing a net energization of the ions over the course of
the simulation.

The distribution of the energy transfer as a function of v‖/vti in figure 11(b) is the
velocity-space signature of the energy transfer mechanism. The localization of the
energy transfer in the marked range of resonant parallel phase velocities for kinetic
Alfvén waves clearly indicates that the energy transfer is resonant. The specific
distribution of this energy transfer, with a transfer of energy from E‖ to the ions (red)
at |v‖/vti|> |vres/vti| and a loss of energy from the ions (blue) at |v‖/vti|< |vres/vti| is
the characteristic signature of the Landau damping of kinetic Alfvén waves (Howes
2017; Klein et al. 2017). The change of sign in the energy transfer occurs at the
resonant phase velocity for the collisionlessly damped wave. Here the change of sign
occurs at v‖/vti = ω/k‖vti ' vA/vti = ±1, indicating that larger-scale Alfvén waves
with k⊥ρi � 1, which have a parallel phase velocity ω/k‖ = vA, appear to dominate
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(a) (b)

(c) (d)

FIGURE 11. Timestack plots of ion and electron energization at position A for a
correlation interval τ/T0= 0.992. (a) Velocity-space integrated correlation, giving the rate
of ion energization ∂wi/∂t due to ion interactions with E‖. (b) The reduced parallel
field–particle correlation for the ions CE‖,i(v‖, t, τ ). (c) Velocity-space integrated correlation,
giving the rate of electron energization ∂we/∂t due to electron interactions with E‖. (d)
The reduced parallel field–particle correlation for the electrons CE‖,e(v‖, t, τ ). Vertical
solid black indicate resonant velocities for a parallel phase velocity at the Alfvén speed
ω/(k‖vts) = vA/vts. Vertical dashed lines indicate the highest parallel phase velocities for
modes with significant collisionless damping in the simulation.

the energy transfer at point A. This is consistent with the fact the energy in the
electromagnetic and plasma bulk flow fluctuations in this simulation is dominated
by the low k⊥ρi � 1 modes. This novel field–particle correlation analysis shows
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definitively the key result that ion Landau damping contributes to the energization of
ions at position A in this strong Alfvén wave collision simulation.

In figure 11(d), we plot the reduced parallel field–particle correlation for the
electrons CE‖,e(v‖, t, τ ) at position A with the same correlation interval τ/T0 = 0.992,
where vertical solid and dashed black lines indicate the range of resonant parallel
velocities from figure 1, 0.17.ω/k‖vte . 0.6 for electrons. Also plotted in figure 11(c)
is the velocity-space-integrated correlation, ∂we/∂t = ∫ dv‖CE‖e(v‖, t, τ ), equivalent to
the parallel electron contribution of the electromagnetic work j‖eE‖, showing a net
energization of the electrons at position A.

The velocity-space signature of the electron energization in figure 11(d) also
shows the typical characteristics of electron Landau damping, with a slight difference
from the ion case. Because kinetic Alfvén waves are dispersive, with a parallel
phase velocity that increases for k⊥ρi & 1 given approximately by ω = k‖vA√

1+ (k⊥ρi)2/[βi + 2/(1+ Te/Ti)] (Howes, Klein & TenBarge 2014), the parallel
resonant velocity will increase for kinetic Alfvén waves with larger k⊥ρi. The
velocity-space signature of linear Landau damping typically shows the change of
sign of the energy transfer at the resonant velocity. In figure 11(d), that change
of sign for 1 6 t/T0 6 3 occurs at a resonant velocity slightly larger than vA/vte

(vertical black line), suggesting that the kinetic Alfvén wave involved in the electron
Landau damping has a value of k⊥ρi & 1 leading to a higher resonant parallel velocity.
Despite this minor detail, the energy transfer still shows that the electron energization
is mediated by resonant electrons, with a velocity-space signature typical of electron
Landau damping (Howes 2017). Therefore, this analysis definitively yields a second
key result, that electron Landau damping contributes to the energization of electrons
at position A in this strong Alfvén wave collision simulation.

