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ELASTIC WAVES IN TWO SOLIDS AS PROPAGATION

OF SINGULARITIES PHENOMENON

KAZUHIRO YAMAMOTO

In this paper we shall study elastic waves in two isotropic media

with different densities and Lame's constants. In seismology elastic waves

are studied when the border of two media is a hyperplane, however there

are no results on elastic waves in the non-flat border case. First in

Section 1 we shall show an existence theorem of the solutions of an

initial boundary value problem which is satisfied by the displacements of

two media. Next we shall discuss about propagation of singularities of

the solutions, for Hδrmander and Lax-Nirenberg showed that an appear-

ance of propagation of singularities is similar to one of propagation of

waves.

As first part on singularities in Section 3 we shall show existence

of Stoneley waves as propagation of singularities, which is explained as

follows: if the boundary values of the initial data of the solutions have

singularities, then there exist singularities of the solutions which start

from the singularities of the initial data and propagate in the elliptic

region of the border of two media according to the passage of time.

Second part on singularities is to study relations between incident

waves and reflected and refracted waves, which are stated in Sections 4, 5.

Under various conditions on the incident angle of singularities corre-

sponding to the fast waves or the slow waves we have interesting refrac-

tive phenomena. For example if we assume that densities and Lame's

constants satisfy some conditions, and that the incident angle of singu-

larities corresponding to the fast waves is not sharp, then the solutions

have only refracted singularities corresponding to the slow waves (see

Theorem 4.1). If the singularities corresponding to the slow waves make

incidence, the solutions have both refracted singularities corresponding

to the fast and slow waves or they have only refracted singularities cor-
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responding to the slow waves (see Theorems 5.1, 5.2).

§ 1. Existence of solutions

In this section we shall show existence of the solutions of initial

boundary value problems in two solids. We suppose that there exist two

simply connected open subsets Ot (i — 1, 2) of R3 with smooth boundaries

dθi such that dθt is compact, or dθt is equal to a hyperplane in {x: \x\ > R}

for some positive constant R. Then domains Ωu Ω2 of two solids are

defined as follows; Ω1 = O1Γ\ O2 and Ω2 = O^Oz The strain tensors εjlύ(u)

(j, k = 1, 2, 3) are (dujdxk + duJdx^Z and in the stress tensors σ$(u) are

λίidivujδjjc + 2μίεjk(ύ), where u = ι(uu u2, u3) and lt and /V are Lame con-

stants such that μi9 3Xt + 2μt and λt + μj are positive. If the solids are

isotropic, then the displacements ut(x, t) = ι(uίu uί2, uί3) in Ωt satisfy the

following boundary value problem:

(1.1)

(1.2)

(1.3)

(1.4)

Pid

Σ
3

Σ

2T/ /3/2 V 1

uijlθt — ZJ

= u2 on

»/*)<$("i)

ΠjWσftiUi)

L

Γxl

- 0

ιj)jdxk = 0

?,

on Γ4 X iϊ,

in

on

Ω

Γ

i x R,

X i?,

where ^ > 0 is the density of Ωi9 Γ = 3/?! Π 3β2, Λ = dΩt\Γ, and z(x) =

'(riiix)* n2(x), nz(x)) is the unit normal vector of Γ or Γ^ (7 = 1, 2).

We consider an initial boundary value problem (1.1) to (1.4) with data

(1.5) ufa 0) - /<(*), (dujdt)(x, 0) = £*(*) in fl,.

We introduce a Hubert space Jf whose elements are equal to (L\O^)\

with the inner product (f, g)* = Pi(f,g)maa) + P2(f,g)moa)> a n d a subspace

D of Jf such that / belongs to ΰ i f / e (iϊ^O,))3 and the distributions

ii(/) = (Σ*3WS(/))/9^)U)J.i,2.3 belong to (L2(β,))3. The boundary condi-

tions (1.3) and (1.4) are represented as follows:

(1.6) ί iUf) v + Σ σ^iβdvjd

+ ί {Uf) v + Σ σ = 0

for any v = f(ul5 u2, u3) e (J9Γ1(O1))
3. The operator A on D^ = {feD:f satisfies

(1.6)} is defined by Λ/|fll = -L^β/p,. We have the following
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ELASTIC WAVES IN TWO SOLIDS 27

THEOREM 1.1. A is a self-adjoint operator on £?.

Proof. Since a set of CQ(QΪ) functions which vanish in a neigh-

bourhood of dflj U 3Ω2 is a dense subset of Jf, DN is clearly a dense subset

of $?. If / belongs to D^, from (1.6) we have that

(1.7) (A/, *)* = Σ f ί Σ UΛ* + 2μi)εjk(f)eJt(g)}dx

for any g" e (H^OJ)3. From the above equality and the assumption 3^ +

2μt > 0 it follows that A C A* and A ;> 0. Thus in order to prove self-

adjointness of A we have to show that the range of I + A is equal to ^ .

Let ^ ( O O = (Hι(Odf be a Hubert space with the inner product (/, g\

defined by (/, g)* plus the right hand side of (1.7). By Korn's inequality

on O, (see p. 110 of [1]) it follows that \\f]\2

m(Ol) £ C(/,/),. This fact and

Riesz's theorem imply that for any ̂ e ^ f there exists fe ^ ( O J such that

(g> v)* = (f, υ\ for any υeW(O^ From (1.6) this implies that feDN and

(I + A)f = g. The proof is completed.

Since the domain D(A) of A is a dense subset of ^(Oj) and the domain

D(Aίβ) of A1/2 with the graph norm, we have the following

PROPOSITION 1.2. The domain of A1/2 is equal to tf\OD and

In (1.5) we assume that f = (fl9 f2) e DN and g = (gu g2) e tf\O^, then

u(i)(x, t) = u(x, t)\Ot, where u(x, t) = (cos tA1/2)f+ A-1/2(sinέA1/2)g, satisfies (1.1)

and (1.5) in the distribution sense. On (1.2) (1.3) and (1.4) we have the

following

PROPOSITION 1.3. We put Γo = Γ\(Γ1 U Γ2). Then ut{x, t)\ΓoXR e

: fΓJ5(Γo)), Σ j ^ M S C ^ k x i ί e C(Λt: H£»(Γh)) where Λ = 0, i (ί = 1, 2),

Z/iese sαίis/^ (1.2), (1.3) α?zd (1.4).

