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Chord-aware automatic music transcription
based on hierarchical Bayesian integration of
acoustic and language models

yuta ojima, eita nakamura, katsutoshi itoyama and kazuyoshi yoshii

This paper describes automatic music transcription with chord estimation for music audio signals. We focus on the fact that
concurrent structures of musical notes such as chords form the basis of harmony and are considered for music composition. Since
chords and musical notes are deeply linked with each other, we propose joint pitch and chord estimation based on a Bayesian
hierarchical model that consists of an acoustic model representing the generative process of a spectrogram and a language model
representing the generative process of a piano roll. The acoustic model is formulated as a variant of non-negative matrix factor-
ization that has binary variables indicating a piano roll. The language model is formulated as a hidden Markov model that has
chord labels as the latent variables and emits a piano roll. The sequential dependency of a piano roll can be represented in the
language model. Both models are integrated through a piano roll in a hierarchical Bayesian manner. All the latent variables and
parameters are estimated using Gibbs sampling. The experimental results showed the great potential of the proposed method for
unified music transcription and grammar induction.
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I . I NTRODUCT ION

Automatic music transcription (AMT) refers to the estima-
tion of pitches, onset times, and durations of musical notes
from music signals and has been considered to be impor-
tant for music information retrieval. Since multiple pitches
usually overlap in polyphonic music and each pitch con-
sists of many overtone components, estimation of multiple
pitches is still an open problem. Although such multipitch
estimation is often called AMT, quantization of onset times
and durations of musical notes is required for completing
AMT.

A major approach to multipitch estimation and AMT is
to use non-negative matrix factorization (NMF) [1–4]. It
approximates the magnitude spectrogram of an observed
music signal as the product of a basis matrix (spectral
template vectors, each of which corresponds to a pitch)
and an activation matrix (gain vectors, each of which is
associated with a spectral template). NMF can be inter-
preted as statistical inference of a generative model that
represents the process in which multiple pitches with
time-invariant spectra are superimposed to generate an
observed audio signal. There remain two major problems
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when we adopt it for multipitch estimation. First, the esti-
mated activation matrix needs to be thresholded in post-
processing to obtain a piano roll that indicates the existence
of each pitch at each time unit (e.g., 16th-note length or
time frame). An optimal threshold is different for each
musical piece and is thus difficult to find. Second, rela-
tionships among two or more pitches are not considered
in NMF, which may result in musically inappropriate
estimations.

When humans manually transcribe music signals into
musical scores, not only the audio reproducibility but also
musical appropriateness of the scores is considered to avoid
musically unnatural notes. Such musical appropriateness
can be measured in accordance with a music theory (e.g.,
counterpoint theory and harmony theory). For instance,
music has simultaneous and temporal structures; certain
kinds of pitches (e.g., C, G, and E) tend to simultaneously
occur to form chords (e.g., C major) and chords vary over
time to form typical progressions.

Many studies have been conducted for estimating chords
from musical scores [5–8]. If chord labels are given as clues
for multipitch estimation, musically appropriate piano rolls
is expected to be obtained. Typical chords and chord pro-
gressions, however, vary between music styles, e.g., the har-
mony theory of jazz music is different from that of classical
music. It would thus be better to infer chords and their pro-
gressions adaptively for eachmusical piece. Since chords are
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determined by note cooccurrences and vice versa, simul-
taneous estimation of chords and note cooccurrences is a
chicken-and-egg problem. This indicates that it is appropri-
ate to estimate chords and note cooccurrences in a unified
framework.

In this paper, we propose a novel statistical method that
discovers interdependent chords and pitches from music
signals in an unsupervised manner (Fig. 1). We formulate
a unified probabilistic generative model of a music spec-
trogram by integrating an acoustic model and a language
model in the frame or tatum (16th-note-level beat) level,
where the correct tatum times are assumed to be given in
this paper. The acoustic model represents how the spectro-
gram is generated from a piano roll based on an extension
of NMF with binary activations of pitches in the same way
as [9]. The language model represents how the piano roll
is generated from a chord sequence based on an autore-
gressive hidden Markov model (HMM) that considers the
sequential dependencies of chords and pitches. In our pre-
vious study [10], we formulated only a frame-level unified
model based on a standard HMM that considers only the
sequential dependency of chords.