We can also investigate the regions in the simulation domain where the plasma
loses energy to the parallel electric field at point B, plotted in figure 12. The (a)
velocity-integrated ion energization ∂wi/∂t due to E‖ and (c) velocity-integrated
electron energization ∂we/∂t due to E‖ both show that the net energy transfer to
ions and electrons at point B is negative. Here, as in figure 11, we see that the
energy transfer for both ions in (b) and electrons in (d) is dominated by particles
with velocities that fall within the range of parallel velocities expected to be resonant
with the parallel phase velocity of Alfvén waves, demonstrating directly that energy
transfer between the particles and the parallel electric field E‖ is governed by Landau
resonant interactions.

At point C in the simulation domain, there is very little net energy transfer from
the parallel electric field to the plasma particles. The same field–particle correlation
analysis at point C, presented in figure 13, shows that the velocity-integrated (a) ion
energization ∂wi/∂t and (c) electron energization ∂we/∂t due to E‖ yield a very small
positive transfer of energy to the particles over the first couple of periods T0, with
an amplitude approximately an order of magnitude smaller than the energy transfer at
points A and B. The reduced parallel field–particle correlation CE‖,s(v‖, t, τ ) for (b)
the ions and (d) the electrons shows that the majority of this very small amount of
energy transfer is still dominated by resonant particles.

But there is a very significant difference between the reduced parallel field–particle
correlation CE‖,s at point C for both ions and electrons compared to the same
correlation at points A and B: the pattern of energy transfer at point C is dominantly
odd in v‖, whereas the patterns at points A and B are dominantly even in v‖. When
integrated over the parallel velocity to obtain the net change of energy of a species,
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(a) (b)

(c) (d )

FIGURE 12. Plots of the same field–particle correlation analysis as figure 11, but taken
at point B.

an odd pattern largely cancels out, whereas an even pattern does not. Therefore, there
is little net particle energization at point C, even though individual particles do gain
and lose energy through resonant interactions with E‖. Particles with v‖ > 0 gain
nearly the same amount of energy as that lost by particles with v‖< 0, yielding little
net change of particle energy.

The important point that the field–particle correlation analysis here demonstrates
is that collisionless interactions of the Landau resonance between E‖ and the ions
and electrons contribute to the spatially non-uniform pattern of time-averaged particle
energization, shown in figure 8(d). This result disproves by counterexample the
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(a) (b)

(c) (d )

FIGURE 13. Plots of the same field–particle correlation analysis as figure 11, but taken
at point C.

commonly stated belief that Landau damping can only lead to spatially uniform
particle energization. Rather, we see clearly here that collisionless damping via
the Landau resonance can indeed be responsible for spatially localized particle
energization, as previously suggested in the literature (TenBarge & Howes 2013;
Howes 2015, 2016). Furthermore, the nonlinear energy transfer by collisionless
damping via the Landau resonance is not inhibited by the strong nonlinear interactions
that play an important role in this strong Alfvén wave collision simulation. Indeed,
nonlinear gyrokinetic simulations of strong, broadband plasma turbulence have indeed
shown that the collisionless transfer of energy between fields and ions is dominated
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by particles approximately in Landau resonance with the parallel phase velocity of
Alfvénic fluctuations (Klein et al. 2017).

5.2. Particle energization in gyrotropic velocity space
Finally, we can examine the distribution of particle energization in gyrotropic velocity
space (v‖, v⊥) (Howes 2017) using the field–particle correlation CE‖,s(v‖, v⊥, t, τ ).
Although plots of this analysis are limited to the correlation centred at just a single
point in time, by not integrating over perpendicular velocity v⊥ one obtains complete
information about which particles in gyrotropic velocity space (v‖, v⊥) participate in
the collisionless transfer of energy. Note that the parallel correlation in gyrotropic
velocity space, CE‖,s(v‖, v⊥, t, τ ) in the plots presented in this section is normalized
by the energy transfer rate per unit volume per unit velocity squared, Q0/v

2
ti.