Proof. Since ι^(x, ί) belongs to C(Rt: H\Ωi)), it follows that u^x, t)\ΓoXR

e C(Rέ: H\H(ΓQ)) and M2(Λ:, ί) = u2{x, t) on Γo X R. Let x0 be a point of Γo

and U be an open neighbourhood of x0 such that U C Ox and that there

exists a diffeomorphism K from [/ to {y e R3: \y\ < δ} which maps Uf) Ωx to

{yeR3:\y\<δ,y3>0}. For any $*) e Co°°([7) we put ̂ (y, t) = (φuXκ'Ky\ t).
Then from Theorem 4.3.1 of [2] we see that υx{y, t) e C(Rt: H(2,.i)(Ss

+)),

where H{m)$)(R3

+) is a function space denoted in Definition 2.5.1 of [2]. By
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2

the trace theorem (see Theorem 2.5.6) in [2] it follows that the trace of

fi(ud on Γo X R belongs to C(Rt: #ΓoΓ(Γ0)). Put vu(y,t) =

p((y' — z')h)V\{z', y3, t)dz\ where a non-negative function p(y') belongs to

Cϊ({y' e R2: \y' \ < 1}) and f p{yf)dyf = 1. Then using Theorem 2.5.4 of [2], we

can easily prove that vu(y, t) e C(Rt: HM)(R\))9 supp υu d{ye R3: \y\ < 5}

if ε is sufficiently small, and vu(y, t) converges to v^y, t) in the topology

of C(Rt: jEΓ(2,-i)(i23

+)). These facts imply that the divergence theorem is

valid for (Σj(σ?k(ui)υj))*=i,2,*> where υ = '(tv v2, υz) e (H\OJ)\ Similarly we

can prove the same fact for φu2. By (1.6) it follows that

Σ
jk

- σ%(uj\υt(x)dx = 0

for any v(x) e (C^(U))\ The (1.3) is valid. Similarly we can prove (1.4).

The proof is completed.

Remark 1.4. The arguments used in this section are easily extended

for finite number of media which are not isotropic, whose displacements

satisfy the similar boundary value problem to (1.1) to (1.5).

§ 2. Reduction to first order systems and definition of rays

In this section in order to study propagation of singularities to the

solutions of (1.1) to (1.3) we shall reduce the considered boundary value

problem to the first order system. After that we shall define an incident

rays, a reflected ray, a transferred reflected ray, a refracted ray and a

transferred refracted ray, which are half null bicharacteristics of τ2 — cή\ξ\2

or r2 - β) - β)\ξ\K

Let us consider a solution ut{x, t) of (1.1). Hereafter we assume that

ut is an extensible distribution, that is, there exists a distribution Ut{x, t)

on R" such that Ut = ut on Ωi X R. Thus by Theorem 4.3.1 of [2] the

traces of ^| r o X jR and σfl(u^\ΓQXR are distributions on Γo X i?, and we can

suppose these distributions satisfy the conditions (1.2) and (1.3). From

now on we assume that n(x) appearing in (1.3) is the unit outer normal

vector of Ωx at ΓQ. Since the boundary value problem (1.1) to (1.3) is

rotation free, we may assume that the origin of Rz belongs to Γo and

n(0) = ^0, 0, — 1). In a neighbourhood UQ of 0 ΓQ is defined by x3 = g(x%

where xr — (xu x2). Making use of the coordinate transform κ; y' = x\

yz = χz _ g(χf) such that ΩXΓ\ UQ is tranformed into {y: yz> 0} and putting
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ELASTIC WAVES IN TWO SOLIDS 29

Ut(y,t) = ^Aφy Dyun, Dyfut), where A is a pseudo-differential operator

with the symbol A1(τ/9τ) = (|J/|2 + τ2 + 1)1/2, the problem (1.1) to (1.3) is

reduced to the following boundary value problem (1.1) to (1.3) is reduced

to the following boundary value problem (see section 1.1 of [9])

(DV9Ut = Mly\ Dy,, Dt)U< in (-1)<+Iy, > 0,

(2.1) (ί,, 0) Ux = (I,, 0) U2 on y, = 0,

UCv', AΛ> A)l7i - B2(y, A,', A)t72 on y, = 0,

where 73 is the 3 χ 3 identity matrix and the principal symbol (Bil9 Bi2)

(/, ?', τ) of Bt = (B«, B< 2)(/, JDV,, A ) is

2 )

with G = '(—Fg(y% 1) and η = '(^j, 372, 0). Here the principal symbol

Mix(y9η
f

9τ) of Mn(/,Dy,,Dt) satisfies that det(^3/6 - Af«) - ((% - a)2 +

P*)((?s - «)2 + 8t)
2

9 where α(/, ̂ ) = ^ Fg(y)/|G|2, β//, ^, τ) - (|^|2 - τ2/αj

and Pί(y', v', τ) = (\V'\
2 - r2//3? - (^ F^)/|G|2)/jG|2 with

and β\ = (ί, + 2̂ ,)//?,.

We shall use notions of wave front set WF(G) for G(y', t) e @'(R3

y,,t)

defined in [3] and micro-local smoothness of FeC°°([09δ]: @'(Ey,,t))\J

C°°([-δ,0]: 2'(R\>J) at peT*(Ey.J\Q, which means that there exists a

properly supported pseudo-differential operator A(y', t, Dy,, Dt) such that

A is elliptic at p and (AF)(y, t) e C°°([0, ±ε] X R^,t) for some ε > 0.

Let us consider a point (0, Ί/QI> τ0) such that r0|ty)l(PiP2SiS2)(O, yΌ, r0) ^ 0.

Put αf(y,^,τ) = α ± ( - l ) ί + 1 ( - S ί )
1 / 2 i f βl(0, ,J, Γo) > 0 and put άt(y',η\τ)

= α ± (-l) ί + 1ε(-s,) 1 / 2 if s,(0, ^, τ0) < 0 and ε - sgnτ o, where the branch of

(—Si)1/Z is taken like that ( —1)1/2 is the imaginary unit. Similarly making

use of Pi instead of su we define bf(y', η', τ). Then by Lemma 1.1 of [9]

df and bf are eigen values of Mn(y'9 η', τ) and there exist eigen vectors

s% (k = 1, 2) and sf3 of df and bf, respectively, which are linearly inde-

pendent. By the argument of Sections 1.2 and 1.3 of [9] (see a]so Section

2 of [8]) we can reduce the boundary value problem (1.2) as follows:

There exists an elliptic pseudo-differential operator S f(y, Dy,, Dt) of order

0 defined in a conic neighbourhood of pQ = (0, Zo, ̂ , r0) e T:iί(i2^,ί)\0 with

the principal symbol (s^, s^, 55, sΰ, sf2, 5 )̂ such that the boundary value

problem (2.1) is micro-locally reduced to the following
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/At
D,tV(-\ b t

 A ° \Vt = Fit i n ( - ]