We then solve the inverse problem, i.e., given a music
spectrogram, the whole model is inferred jointly. Since the
acoustic and language models can be trained jointly in an
unsupervised manner, the basis spectra of pitched instru-
ments and typical note cooccurrences are learned directly
from the observed music signal and all the latent vari-
ables (pitches and chords) are thus estimated jointly by
using Gibbs sampling. Note that the language model can
be trained in advance and the probabilities of typical note
cooccurrences obtained from the training data are used as
the parameters of the language model.

The major contribution of this study is to achieve gram-
mar induction from music signals by integrating acoustic
and language models. Both models are jointly learned in
an unsupervised manner unlike a typical approach to auto-
matic speech recognition (ASR). While ASR is based on a
two-level hierarchy (word–spectrogram), our model has a
three-level hierarchy (chord–pitch–spectrogram) by using
an HMM instead of a Markov model (n-gram model) as
a language model. We conducted comprehensive compar-
ative experiments to evaluate the effectiveness of each com-
ponent of the proposed unified model. Another important
contribution is to release beat and chord annotations of the

MAPS database [11] used for evaluation. Recently, ground-
truth annotations of several musical elements (e.g., tempo,
time signature, and key) for theMAPdatabasewere released
by Ycart and Benetos [12]. Our annotations are complemen-
tary to their annotations.

The rest of the paper is organized as follows. Section II
reviews related work on acoustic and language modeling.
Section III explains the unifiedmodel based on acoustic and
language models, and Section IV describes Bayesian infer-
ence of themodel parameters and latent variables. SectionV
reports comparative evaluation using pianomusic data, and
Section VI summarizes the paper.

I I . RELATED WORK

This section reviews related work on acoustic modeling,
language modeling, and integrated acoustic and language
modeling for AMT.

A) Acoustic modeling
NMF and probabilistic latent component analysis (PLCA)
are conventionally applied as the methods for spectrogram
decomposition [1–4, 9, 13–18]. NMF approximates a non-
negative matrix (a magnitude spectrogram) as the product
of two non-negative matrices; bases (a set of spectral tem-
plates corresponding to different pitches or timbres) and
activations (a set of gain vectors). Similarly, PLCA approxi-
mates a normalized spectrogram as a bivariate probability
distribution and decomposes it into a series of spectral
templates, pitches, instruments, and so on.

Smaragdis [19] proposed convolutive NMF that uses a
time-frequency segment as a template. Virtanen et al. [3]
reformulated bases as the product of sources corresponding
to pitches and filters corresponding to timbres. This exten-
sion contributes to reducing the number of parameters and
makes the estimation of basesmore reliable, especiallywhen
different instruments play the same pitch. Vincent et al. [4]
also extendedNMF by forcing each basis to have harmonic-
ity and spectral smoothness. Each pitch is represented as
the sum of corresponding bases so that it adaptively fits the
spectral envelope of a musical instrument in the observed
music signal. O’Hanlon et al. [20] proposed group-sparse
NMF that can represent the co-activity of bases. Using

Fig. 1. A hierarchical generative model consisting of language and acoustic models that are linked through binary variables representing the existences of pitches.
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group sparsity in addition to narrow bands proposed in [4],
they let bases fit more adaptively to the observed signals.
Cheng et al. [15] proposed an attack and decay model for
piano transcription.

There have been some attempts to introduce prior
knowledge into the NMF framework. Cemgil et al. [13]
described Bayesian inference for NMF. Hoffman et al. [2]
introduced a Bayesian non-parametric model called γ -
process NMF to estimate an appropriate number of bases
that are necessary to reconstruct the observation. Liang
et al. [9] also proposed a Bayesian non-parametric exten-
sion called β-process NMF that multiplies a binary matrix
(mask) to the activation matrix.

Deep learning techniques have recently been used for
AMT.Nam et al. [21] used a deep belief network for learning
latent representations of magnitude spectra and used sup-
port vectormachines for judging the existence of each pitch.
Boulanger-Lewandowski et al. [22] proposed a recurrent
extension of the restricted Boltzmann machine and found
that musically plausible transcriptions were obtained.