In figure 14, we plot CE‖,s(v‖, v⊥, t, τ ) for the same correlation interval τ/T0=0.992
centred at time t/T0 = 2.10: (a) ion and (b) electron energization at point A, (c) ion
and (d) electron energization at point B and (e) ion and ( f ) electron energization
at point C. As before, vertical solid and dashed black lines denote the range of
resonant parallel velocities for Alfvén waves. Three important points can be inferred
from these gyrotropic velocity-space plots. First, other than a steady decrease of the
amplitude of the signal with increasing v⊥ – as expected because the equilibrium
Maxwellian distribution drops off exponentially as exp(−v2/v2

ts), so the amplitude
of fluctuations δf (v) would be expected to have a similar drop off in amplitude –
the energy transfer shows very little variation with v⊥. The variation in the energy
transfer is organized almost entirely by v‖, as expected for a Landau resonant energy
transfer process. Second, this energy transfer is dominated by particles with parallel
velocities resonant with Alfvénic fluctuations, v‖ ' vA, demonstrating that the energy
transfer is governed by the Landau resonance. Third, the odd or even character in v‖
at the different points A, B and C seen in the timestack plots is also clearly apparent
here in these gyrotropic velocity-space plots.

Summarizing, the gyrotropic velocity space (v‖, v⊥) plots in figure 14 demonstrate
how the field–particle correlation technique maximizes the use of the full particle
velocity distribution function information, enabling the physical mechanism responsible
for the removal of energy from turbulent fluctuations and consequent particle
energization to be identified definitively. In this case, the velocity-space signature
of the field–particle correlation is unmistakably that of Landau damping of a kinetic
Alfvén wave (Howes 2017), proving that Landau damping indeed plays a role in the
spatially non-uniform removal of the energy of electromagnetic and bulk plasma flow
fluctuations, even in the presence of strong nonlinearity.

6. Conclusion
Using a nonlinear gyrokinetic simulation of a strong Alfvén wave collisions, we

examine here the damping of the electromagnetic fluctuations and the associated
energization of particles that occurs in current sheets that are generated self-
consistently during the nonlinear evolution.

The flow of energy due to the collisionless damping and the associated particle
energization, as well as the subsequent thermalization of the particle energy by
collisions, provides an important framework for interpreting the nonlinear dynamics
and dissipation. Figure 4 presents a simple model of the energy flow from turbulent
energy to plasma heat in the simulation, with the following two key stages: (i) the
turbulent fluctuation energy is removed by collisionless field–particle interactions,
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(a) (b)

(c)

(e) ( f )

(d)

FIGURE 14. Plots of the field–particle correlation CE‖(v‖, v⊥, t, τ ) on gyrotropic velocity
space (v‖, v⊥) for a correlation interval τ/T0 = 0.992 centred at time t/T0 = 2.10: (a) ion
and (b) electron energization at point A, (c) ion and (d) electron energization at point
B and (e) ion and ( f ) electron energization at point C. Vertical solid lines denote the
resonant parallel velocities for a parallel phase velocity at the Alfvén speed ω/(k‖vts)=
vA/vts.

transferring that energy reversibly into non-thermal energy of the plasma species;
and (ii) the non-thermal energy, represented by fluctuations in the particle velocity
distribution functions, is driven to sufficiently small velocity-space scales that weak
collisions can thermalize that energy, irreversibly heating the plasma species. In the
strong Alfvén wave collision simulated here, this two-step processes ultimately leads
to more than 60 % of the original fluctuation energy being dissipated collisionally as
thermal ion and electron energy.

It has long been appreciated that the nonlinear evolution of plasma turbulence leads
to the development of intermittent current sheets (Matthaeus & Montgomery 1980;
Meneguzzi et al. 1981), and a recent study has shown that strong Alfvén wave
collisions – nonlinear interactions between counterpropagating Alfvén waves –
self-consistently develop spatially localized current sheets through the constructive
interference of the original Alfvén waves and nonlinearly generated fluctuations
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(Howes 2016). MHD turbulence simulations have shown that the dissipation of
turbulent energy is largely concentrated in these intermittent current sheets (Uritsky
et al. 2010; Osman et al. 2011; Zhdankin et al. 2013), so a natural question is
whether the collisionless damping of current sheets generated by strong Alfvén wave
collisions leads to such spatially localized particle energization. Plotting the spatial
distribution of the electromagnetic work done by the parallel electric field E‖, shown
in figure 8(a–c), shows that the instantaneous particle energization is indeed spatially
non-uniform with a sheet-like morphology.