C1V1- C2V2 = G ony3 = 0,

(2.3)

where Vf = Sj-'ET,, W, Dr, Dt) = fy J J s f , frtWFiG) and F, is

smooth at jθ. Moreover the principal symbol of Af(y', Sy,, Dt) is the di-

agonal matrix αf (/, rf, τ)/2 and the principal symbol of 6f(/, D,,., Dt) is

6f (y, j / , τ). At y = 0 the principal symbols of CΊ and C2 are simplified

as follows:

LEMMA 2.1. // τQ\7]o\(pίp2s1s2)(O, τfQ9 τ0) Φ 0, then we may assume that

at y' = 0 the principal symbol Ct = (Ct, Cϊ) of Ct(y', Dy,, Dt) is given by

Cf = '('CM, 'CS), where

0 \η'fA\

(2.4) CS = I 0 | 9 ' |Mr 2 0

0 6filr

0 ϊμtfWW

μίatW\2Λ^ 0

0 (^-τ2 — 2μί\γ'f),

with af(η't τ) = αf(O, ̂ , τ) and bf (η, τ) = 6K0,3/, τ).

Proof. In order to simplify the principal symbol of Ct(y\ Dy,, Dt) we

use an elliptic pseudo-differential operator DQ(Dyf) Dt) = (^ π) of order

0, where the principal symbol di}{η\ τ) of the components of 3 X 3 matrix

D(DV,, Dt) are dn = ά 2 = ^Λ"1^7, 0, ώ12 = - d 2 1 = ηzΛ[\η\ r), d33 = 1 and

J13 = d23 = d31 = G?32 = 0. By (1.8) of [9] we can take the principal symbol

of St as follows; s* = 'Czi;*, aΐAϊιtwώ with ^ S = (αf(^ - afFg), - \η' -

άtVgf)Λ;\ sf2 - %w^ atΛ^'wS with ^ = (-( , 2 - atdgldyd, rjx - atdg/dy»

QUϊ1 and sf3 - ^ Ϊ I J, δ f Λ " 1 ^ * i th ιw& = (^ - 6/^, 6f)Λ"1 Since F^ = 0

at 3/ = 0, making use of (2.2), we can compute the principal symbol

DQCi(y\ Dy,, Dt), which is given by (2.4) at yf = 0. The proof is completed.

Let us consider the incident P ray P/ω) in Ωι hitting on (0, Q with

a direction ω = (ωl9 ω2, ω3) e S2 such that 0 < n(Q)>ω < 1, which is the half

connected null bicharacteristic {(—βιωt, t0 — t, —εω, εβd e T*(ΩX X R): t > 0}

of r2 — βl\ξ f passing through pQ — (0, t0, —eω, ejSj), where ε2 = 1. Since
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ELASTIC WAVES IN TWO SOLIDS 3 1

the outer unit normal vector of Ωx at 0 is (0, 0, —1), the reflected P ray

Pr{ω) of Pi(ω) is given by the connected ray {(βxωrt, t + tQ9 — εωr, εβt) e

T^(Ω1 X R): t > 0}, where ωr = (ωl9 α>2, — ω3). Hereafter we say that a ray

ϊ(t) in Ωt parametrized by time t is outgoing (incoming) if ( — lY(dxJdt)(0)

< 0 (>0), where xz(t) is the x3 component of ϊ(t). The half connected

outgoing null bicharacteristic Stv(ω) of τ2 — αj|f |2 in T * ^ X i?) passing

through p with π(/o) = π(/o0) is called the transferred reflected ray of P«(ω),

where π is the projection from T*(R4

Xtt) to T*(dΩ X i2). If there exists the

half connected outgoing null bicharacteristic Pr(ω) (Str(α>)) of τ2 — βi\ξ\2

(τ2 — al\ξ|2) in T*(β2 X -R) passing through with π(p) = π(pQ), we call it the

refracted P ray (the transferred refracted S ray) of P^ω). Similarly for

the incident S ray S^ω) passing through px = (0, ί0> — eω, εad, the reflected

S ray Sr(ω), the transferred reflected P ray PtΓ(ω), the refracted S ray Sr(ω)

and the transferred refracted P ray Ptr(ω) are defined, if these rays exist.

The rays are concretely denoted as follows:

LEMMA 2.2. i) Put < r = (α/, ± (βl/al - 1 + (n(0) ω)2)1/2), ί/iβ/z Str(ω) =

{(o&oΐτtlβu t + ί0, — ε<Dt

+

r, ε^) e ϊ 7 * ^ ! X R): t > 0}. A similar statement is valid

for PlT(ω), ifl-a\lβ\<{n(ϋ) ω)\

ii) P^ί ώ? = (ω\ ± (βHβl - 1 + (n(0) ω)ψ2), if 1 - β\lβ\ < (n^-ay)2;

then Pr(ω) = {(βtώ;tlβu t + tQ, —εώ;9 εβd e T*(fl2 X E): ί > 0}. Similarly Sr(ω)

is defined, if 1 — αj/αl < (7i(0) ω)2.

iii) P ^ d)S = (ω/, ± ( j 8 ϊ / α ϊ - l + (n(O) ω)2)1/2), i/ 1 - βV*l < (n(0) ω)\

then Stΐ(ω) = {(αld^/fr, ί + ί0? -eώt-, εβd 6 T*(β2 X JR): t > 0}. Similarly Ptr(ω)

is defined, if 1 - αJ/$ < (n(0) ω)2.

The proof of Lemma 2.2 is easily derived from the definitions of the

rays. For the incident P ray Pt{ω) we also denote by Sln(ω), Pln(ω) and

Sln(o)) half connected incoming null bicharacteristics of τ2 — a\\uf, τ2 —

a\\ξ\ and τ2 — βl\ξ\2 passing through (0, t0, — εωt~, ejSj), (0, ί0, — εώ+, εjŜ  and

(0, t0, — εώt

+

rJ εjSα), repsectively, if these rays exist. Similarly for the incident

S ray Sί(ω)Pln(α)), P i n( ω) and Sln(α>) are defined.

§ 3. Singularities corresponding to Stonly waves

In this section we analyze singularities to a solution of (1.1) to (1.3)

near an elliptic point (0, t0, η^ r0), that is, s/K0, η^ r0) > 0 for i = 1, 2. In

[7] he proved that if Γo is a hyperplane of Rz, there are surface waves

satisfying (1.1) to (1.3) and propagating on the boundary ΓQ X R. In this
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section without assuming the flatness of ΓQ9 we shall show that there exist

rays belonging to the wave front set of a solution of (1.1) to (1.3) which

propagates in the elliptic region of the boundary Γo X R.