B) Language modeling
Some studies have attempted to computationally represent
music theory. Hamanaka et al. [23] reformalized a system-
atized music theory called the generative theory of tonal
music (GTTM) [24] and developed a method for estimat-
ing a tree that represents the structure of music called
a time-span tree. Nakamura et al. [25] also reformalized
the GTTM as a probabilistic context-free grammar. These
methods enable automatic music parsing. Induction of har-
mony in an unsupervisedmanner has also been studied. Hu
et al. [26] used latent Dirichlet allocation to determine the
key of a musical piece from symbolic and audio music data
based on the fact that the likelihood of the appearance of
each note tends to be similar among musical pieces in the
same key. This method enables the distribution of pitches
in a certain key (key profile) to be obtained without using
labeled training data.

Statistical methods of supervised chord recognition
[5–8] are worth investigation for unsupervisedmusic gram-
mar induction. Rocher et al. [5] attempted chord recogni-
tion from symbolic music by constructing a directed graph
of possible chords and then calculating the optimal path.
Sheh et al. [6] used acoustic features called chroma vectors
to estimate chords frommusic signals. They constructed an
HMM whose latent variables are chord labels and whose
observations are chroma vectors. Maruo et al. [7] proposed
a method that uses NMF for extracting reliable chroma fea-
tures. Since these methods require labeled training data, the
concept of chords is required in advance.

C) Acoustic and language modeling
Multipitch estimation considering both acoustic features
and music grammar has recently been studied. Raczyński
et al. [27, 28] proposed a probabilistic pitch model based

on a dynamic Bayesian network consisting of several sub-
models, each of which describes a different property of
pitches. This model in combination with an NMF-based
acoustic model performs better in multipitch estimation.
Böck et al. [29] proposed amethod for note onset transcrip-
tion based on a recurrent neural network (RNN) with long
short-term memory (LSTM) units that takes acoustic fea-
tures as input and outputs a piano roll. Sigtia et al. [30] used
anRNNas a languagemodel. They integrated the RNNwith
a PLCA-based acousticmodel so that the output of the RNN
is treated as a prior for pitch activations. Holzapfel et al. [31]
proposed amethod that uses tatum information for multip-
itch estimation. Ycart et al. [32] used an LSTM network that
takes a piano roll as an input and predict the next frame.
The network is used for the post-processing of the piano
roll estimated with the acoustic model proposed in [16].
In their study, tatum information was used to evaluate the
note-prediction accuracy.

I I I . GENERAT IVE MODEL ING

This section explains a generativemodel of amusic spectro-
gram for estimating pitches and their typical cooccurrences
(chords) frommusic signals. Ourmodel consists of acoustic
and language models connected through a piano roll, i.e., a
set of binary variables indicating the existences of pitches
(Fig. 1). The acoustic model represents the generative pro-
cess of amusic spectrogram from the basis spectra and tem-
poral activations of individual pitches. The language model
represents the generative process of chord progressions and
pitch locations from chords.

A) Problem specification
The goal of this study is to estimate a piano roll from
a music signal played by pitched instruments. Let X =
{X f t}F ,T

f ,t=1 be the log-frequency magnitude spectrogram
(e.g., constant-Q transform) of a music signal, where F
is the number of frequency bins and T is the number of
time frames. Let S = {Skn}K ,N

k,n=1 be a piano roll, where Skn ∈
{0, 1} indicates the existence of pitch k at the n-th time unit
(tatum time or time frame) and K is the number of unique
pitches. When we formulate a frame-level model without
using tatum information, T = N holds. When we formu-
late a tatum-level model. the tatum times are assumed to be
given or estimated in advance. In addition, we aim to esti-
mate a sequence of chords Z = {zn}N

n=1 over N time units,
where zn ∈ {1, . . . , I } indicates a chord at the n-th time unit
and I is the number of unique chords.

B) Acoustic modeling
We design a generative model of X inspired by a
Bayesian extension of NMF with binary variables [9]
(Fig. 2). The spectrogram X ∈ R

F ×T
+ is factorized into basis

spectra W = {Wh ∈ R
K×F
+ , Wn ∈ R

1×F
+ } consisting of K

harmonic spectra Wh and a noise spectrum Wn, the
corresponding temporal activations H = {Hh ∈ R

K×T
+ ,
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Fig. 2. An acoustic model based on a variant of NMF with binary variables indicating a piano roll.