A key point, however, is that much of this reversible electromagnetic work leads to
an oscillatory transfer of energy to and from the particles associated with undamped
wave motion. Only by averaging over a suitable time interval, in this case an averaging
interval that is approximately a single wave period τ ' T0, can we determine the
secular particle energization 〈j‖E‖〉τ associated with the net removal of energy from
the turbulent fluctuations. Figure 8(d) shows that the secular particle energization
〈j‖E‖〉τ in this strong Alfvén wave collision indeed remains spatially non-uniform,
although less localized than the instantaneous rates of energy transfer in figure 8(a–c).
The bottom line is that the current sheets arising in strong Alfvén wave collisions
indeed generate spatially localized particle energization, consistent with that found in
simulations of plasma turbulence (Wan et al. 2012; Karimabadi et al. 2013; TenBarge
& Howes 2013; Wu et al. 2013; Zhdankin et al. 2013) and inferred from spacecraft
observations of the solar wind (Osman et al. 2011, 2012; Perri et al. 2012; Wang
et al. 2013; Wu et al. 2013; Osman et al. 2014).

The next obvious question is what is the physical mechanism governing the removal
of energy from the turbulence and the consequent spatially non-uniform energization
of the particles? Using the recently developed field–particle correlation technique
(Klein & Howes 2016; Howes et al. 2017), we examine how the energy transfer to
ions and electrons by the parallel electric field E‖ is distributed in velocity space.
In other words, which particles in velocity space receive the energy transferred
collisionlessly from the electromagnetic fields? The results, exemplified by figure 11,
show that the particles that are resonant with the parallel velocity of the Alfvén waves
in the simulation dominate the energy transfer, demonstrating conclusively that
Landau damping plays a role in the damping of the electromagnetic fluctuations and
consequent energization of the particles in this strongly nonlinear simulation.

Based on the plane-wave decomposition typically used to derive linear Landau
damping analytically, one may naively expect that Landau damping leads to spatially
uniform energization. Together, the results presented here definitively show instead
that Landau damping can indeed lead to spatially localized particle energization.
The comparison to a strictly linear simulation from identical initial conditions,
presented in figure 10, shows that the nonlinear energy transfer to other Fourier
modes is essential for the localization of the particle energization. This is consistent
with the model for current sheet generation in Alfvén wave collisions in which
nonlinearly generated modes constructively interfere with the initial Alfvén waves
to create spatially localized current sheets; linear Landau damping of each of these
modes, which occurs spatially locally, leads to the non-uniform spatial pattern of the
energization, as previously suggested (Howes 2015, 2016).

Our result here, that Landau damping is effective even in a plasma where strong
nonlinear interactions are playing an important role, also addresses the important
question of whether Landau damping is effective in a strongly turbulent plasma
(Plunk 2013; Schekochihin et al. 2016). Our results here complement a recent
field–particle correlation analysis of gyrokinetic turbulence simulations showing
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that Landau damping indeed persists as an effective physical mechanism for ion
energization in broadband, strong plasma turbulence (Klein et al. 2017).

We emphasize here that we have not shown that Landau damping is the only
damping mechanism, but we have provided conclusive evidence that Landau damping
does play a role in the collisionless damping of turbulence in spatially localized
current sheets that arise from strong Alfvén wave collisions. As mentioned in
appendix B, transit-time damping (Barnes 1966; Quataert 1998) – which does work
on particles via their magnetic moment through the magnetic mirror force arising
from fluctuations in the magnetic field magnitude – is another effective physical
mechanism for collisionless damping and energization of particles via the Landau
resonance in gyrokinetics. Here we have focused only on the contribution to the
particle energization by the parallel electric field E‖; future work will address the
additional contribution by the magnetic mirror force arising from ∇‖|B|.