We shall consider the Lopatinski matrix of the boundary value pro-

blem (2.3) in the elliptic region {(/, t, η\ τ): st(y', η', τ) > 0 ί = 1, 2}, where

Pi(y\ τf9 τ) > 0 (i = 1, 2). We remark that if / = 0, then the elliptic region

is {(0,ί,3/,τ): min(al at)\η'\2>τ2}.

LEMMA 3.1. We assume that τ0 φ 0 and min(al, al)\7]'0\
2 > τ\. Then the

necessary and sufficient condition that the determinant (Cί, C2

+) is zero is

given by F(τ2/|^|2) = 0, where

F(s) = {(piatis) - pίa^(s))(p2bΐ(s) - pM(s)) + (Pl - p2)s2

bϊ)(s) - p2(atbϊ)(s) + pt — p2}s

ϊaibi)(s) + (α2

+62

+)(s) + (α2

+62

+)(s)

1/2with aj(s) = (-l)j + 1i(l - sla))ί/2 and 6;(s) = (~ϊ)j+H(l - s/β))

Proof By (2.4) the second and fifth column vectors of (Cx

+, C2

+) are

linearly independent to the other column vectors, and these two vectors

are linearly independent. Thus the condition det(Cx

+, C2

+) = 0 is equivalent

to the condition det Mx = 0, where Mx is the 4 x 4 square matrix gen-

erated by eliminating the second and fifth column and line vectors of

(Cί, - C2

+). By simple calculations we can show that det M, = C|j/|βF(τ7|J/|2),

where C is a non zero constant. The proof is completed.

If we assume the Wiechert condition in seismology, that is, a1 = a2

and β1 = /32, then we can get informations on the roots of F(s) = 0.

LEMMA 3.2. We assume ax = a2 and βx = β2, and put a = at and β = βt.

Then we have the following statements.

i) The roots of F(s) = 0 in (0, a2) are also the roots of f(x) = 0 in

(0, 1) where x = s/a2 and f(x) = ϊx* - {ϊ + 1 + 8γM}x3 + {1 + 24rM + SM

+ 8rM2 - M2 - 16γ2M2}x2 - 8{rM2 - AfM2 + 3M + 2γM}x + 16(M+ γ2M)

with ϊ = a/β and M = (p, - p2fl{p, + p2)
2.

ii) f(x) has at least one root in (0, 1).

iii) If all roots f(x) = 0 in (0, 1) are simple, then the set {/, t, η\ τ):

det(Cί, Ct){y\ η', τ) = 0} is locally given by τ = h(y\v% where h(y\ η') is

a positively homogeneous function of degree 1.

Proof In F(s) put s/a2 = x, then F(s) is equal to a%p, — p2)
2{x2 +
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4(1 - x)(2 - γx)} - {(A + p2fx
2 + 4(ft - ^ ( 2 - x)}(l - rx)1/2(l - x)1/2] --=

^[gi(x) — &(̂ )]> where gt{x) is defined by the last equality. Since gx(x) and

g2(x) are positive if x e (0, 1), the condition F(s) = 0 is equivalent to

gl(x) - gϊ(x) = (Pi + P2)2x2f(x) = 0. The statement ii) is clear, for /(0) -

16M(1 - ϊ2) > 0 and /(I) = (ft + p2)-i{gl(ΐ) - gl(ΐ)} = - M 2 < 0. The state-

ment iii) is a consequence of the implicit function theorem. The proof

is completed.

We shall check conditions that the polynomial f(x) has only simple

roots in (0, 1).

Remark 3.3. i) One of the equivalent conditions that a polynomial

f(x) has a double roots is that the discriminant of f(x) is zero. In this

case the discriminant of (ft + p2)
2β2f(x) is a polynomial with respect to

ft, p2, a and β. Thus for almost everywhere (ft, p2, a, β) the equation f(x)

= 0 has only simple roots.

ii) A simple condition of simplicity of the roots in (0, 1) of f(x) = 0

is given as follows: If /"(I) ^ 0 and (r + 1 + 8M)/4r ^ 1, where x =

(γ + 1 + 8M)/4r is the symmetric axis of f"(x) = 0, then /"(x) > 0 in [0, 1].

This condition implies that f(x) = 0 has only one root in (0,1). Thus if

3r + SM(γM + 1) ^ (16r2 + 1)M2 + 2 and 8rM + 1 ^ 3r, then /(*) = 0 has

only one simple root in (0,1).

Let us consider the Lopatinski determinant of the boundary value

problem (2.3) in a conic neighbourhood of ô = (0, ί0, J7S, 0).

LEMMA 3.4. If τ0 = 0, then the Lopatinski determinant of (2.3), that is,

the determίnat of the principal symbol (Cx

+, C2

+) is not zero at ρQ.

Proof. In the case τ0 = 0, in Section 1.2 of [9] Sfc(0, jy£, 0) (k == 1, 2)

is given as follows: Put Sfc(0, η'09 0) = (%, s+2, s^, sςl9 sς2, s^)9 then

^ - ( ± ( - l ) f c ί ^ , ± ( - l ) f c | ^ ί , (3^fc - a*)% ±(-l)k + H(βk - 3ak)\η'0\)Aϊ\

'S& = C^fc2, ±(-ΐ)k+ίίtwlc2) with ιwk2 = (-ηm ηOί, 0)Aϊ\ and

^ 3 = CM;M> ± ( - l ) f c + 1 i ^ f c 3 ) with ^ f c 3 - ( U ± i | ^ M r 1 .

Using SΛ(0, yί, 0) and (2.2) we can easily compute det (Cί", C2

+)(0, ^, 0),

which is equal to C{μι + ^2) X {μx{λx + 2μx) + μ2{λx + 3μϊ)}{μ<ι(k + %μι) +

μt(λ2 + 3μ2)}lpφ2 with a non zero constant C. That is not zero. The proof

is completed.

For the solution u,L of (1.1) we define WFb(ut) C (T*(fi* X B)\0) U

(T*(Γo X -H)\0) as follows: i) p e T*(Ωt X 12) belongs to WFb(ut)9 if p belongs
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to WF(Ui\Ot), ii) peT*(ΓQ X R) does not belong to WFb(ut), if ut(κ-ι(y),t)

has the property of micro-local smoothness at .π(κ*(p)), where π is the

projection from T*(Ry>t) to T*({yd = 0} X R) and £* is the diffeomorphism

from T*(U0 X R) to T*(Ry>t) induced from tc, that is,

Λ;*(X, ί, ξ, τ) = (*', X3 - g(*0, *> £' + (^)(^)f8, ft, τ) .