Hn ∈ R
1×T
+ }, and binary variables S ∈ {0, 1}K×N as follows:

X f t |W, H , S

∼ P
(

X f t

∣∣∣∣
K∑

k=1

Wh
kf Hh

kt Sknt + Wn
f Hn

t

)
, (1)

where P indicates a Poisson distribution, Wh
kf is the mag-

nitude of harmonic basis k at frequency f , Hh
kt is its gain

at frame t, and Sknt is a binary variable indicating whether
basis k is activated at time nt . Here, nt is a time unit to which
frame t belongs to (nt = t in a frame-levelmodel). Similarly,
Wn

f and Hn
t are defined for the noise component.

As proposed in [33], we assume that the harmonic struc-
tures of different pitches have shift-invariant relationships
as follows:

Wh
kf = W

h
fk (1 ≤ k ≤ K ), (2)

where {Wh
f }F

f =1 is a template pattern shared by the K har-
monic spectra, fk = f − (k − 1)� is a shifting interval,
and� is the number of log-frequency bins corresponding to
a semitone. If fk ≤ 0, Wh

kf = 0. Although equation (2) is an

excessively simplified model of real instrument sounds and
the expressive capability of the acoustic model is limited, it
contributes to automatically learning a harmonic template
without explicitly imposing harmonic constraints (Fig. 3).
We put a γ prior on W

h
f as follows:

W
h
f ∼ G(ah , bh

)
, (3)

where ah and bh are shape and rate hyperparameters.
As proposed in [34], we put a γ chain prior on Wn

f to
induce the spectral smoothness as follows:

⎧⎪⎪⎨
⎪⎪⎩

Wn
1 ∼ G(η, ηbn/an) ,

Gn
f −1|Wn

f −1 ∼ G
(
η, ηWn

f −1

)
,

Wn
f |Gn

f −1 ∼ G
(
η, ηGn

f −1

)
,

(4)

where η is a hyperparameter adjusting the degree of
smoothness and Gn

f is an auxiliary variable forcing Wn
f −1 to

be positively correlated with Wn
f . Since Epr ior [Gn

f −1] =
1/Wn

f −1 and Epr ior [Wn
f ] = 1/Gn

f −1, we can roughly say
Epr ior [Wn

f ] ≈ Epr ior [Wn
f −1] (Fig. 3).

Fig. 3. Harmonic and noise spectra learned from data.
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Fig. 4. A language model based on an autoregressive HMM that emits sequentially dependent binary variables.

We put γ priors on the activations H as follows:

Hh
kt ∼ G (ch , dh

)
, (5)

Hn
t ∼ G (cn, dn

)
, (6)

where ch , cn, dh , and dn are hyperparameters.

C) Language modeling
We propose an HMM that has latent variables (chords) Z
and emits binary variables (pitches) S , which cannot be
observed in reality, as follows (Fig. 4):

z1|φ ∼ Categor ical(φ), (7)

zn|zn−1,ψ ∼ Categor ical(ψ zn−1
), (8)

Skn|zn,π ∼ Bernoull i(πzn ,k), (9)

where φ ∈ R
I
+ is a set of initial probabilities, ψ i ∈ R

I
+ is a

set of transition probabilities from chord i , and πik indi-
cates the emission probability of pitch k from chord i . In
this paper, we focus on only the emission probabilities of
the 12 pitch classes (C, C�, . . ., B, m = 0, . . . , 11), which
are copied to all octaves covering the K pitches. Let π jm

be the emission probability of pitch class m from chord
type j (major or minor, j = 0, 1). The emission probabil-
ities from chords of the same type are assumed to have
circular-shifting relationships as follows:

πik = π type(i),mod(clas s (k)−root(i),12), (10)

where type(i) ∈ {0, 1} and root(i) ∈ {0, . . . , 11} are the
type and root note of chord i , respectively, and clas s (k) ∈
{0, . . . , 11} is the pitch class of pitch k. We put conjugate
priors on those parameters as follows:

φ ∼ Dir (u), (11)

ψ i ∼ Dir (vi ), (12)

π jm ∼ β(e, f ), (13)

where u ∈ R
I
+, vi ∈ R

I
+, e, and f are hyperparameters.