Another important question is whether collisionless magnetic reconnection (Birn
et al. 2001; Shay et al. 2001; Ricci et al. 2004; Drake, Shay & Swisdak 2008;
Ji & Daughton 2011), possibly involving the emergence of the plasmoid instability
(Shibata & Tanuma 2001; Loureiro, Schekochihin & Cowley 2007; Bhattacharjee
et al. 2009), plays any role in the removal of energy from these current sheets that
arise self-consistently from strong Alfvén wave collisions (Howes 2016; Verniero
et al. 2018; Verniero & Howes 2017). Further numerical investigations varying the
simulation resolution and the ion plasma βi, in particular for βi� 1 where the drive
for magnetic reconnection is sufficiently stronger (TenBarge et al. 2014), will be
necessary to better understand the role that magnetic reconnection may play in the
dissipation of plasma turbulence.

The comparison of the time evolution of the field–particle energy transfer Ė( fp)
s

and the collisional heating Qs for each species in figure 5 also raises important
questions about the relative rates of linear and nonlinear phase-mixing processes
that enable the non-thermal energy, represented by fluctuations in the particle velocity
distribution function, to reach sufficiently small velocity-space scales to be thermalized
by arbitrarily weak collisions. In particular, recent work suggests that for sufficiently
low collisionality, turbulent anti-phase-mixing can inhibit the thermalization of
energy removed by Landau damping (Parker et al. 2016; Schekochihin et al. 2016),
meriting a further investigation of the sensitivity of the results presented here on
the species collisionality. These questions, and more, about the flow of energy in
weakly collisional heliospheric plasmas, lie at the forefront of kinetic heliophysics
(Howes 2017), and will drive research efforts by the next generation of space plasma
physicists.
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Appendix A. Collisionless damping rate as a function of mass ratio
Here we present in figure 15 a comparison of the linear physics of the Alfvén/kinetic

Alfvén wave mode for the reduced mass ratio used here mi/me = 36 (thick lines) to
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(a)

(b)

FIGURE 15. Comparison of the results from the linear collisionless gyrokinetic dispersion
relation for the reduced mass ratio mi/me = 36 (thick) and a realistic proton-to-electron
mass ratio mi/me=1836 (thin): (a) normalized frequency ω/k‖vA and (b) total collisionless
damping rate γtot/ω (black solid), ion collisionless damping rate γi/ω (red dotted), and
electron collisionless damping rate γe/ω (blue dashed). Solid and dashed vertical lines
are the same as in figure 1.

that for a realistic proton-to-electron mass ratio mi/me= 1836 (thin lines). Specifically,
for a plasma with βi = 1 and Ti/Te = 1, we solve the linear collisionless gyrokinetic
dispersion relation (Howes et al. 2006) for the (a) normalized wave frequency
ω/k‖vA and (b) total collisionless damping rate γtot/ω (black solid) as a function of
the perpendicular wavenumber k⊥ρi. In addition, in (b) we also show the separate
contributions of the ions (red dotted) and electrons (blue dashed) to the collisionless
damping rate.

The comparison shows that the linear wave frequency ω/k‖vA begins to differ only
slightly between the two cases at k⊥ρi & 5. Note that the fully resolved perpendicular
range of the dealiased pseudospectral method for the strong Alfvén wave collision
simulation covers 0.25 6 k⊥ρi 6 5.25, denoted by the two vertical solid black lines;
modes in the corner of (kx, ky) Fourier space represent perpendicular wavenumbers out
to k⊥ρi = 5.25

√
2' 7.42, denoted by the vertical dashed black line. Therefore, there

is very little difference in the linear wave frequency over the perpendicular range of
the simulation between mi/me = 36 and mi/me = 1836.

The noticeable difference between the two cases arises in the electron collisionless
damping rate γe/ω in figure 15(b). The ion damping is slightly smaller for the realistic
mass ratio relative to the reduced mass ratio, but the electron damping drops by nearly
an order of magnitude. Other than the amplitude changes, however, the individual
species damping rates γs/ω on a log–log plot have the same the functional form,
only a different relative weighting. The reduced mass ratio case has nearly a factor
of ten larger relative contribution to the collisionless damping by the electrons than
the realistic mass ratio. Note that significant collisionless damping of a wave occurs
when γ /ω&0.1 (marked by a horizontal dashed line), so total collisionless damping is
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(a)

(b)