This definition of WFb{u^) is invariant by the diffeomorphism Λ: (see Pro-

position 1.2 in [6]). Let 2^ be an elliptic region on the boundary, i.e.,

Σ'e - {(/, t, η', τ) e r*(flJ, it)\O: * ,(/ , ?', τ) > 0, i = 1, 2}, and Σ'o be a subset

of ^ such that det (Cί, C2

+)(/, 9 ' , τ) = 0. Put Σe = (TΓ O Λ;*)- 1 ^) and £ 0 =

(πoff*)" 1 ^; Then we have the following

THEOREM 3.5. We assume that ax — a2 and β1 = β2 and that f(x) of

Lemma 3.2 has only simple roots in (0, 1). Then WFb(ut) Π Σe d 2Ό, where

Σo is locally given by τ — h(x, ξ) with C°° homogeneous function h(x, ξ) on

T*(Γ0) 0 of order 1, αzzd WFh{u^) U WFb(u^) is invariant under the Hamilton

vector field Hτ.h on T*(Γ0 X R) 0.

Proof In (2.3) we denote Vt = '(V?,'Vf). Then since Vf and F2~

satisfy backward parabolic equations, p0 does not belong to WF(Vϊ\y3=Q) U

WF(V;\VΛSSθ). It follows that WF(Cί Vt|,3=0 - C2

+Va

+|yβsa0) does not contain

p0. By Hδrmander's theorem on propagation of singularities (see Theo-

rem 6.1.1 of [4] we have the desired statement.

Remark 3.6. i) Let {fίy g%) be the initial data of the solution u(x, t)

of (1.1) to (1.5). Assume that (x0, f0) e WF(U\r^ U WF(gt\rχ Then by The-

orem 2.5.II7 of [3] there exists τ0 such that an element ^ = (%o, 0, f0, τ0)

of Γ*(Γ0 X i?) belongs to WF(u\ΓoXR). If pQ is an elliptic point, then by

Theorem 3.5 there exists a ray belonging to WFb(u^) U WFb(u^, which

starts at p0 and propagates on the border Γo X R.

ii) From the form of F(s), the null points of F(s) = 0 are roots of

some polynomial of degree 22 whose coefficients are polynomial of

(pi, *u μ» P2, λ29 μ2). Thus for almost all (pl9 λu μl9 ρly λ2, μ2) with (F(s)/s)2 | s = 0

F(min (αf, at)) < 0 Theorem 3.5 holds.

§ 4. Incident P singularities

In the case that a2 < βί < β2 and ax Φ a2 there exist interesting reflec-

tive and refractive phenomena. Thus in this section we assume the

above condition. We shall consider incident P singularities and show
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the following theorems on reflective and refractive phenomena of singu-

larities.

THEOREM 4.1. i) We assume βl < β\{l - (n(0) ω)2). Then Pin(ω) and

Pr(ω) do not exist. Furthermore we suppose that Sin(ω) Π WF(u^) = Sin(w)

(Ί WF(u2) = φ and Pt(ω) C WF(ux). Then Pr(ω) U Str(ω) C WF(u,) and

Str(α>) C WF(u2).

ii) We assume βl > β\{l — (τι(0) ω)2). Then there exists a function

Gj(s) whose null points are at most 30 such that if Gx(βH{l — n(0) ω)2)) Φ 0,

S i » Π WF(^) = (Pln(ω) U Sln(ω)) Π WF(^2) = 0 ami P4(ω) C WFfa), then

Pr(ω) U Ste(ω) C WF(Ul) and Pr(ω) U Str(ω) C

The concrete form of G^s) is given in Lemma 4.3. The idea of proving

the above theorem is as follows: First we shall look for an elliptic

pseudodifferential operator A such that some components of ACϊ (ί = 1, 2)

vanish. After that making use of the assumptions of WF(ut)9 we shall

check the conditions to the wave front sets of the components of Vi\VΛSs0

(i = 1, 2), which derive the statements of the theorem.

Let ô be (0, t09 —εω, eft), where ε2 = 1, 0 < n(0) ω < 1. Then the

projected point ^ of p0 to T*(dΩ X R) is (0, tύy —εω', eft). In a conic

neighbourhood Γi of ^ in T*(J?^(ί)\0 we may assume that at y = 0 the

principal symbols of Λf, fef in (2.3) are αί(j/, τ)72 = (±ε(τ 2/^ - |^ | 2) 1 / 2)4

α ? ^ , τ)J8 = ( + ε(τ2/^ - | ^ | 2 ) V % , δf^', T) = ±ε(r2/$ - l^l2)1/2, and 6?(,', τ)

is + i ( | ^ | 2 - rVjSD178 if ]SΪ < j3ϊ(l - (rc(O) ω)2) and is ±ε(τ2/^ - \η'\ψ2 if ]8ί >

β\{\ - (n(0) ω)2). The boundary operator C t(/, Dy,, A ) of (2.3) is also

defined by using these notations. We say that a pseudodifferential oper-

ator P(y', t, Dy,, Dt) belongs to L" 0 0 ^), where Γ is a conic open set of

Γ*(jRJ/fί), if the symbol of P is rapidly decreasing with respect to (η\ τ)

in Γ. We have the following

LEMMA 4.2. There exists a pseudo-differential operator A(y\ Dy,, Dt)

of order 0 defined in a conic neighbourhood Γx of px such that the principal

symbol A0(y\ η\ τ) of A is the identity matrix J6 at yr = 0, and that the

(1,2), (2,1), (2,3), (3,2), (4,2), (5,1), (5,3) and (6,2) components of

(ACr)(y, Dyt, Dt) (i = 1, 2) are 0 modulo L-°tΓd-

Proof. Put Cτ{y\ Dr, Dt) - (cu c2, c,)(/, Dv,, Dt), C~2{yf, Dv., Dt) =

(c4, c5, ca)(y', Dy,, Dt) and denote by α / / , D^, Dt) the -th line vector of

A(y', Dy,, Dt). Then the required conditions are
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(4.1) arc2 = α r c 5 = 0 modulo L-°°(Γ^) (j = 1, 3, 4, 6)

(4.2) a3'Cλ = α r c 3 = a^c^ = arc6 = 0 modulo L " 0 0 ^ ) ( i = 2, 5).

We denote the symbol of α̂  by ΣΓ=oαjfc(y> >/> *")> where αJJb is of order —A,

and the principal symbol of cj by c j 0 ( / , η', τ). Put α10 = /i + x12c20 + x15c50,

where 7i = (1, 0, , 0) e JS6. Then the condition <α10, c20> = <α10, c50> = 0

is equivalent to

20> C 2 0 / \C50> C 2

20, c50> <c50, c5

12| _ f\/l> C20/\

J \</1, c15>/ '
Since from (2.4) c20 and c50 are linearly independent, we can solve the

equation (4.3) and x12 and x15 are zero at yf = 0. Similarly if we put

Gifc = *fc2c2o + χk&o, where xk2(y',η'τ) and xks(y',η',τ) are of order —A, we

can decide the required alk(y\ η', τ). Similarly in order to construct

α/y, Dy,, Dt) which satisfies (4.2) we only check that c10, c30, c40 and c60

are linearly independent. This condition is equivelent to the condition

det M(η\ τ) Φ 0, where M(η\ τ) is the 4 X 4 square matrix which is gener-

ated by eliminating the second and fourth column and line vectors of

(Cr,C2-)(0,>/,τ). We have

(4.4) det MO/, τ) = [{pla^ bϊ + pla b; - p1ρ2{a^bς + a^b^) + (px - p2)
2W\2}τA

If 62-0/,r) is real valued, then W^Λl0 X (4.4) is equal to {(Pl - p2)τ2 -

— p1p2(aΐb2 + α2"6f)τ4 + 4(μx — μiYaϊbϊa^b^f, which is positive because

αf 6f and α2~62~ are positive and aϊbϊ and α2~6f are negative. If 62~0/, τ)

is pure imaginary, then Re (det M(η', τ)) is also positive. Thus c10, c30, c40

and c60 are linearly independent. The proof is completed.

Next we shall compute the principal symbol of ( C " ) " 1 ^ , where

C~=(Cΐ, C2~), which is elliptic from the proof of Lemma 4.2, Define

at(s) = (s/α? - 1)1/2 and 6t(s) = (s/# - 1)1/2 (ί = 1, 2) and put

2(μ1 — μ2))

- 2{μx - μ2)(piS - 2(μ, - μ2))a2(s)b2(s) ,

g9(s) = p1p2(aίb2 - &!

- ((Pi - p2)s - 2 ^ ! - μ2))2,
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- {(Pl - p2)
2 - 4(μ,

ge(s) = (pl/at - filers2 + (Pl + P2){(Pl - p2) + 4(μi - μdioci2 + a^)}s

+ 4(/i! — μ2){(j"i ~ μd(aϊ* — aϊ2) — (pi + ρ2)} -

Then we have

LEMMA 4.3. i) // p1 φ p2, μ1 φ μ2 and βl < βl(l — (rc(O) ω)2), then the

(1.3), (3.3) and (4.3) component of ( C " ) " 1 ^ are elliptic at ρu where C~ =

(Cr, - C Γ ) .

ϋ) // j3ϊ > j3ϊ(l - (rc(O.ω)2) α^d ^ ( ^ / ( l - (n(O).ω)2)) ^ 0, .ίΛβn ίΛβ (j, 3)

component of {C')'ιCi is elliptic at ρl9 where j = 1, 3, 4, 6.

iii) If ax Φ a2, then G^s) = (g^g^Xs) has at most 30 null points in

(βl oo).

Proof. Let us denote by Mx(y', η\ τ) = (c1? c2, c8, c4) the 4 X 4 square

matrix which is generated by eliminating the second and fourth column

and line vectors of the principal symbol of C~(y\ Dy,, Dt) and put c(y, ηf, τ)

to be the column vector which is generated by eliminating the second

and fourth components of the principal symbol of the third column vector

of Cϊ(y', Dy,, Dt). Then from Lemma 4.2 and Cramer's formula we may

check that the determinant of (c, cil9 cίa, c<8), where 1 <£ ίΛ, <L 4 and ij Φ ik

if j φ k, is not zero at plm From (2.4) it follows that

(4.5) det (c, c2, c, c4)(0, ^, Γ) - Ax[(ftr
2 + 2(/i, - /i2)|^f)

X ((Pi - iθ2)τ
2 - 2(μι - ^2)|^|2) + 2(μi - ^(^.r 2 - 2 ^ - μι)W\2)a^],

(4.6) det (cu c, c8, c4)(0, ̂ , τ) =

-((pι-P2)τ2-2(μι-μ2)W\2)2W\2],

(4.7) det (cu c2, c, c4)(0, ^, T) - A3{(^1 - ^2)r2 - 2{μx

(4.8) det (Cl, c2, c , c)(0, ,', r) - A 4 f e r 2 + 2 ^ , - μ2)\η'f)ar

- fa* - 2ίμx- μdW\*)a;}9

where Afrf, τ) is not zero, if rf Φ 0 and r ^ O . If pί Φ p2, μγ Φ μ2 and 62"

is pure imaginary, then the real part and the imaginary part of (4.5) do

not vanish at the same point and the imaginary parts of (4.6) and (4.7)

are not zero. It follows that the statement i) holds. (4.5) and (4.6) clearly

implies that the statement ii) holds for j = 1, 3, g^s) and g6(s) are equal
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t o [((>! - p2)s - 2(μi - μ2)f - A(μi - ^2)
2(αr&2-)2]/s a n d [{(p2s + 2{μx - μ2))ar}2

- {(p,s - 2{μλ - μ^aςγis. Thus when p, Φ p2 and μx φ μ2, gx(s), g,(s) and

g6(s) are not identically zero and one of the equivalent conditions that

g\(s) = 0 ίs [{(p2S + 2(μt - μ2)){{p, - p2)s + 2(μx - μ2)f - 4(μ, - μ2)
2{(pxs -

— 2(μλ — μ2))(a2b2)(s)f]ls = 0. It follows that the null points of (gίgigβXs)

are at most 6. By the form of gs(s) the null points of g^(s) are roots of

some polynomial of degree 24. These show that the null points of G^s)

in (βl, 00) are at most 30. The proof is completed.

The proof of Theorem 4.1. The proof of the statement i) is similar

to that of the statement ii). Thus we only prove the statement ii). In

(2.3) we put tVi = t(tVt/V~) with Vf = '(i J, vf2, υ£). The assumption

implies that p1eWF(v^\vz^)\JWF(vti\vz.d^WF(vί\v^0) and PleWF(vt,\ysJ,

where px — (0, t0) —εω^εβ^. Thus the boundary condition in (2.3) is reduced

to the following

(4.9) «(«Vf, Ύ2") - - ( ( C - ^ c J K s + G,

where cί3(/, Όy,, Dt) is the third column vector of CΊ+(/, Dy,, Dt) and ρx

does not belong to WF(G). From Lemma 4.3 and (4.9) we see the ργ e

WF(u5)nWF(ur8)nWF(u£)nWF(i;ii). Using Theorem 2.5.11' of [3], we

have the desired conclusions. The proof is completed.