FIGURE 16. Plots of (a) the normalized frequency ω/k‖vA and (b) the normalized ion
damping rate γi/ω as a function of perpendicular wavenumber k⊥ρi for mass ratios (thick
lines) mi/me= 4 (dotted), mi/me= 9 (short dashed), mi/me= 16 (long dashed), mi/me= 25
(short dash-dot), mi/me= 32 (long dash-dot) and mi/me= 100 (long dash-short dash). Also
plotted (thin solid line) are the results for a realistic mass ratio mi/me = 1836.

relatively weak over the perpendicular range of the simulation for a realistic mass ratio
mi/me = 1836, whereas the damping is very strong with γtot/ω ∼ 1.0 at the smallest
perpendicular scales for the reduced mass ratio mi/me= 36. This enables collisionless
damping to remove energy from the turbulent fluctuations completely over the resolve
range of scales, avoiding any problematic bottlenecks at the smallest scales.

The properties of linear kinetic plasma theory, plotted in figure 15, support the
argument that use of the reduced mass ratio mi/me = 36 will not lead to major
qualitative differences in the plasma behaviour relative to a realistic mass ratio
mi/me = 1836. How far can the mass ratio be reduced before it alters the qualitative
behaviour of the system? In figure 16, we plot (a) the normalized frequency ω/k‖vA

and (b) the normalized ion damping rate γi/ω as a function of perpendicular
wavenumber k⊥ρi for a βi = 1 and Ti/Te = 1 plasma with mass ratios (thick lines)
mi/me = 4 (dotted), mi/me = 9 (short dashed), mi/me = 16 (long dashed), mi/me = 25
(short dash-dot), mi/me = 32 (long dash-dot) and mi/me = 100 (long dash-short dash).
Also plotted for comparison (thin solid line) are the results for a realistic mass
ratio mi/me = 1836. The cautionary result here is that, for very low mass ratios of
mi/me= 4 and mi/me= 9, the behaviour of the plasma response, specifically the wave
frequency and the ion collisionless damping, differs qualitatively from the case for
mass ratios mi/me > 16. The key difference is that the ion damping does not peak at
k⊥ρi ∼ 1 and then drop off sharply for k⊥ρi� 1 for these very low mass ratios, and
this qualitative difference could lead to unphysical results.

For the mass ratio mi/me = 36 used in the simulation presented in this paper, we
appear to be safely in an asymptotic regime that mimics the qualitative behaviour of
the realistic mass ratio case. Similar tests (not shown) over the range of ion plasma β
0.3 6 βi 6 3 suggest that mass ratios mi/me < 32 may potentially lead to qualitatively
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(a) (b)

(c) (d)

FIGURE 17. Plots of the different components of the electromagnetic work (a) 〈jxEx〉τ , (b)
〈jyEy〉τ and (c) 〈j‖E‖〉τ , as well as the total work (d) 〈j ·E〉τ averaged over a single wave
period τ = 0.992T0 centred at time t/T0 = 1.86.

incorrect results about the relative ion and electron damping (Klein et al. 2017). The
take-home lesson is that one must be cautious in the interpretation of the results from
numerical simulations that employ very low mass ratios.

Appendix B. Particle energization by component and species
In the Vlasov–Maxwell system of equations, the rate of change of particle energy

density at a given position in space is given by the rate of electromagnetic work,
j · E (Klein et al. 2017), confirming the familiar concept the only the electric field
can change the energy of charged particles. In the low-frequency limit of kinetic
plasma theory, one may average the Vlasov–Maxwell equations over the gyrophase θ
in cylindrical velocity space (v‖, v⊥, θ) to obtain the reduced system of gyrokinetics
(Frieman & Chen 1982; Howes et al. 2006). The benefit of this procedure is the
reduction of velocity space to two dimensions (v‖, v⊥) at the expense of discarding
the physics at cyclotron frequencies and higher; effectively, the cyclotron resonances
and fast magnetosonic waves are eliminated, while retaining finite Larmor radius
effects and collisionless damping via the Landau resonance.

In addition to this elimination of the cyclotron resonances, a component of the
perpendicular electromagnetic work, j⊥ · E⊥ is alternatively expressed in terms
of the magnetic mirror force, Fmir = −µ∇‖|B|, where the magnetic moment of
a particle is given by µs = msv

2
⊥/2|B|. In the anisotropic limit k‖ � k⊥ of the

gyrokinetic approximation, the change in the magnetic field magnitude is dominated
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(a) (b)

(c) (d)

FIGURE 18. Plots of the instantaneous rate of parallel electromagnetic work on the ions
j‖,iE‖ and contours of the parallel vector potential A‖ (contours, positive solid, negative
dashed) at times t/T0 = (a) 1.75, (b) 1.86 and (c) 2.03, as well as (d) 〈j‖,iE‖〉τ averaged
over one full wave period τ = 0.992T0 centred at time t/T0 = 1.86.

by the variation in the parallel component of the field, δ|B| = δB‖ + O(|δB|2). For
electromagnetic waves with a fluctuation in the magnetic field strength, the magnetic
mirror force −µ∇‖δB‖ acting on the magnetic moment µ of the particle gyromotion,
leads to collisionless damping of the wave via the Landau resonance, a process
denoted by the term transit-time damping, or alternatively called Barnes damping
(Barnes 1966; Quataert 1998).

The bottom line is in gyrokinetics there are two separate mechanisms that can
lead to resonant collisionless particle energization: Landau damping mediated by
the parallel electric field E‖ and transit-time damping mediated by gradients in the
parallel magnetic field perturbation ∇‖δB‖. In this paper, we focus solely on the
particle energization by Landau damping through the parallel electric field E‖, leaving
a detailed analysis of transit-time damping to future work.

Although gyrokinetics eliminates cyclotron resonant heating, it still describes the
electromagnetic work done by all three components of j · E. The primary focus
of this paper is resonant heating by Landau damping through the parallel electric
field E‖, so plots in the body of paper focus only on the parallel contribution
j‖E‖. In figure 17, we present here for completeness the three components of the
electromagnetic work (a) 〈jxEx〉τ , (b) 〈jyEy〉τ and (c) 〈j‖E‖〉τ averaged over single
wave period τ = 0.992T0 centred at time t/T0 = 1.86. The components jxEx and jyEy

dominantly represent the energy transfer between fields and particles associated with
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(a) (b)

(c) (d)

FIGURE 19. Plots of the instantaneous rate of parallel electromagnetic work on the
electrons j‖,eE‖ and contours of the parallel vector potential A‖ (contours, positive solid,
negative dashed) at times t/T0 = (a) 1.75, (b) 1.86 and (c) 2.03, as well as (d) 〈j‖,eE‖〉τ
averaged over one full wave period τ = 0.992T0 centred at time t/T0 = 1.86.

undamped wave motion, for example representing magnetic tension as the restoring
force for the Alfvén wave. Therefore, jxEx and jyEy represent oscillatory energy
transfer, and averaged over one wave period there is very little net energy change.
By comparison, the single-wave period averaged 〈j‖E‖〉τ represents the secular energy
transfer associated with collisionless damping, is much larger than that for jxEx or
jyEy. Note that (d) the total single-wave period-averaged total electromagnetic work
〈j · E〉τ is dominated by the parallel component 〈j‖E‖〉τ . This comparison motivates
our focus in the body of this paper on the parallel contribution to the electromagnetic
work, j‖E‖.

We also plot separately the parallel electromagnetic work on the ions j‖,iE‖ in
figure 18 and on the electrons j‖,eE‖ in figure 19. The spatial patterns of the
instantaneous rate of work at t/T0 = (a) 1.75, (b) 1.86 and (c) 2.03, as well as
(d) the 〈j‖,sE‖〉τ averaged over one full wave period τ = 0.992T0 centred at time
t/T0 = 1.86, are similar for both species, but the rate of electron energization in
this plane is about twice the magnitude of that for the ions. Since the ion and
electron linear damping rates are similar for k⊥ρi . 1, this may suggest significant
energy removal at higher k⊥ρi > 1 where electrons are expected to receive a greater
share of the removed turbulent energy. A future examination of the ion and electron
energization will investigate the typical length scale at which particles are energized
in more detail.
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