§ 5. Incident S singularities

Let us consider incident S singularities. So all functions and pseudo-

differential operators are defined in Γ2, where Γ2 is a conic neighbourhood

of ρλ = (0, tQ, —εω\ sad. Under the assumption that a2 < β1 < β2 and ax Φ a2

we shall show the following

THEOREM 5.1. We assume that βl < a2j(l - (n(O) ω)2) < βl Then Pin(ω)

and Pr(ω) do not exist and there exists a function H^s) whose null points

are at most 48 such that if H^alKl - (n(0) ω)2)) Φ 0, St(ω) C WF{uύ and

Pin(w) Π WFiUi) = Sin(ω) Π WF(u2) — φ, then one of the following two cases

occurs; a) Sr(ω)ΌPtv(ω)(ZWF(uί) and Sr(ω)czWF(u2), b) Sr(ω)dWF(u1l

Sr(ω)c:WF(uι) and PtΓ(ω)Π WF(Ul) = φ.

THEOREM 5.2. We assume that βl < αj/(l — (7i(O) ω)2). There exists a

function H2(s) whose null points are at most 49 such that if H2{a\j(l —

(n(0).ω)2)) Φ 0, Pln(α>)Π WF(ux) = (Pin(ω)USln(ω))ΓΊ WF(u2) = φ and Sfa) C

(uϊ), then one of the following two cases occurs: a) Sr(ω)czWF(u1) and
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Sr(ω) U Ptτ(ω) C WF(u2). b) Sr(ω) C WF(μ^ Sr(ω) C WF(u2) and Ptΐ(ω) Γ) WF(u2)

= 0. In ί/ie αfeoue statement is not complete in the following sense: If we

suppose that the assumptions mentioned in the above hold and in a small

neighbourhood of 0 the border Γo is equal to a hyperplane in R2, then we

have one of the following two cases; a') (Sr(ω)[JPtΐ(ω))c:WF(u1) and

(Sr(ω)ΌPtΐ(ω))c:WF(u2), b') Sr(ω) C WF{ux\ Sr(ω) C WF(u2) and Ptr(ω)Π

WF(Uι) - Ptr(ω)Π WF(u2) = φ.

In order to prove the above theorems we need to change the com-

ponents of Vi in (2.3) corresponding to S waves. Put

= ((pi — ρ2)s — 2(μ — μ2))(ρ2s + 2(μι — μ2))

+ 2(μt - μ2)(pλS - 2(μ1 - μ2))(a2b2)(s) ,

his) =

where a2 = (sja\ — 1)1/2 and b2 — (s/βl — 1)1/2, then we have the following

LEMMA 5.3. i) If βl < αj/(l — (n(0) ω)2) < βl, then there exists a pseudo-

differential operator a(y\ Dy,, Dt) of order 0 such that the principal symbol

of a is zero at yf = 0 and that the (3, 2) component of (C-)-1(CT)(/3 + A)

is 0 modulo L " 0 0 ^ ) , where Iz is the 3 x 3 identity matrix and A(y', Dy,, Dt)

is a 3 X 3 square matrix whose (1, 2) component is a and other components

are 0.

ii) We assume that αj/(l — (?z(0) ω)2) > β\. Then there exists a pseudo-

differential operator a(y\ Dr, Dt) such that if h^alKl — (n(0) ω)2) Φ 0, (3.2)

component of (C")"1(C1

+)(J3 + A) is zero modulo L~°°{Γ2), where A is a

similar pseudo-differential operator to that mentioned in i). The similar

property on the (6,2) component of (C~)~1(C1

+)(J3 + A) holds, if hz(al(l —

Proof Define cό (j = 1, , 6) and c; (jf = 1, 2, 3) to be the jf-th line

and column vector of the principal symbol of (C~)~ι and Cχ+, respectively.

If we can show that X = tc3-c2

+ or 7 = ^ ct is not zero at yf = 0, we

have the statements of Lemma 5.3, by using the calculus on symbols of

pseudo-differential operators. Let f be the first column vector of the

principal symbol of C~. Then X = *cz-(ct — /Ί) is equal to 2aϊ\η/\2Λ{3(c3l —

2/iAβ) at / - 0 and Y - Vfo* - Λ) is equal to 2α1

+|?/|2Λ~3(c61 - 2̂ ,063) at

/ = 0, where c{j is the (1,7) component of the principal symbol of (C")"1.
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Using (2.4), we can easily derive that

- 2(μt - μ2)\η'f} - 2p2bϊ(μ1aς - μ.a^τ2],

μx - μMtWf + oίfeί) - Pΐb;(aϊ - α2-)τ2]

c66 = -ItfΊMΓ'Kfa - P2)τ
2 - 2{μι - μdWfWf + offer) - pM^ - αί)r 2].

Thus if 6̂ " is pure imaginar}^ c31 — 2^1c36 does not vanish. When b% is

real, c31 — 2/̂ 3̂6 is not zero at /?!, if hx(a\l(l — (n(0) ω)2)) ̂  0, and c61 — 2//1c36

is not zero at ^i, if h2(a2J(l — (n(0)'ω)2) Φ 0. The proof is completed.

Next we shall check the ellipticity of the components of (C~)"1(C1

+).

Put

hs(s) - (pts - 2μί)(p2s - 2(μ, - μ2))b2(s) + pts(p2s + 2{μx - μ2))bί(s)

+ 2μ1(p1s - 2(μ, - μ2))a2(s) + Aμ^μ, - jM2)(α161)(s)(62 - α 2 )(s),

where 62(s) is equal to i e (1 - s/$)1/2, if j8? < α?/(l - (rc(O) ω)2) < βt and is

equal to (s/βl - 1)1/2, if ^ < ^2/(l - (rc(O) α))2). Then we have the following

LEMMA 5.4. Let di5(y', Dy,, Dt) be the (ί,j) component of ( C " ) " 1 ^ .

i) When β\ < al/(l - (w(0) ω)2) < βl dsί is elliptic at Pl = (0, t0, -εωf,

εαfi) and (di3)i^!J=h2 is also elliptic at pu if hs(aj(l — (λi(O) ω)2) Φ 0.

ii) When βl < a\l(l - n(G)-ωf\ dn is elliptic at Pι, if h^dKl - (n(0)ω)2)

Φ 0, d61 is elliptic at pu if hx(ρ&l(l — (n(0) ωf) Φ 0, and (d i J) t = s 4 | 5 f i S ϊ l l2 is

elliptic at pu if h3(aj(l - (n(0) ω)2) Φ 0.

Proof. The ellipticity of d31 and rf61 at px proved in the proof of

Lemma 5.3. From (2.4) it follows that the principal symbols of di2 and

c£51 are zero at ρί and the one of d52 is not zero at px. Thus we may

prove that the principal symbol of d41 is not zero. By the same way as

in the proof of Lemma 5.3, one of equivalent conditions of the ellipticity

of dn at ρx is the principal symbol of /41 — 2μ1fi6 is not zero at ρu where ftj

is the (£,jί) component of the principal symbol of (C")"1. Making use of

(2.4), we can easily derive that /41 — 2μJ46 is equal to — W\7ΛϊΊhs(τ2l\η'\2)

at yf = 0. The proof is completed. To prove the theorems we need the

following function
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= {(/>! - p2)s - 2(μi - μ2)}2 - {p2s + 2{μx - μ2)}2(a1b1)(s)

+ fas - 2{μλ - μd}\a2b2)(s) - pφ^iaAXs) - (aAXs^s2

where α,(s) = (s/αj - 1)1/2 (ί - 1, 2), δ^s) - (s/j8j - 1)1/2 and 62(s) is £e(l -

s/βΐ)1/2 if $ < a\l(l - n(0).ω)2) < β\ and is (s/βt - 1)1/2 if β\ < a»/(l - (rc(O) ω)2).

Proof of Theorem 5.1. We shall use the same notations appeared in

the proof of Theorem 4.1 and H^s) = (hjτ^){s). By Lemma 5.3 there exists

a pseudo-differential operator a(y', Dy,, Dt) such that the (3, 2) component

of (C~yiCι(I3 + A) is essentially zero. We shall put

Then they satisfy a hyperbolic equation (Dy 3 — ϊ̂ί")f(ί3Λ, δΓ2) = g" in Js > 0,

where g is smooth at ρλ and the principal symbol Af(y\ Dy,, Dt) is

dι(y\ η\ τ)I2. From the assumption the boundary condition in (2.3) is

reduced to

(5.1) (J7) = FW> Dv> Dt)&) + G o n Λ = ° '

where pλ g WF(G) and the first and second column vectors of the 6 χ 2

matrix F = (c^ ) are equal to these of — ( C " ) " 1 ^ ^ + A). The assumption

S^CZ WF(Ui) is equivalent to p, e WF(ΰtι\y3=0) U WFίDSly.^o)- From Lemma

5.4 it follows that pλ e WF(υ^\v^0) U WF(vΰ\y3=0), which means Sr(ω)dWF(u2).

If we assume that ^ e WF(ΰn\ys=0), then from the third component of the

right hand side of (5.1) we see that ^ e WF(υύ\yi=0), that is Ptτ(ω)WF(u1).

On the other hand if p1 g WF(ΰu\vs=0), then by the same reason it follows

that Ple WF(vls\ys=0), that is Ptΐ(ω)(Ί WF(ux) = φ. Finally we shall show

that pιeWF(vΰ\vt^VWF(vΰ\vta.Q)9 if K{a\l{l - (n(0) ω)2) Φ 0. We assume

ρ1 <£ WF(vΰ\y3=0){J WF(vu\yi=s0), then from the assumptions it follows that

does not belong to the wave front set of Fx(yf, Dy,, Dty(vu, v^, vίi, '̂ 2)^3=0,

where the first and second column vectors of Fx are equal to these of

Cι(I3 + A), the third column vector of Fx is equal to one of Cf, and the

fourth, fifth and sixth column vectors of Fx are equal to these of —C2.

If Fx is elliptic at pl9 we have p1 does not belong to WF(ϋn\y^0) U WF(Di+

2|y8:=o)

This is a contradiction. From (2.4) if h±{a\l(l — (n(0)-ω)2) is not zero, Fx

is elliptic at pt. The proof is completed. Next we shall consider the

case β\<a\l(l- (n(O) ω)2).
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Proof of Theorem 5.2. We put H2(s) = (h2hM(s). Using Lemma 5.3,

we can prove the first part by the same way as in the proof of Theorem

5.1. If we assume that Γo is flat near 0, then the reduced boundary

value problem (2.3) does not depend on y'. Thus the symbol of Cf(Dy,, Dt)

is given by (2.4). It follows that the (3, 2) and (6,2) components of

{C~)~ιCϊ is both zero. Using this fact, we can prove the later part of

Theorem 5.1.

In the statement of the first part of Theorem 5.2 we only consider

refracted singularities, however on reflected singularities we have the

following

Remark 5.5. In assumptions of Theorem 5.2 we assume {hJizh^(a\HX —

(n(0)'ω))2) Φ 0 instead of (h2hzh,)(all(l - (rc(O) ω))2) Φ 0. Then making use

of the statement ii) of Lemma 5.3 we have the following two cases: a")

Sr(ω) U Ptΐ(ω) C WF(Ul) and Sr(ω) c WF(u2). b") Sr(ω) C WF(uJ, Sr(ω) C

WF(u2) and Ptΐ(ω)f] WF(ut) = φ.

REFERENCES

[ 1 ] G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, Grundlehren d.
Math. Wiss., 219, Springer-Verlag, 1976.

[ 2 ] L. Hόrmander, Linear partial differential operators, Grundlehren d. Math. Wiss.,
116, Springer-Verlag, 1963.

[ 3 ] 1 Fourier integral operator I, Acta Math., 127 (1971), 79-183.
[ 4 ] , Fourier integral operators II, Acta Math., 128 (1972), 183-269.
[ 5 ] L. Nirenberg, Lectures on linear partial differential equations, Regional Confer-

ences Series in Math., 17, Providence 4, R.I., 1973.
[ 6 ] R. Melrose and J. Sjostrand, Singularities of boundary value problems I, Comm.

Pure Appl. Math., 31 (1978), 593-617.
[ 7 ] R. Stoneley, Elastic waves at the surface of separation of two solids, Proc. Roy.

Soc. London, 106 (1924), 416-428.
[ 8 ] M. E. Taylor, Reflection of singularities of solutions to systems of differential

equations, Comm. Pure Appl. Math., 28 (1975), 457-478.
[ 9 ] K. Yamamoto, Singularities of solutions to the boundary value problems for elastic

and Maxwell's equations, Japanese J. Math., 14 (1988), 119-163.
[10] , Reflective elastic waves at the boundary as a propagation of singularities

phenomenon, (to appear).
[11] C. H. Wilcox, Scattering Theory for the d'Alembert Equation in Exterior Domains,

Lecture Notes in Math., 442, Springer-Verlag, 1975.

Department of Mathematics
Nagoya Institute of Technology
Nagoya ^66, Japan

https://doi.org/10.1017/S0027763000001677 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001677