This HMM can be extended in an autoregressive man-
ner by incorporating the sequential dependency (smooth-
ness) of binary variables of each pitch. More specifically,
equation (9) can be extended as follows [35]:

Skn|zn, Sk,n−1,π ∼ Bernoull i
(
π
(Sk,n−1)

zn ,k

)
, (14)

where π(Sk,n−1)

zn ,k indicates the emission probability of pitch
k from chord zn at time unit n when the same pitch k
is activated (Sk,n−1 = 1) or not activated (Sk,n−1 = 0) at
the previous time unit n − 1. Instead of equation (13), we
consider two types of emission probabilities as follows:

π
(0)
jm ∼ β(e(0), f (0)), (15)

π
(1)
jm ∼ β(e(1), f (1)), (16)

where e(0), f (0), e(1), and f (1) are hyperparameters. The
circular-shifting relationships between π(0)ik and π(0)jm and
that between π(1)ik and π(1)jm are defined in the same way
as equation (10). The self-transitions (i.e., Sk,n−1 = Sk,n =
0 and Sk,n−1 = Sk,n = 1) are more likely to occur when
e(0) � f (0) and e(1) � f (1). This contributes to reducing
spurious musical notes that tend to have very short dura-
tions. We evaluated the standard HMM given by equa-
tions (9) and (13) and the autoregressive HMM given by
equations (14)–(16) in Section V.

I V . POSTER IOR INFERENCE

This section describes AMT for the observed data X . We
explain Bayesian inference of the proposed model and then
describe how to put emphasis on the language model. In
addition, we describe how to pre-train the language model.

A) Bayesian inference
Given the observation X , we aim to calculate the posterior
distribution p(W, H , Z, S ,�|X), where � = {φ,ψ ,π}.
We use Gibbs sampling to approximate the analytically
intractable posterior distribution (Algorithm 1). The piano
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Algorithm 1 Posterior inference
Require: Hyperparameters of acoustic model:
Set γ priors on basis spectra W
by specifying ah , bh (equation (3)), an, bn, η
(equation (4))
Set γ priors on temporal activations H
by specifying ch , dh (equation (5)), cn, dn (equation (6))

Require: Hyperparameters of language model:
Set Dirichlet prior on initial probabilities φ
by specifying u (equation (11))

Set Dirichlet priors on transition probabilities ψ
by specifying vi (equation (12))

Set β priors on emission probabilities π
by specifying e, f (equation (13))
or e(0), f (0), e(1), f (1) (equations (15) and (16))

procedure GibbsSampling
Initialize piano roll S
Initialize NMF parameters W and H
Initialize chord sequence Z
Initialize HMM parameters� = {φ,ψ ,π}
loop

Update S (equation (17))
Update W and H (equations (20), (23), and (28))
Update Z (equation (31))
Update� (equations (37) and (45))

end loop
end procedure

roll S is estimated by using the current acoustic and lan-
guage models, which are then updated independently by
using the current S . These steps are iterated until approx-
imate convergence. Finally, a sequence of chords Z is esti-
mated using the Viterbi algorithm and then S is determined
using the maximum-likelihood parameters of the unified
model.

1) Updating piano roll
The piano roll S is sampled in an element-wise manner
from a conditional posterior distribution (Bernoulli distri-
bution) obtained by integrating the acoustic model with the
language model as follows:

p(Skn|X , W, H , Z, S¬kn,�)

∝ p(X |W, H , S)p(Skn|zn, S¬kn,π), (17)

where a notation �¬i indicates a set of all elements of �
except for the i-th element, the first term (likelihood, acous-
tic model) is given by equation (1), and the second term
(prior, language model) is given by equation (14) as follows:

p(Skn|zn, S¬kn,π)

∝
(
π
(Sk,n−1)

zn ,k

)Skn
(
1 − π

(Sk,n−1)

zn ,k

)1−Skn

×
(
π
(Sk,n)

zn+1,k

)Sk,n+1
(
1 − π

(Sk,n)

zn+1,k

)1−Sk,n+1

. (18)

When the sequential dependency of S is not considered,
equation (18) is simplified as follows:

p(Skn|zn, S¬kn,π) ∝ (
πzn ,k

)Skn
(
1 − πzn ,k

)1−Skn . (19)

2) Updating acoustic model
The parametersW and H of the acousticmodel are sampled
using Gibbs sampling in the same way as [9]. Note that Wh

and H have γ priors andWn have γ chain priors. Because of
the conjugacy, we can easily calculate the γ posterior of each
variable conditioned on the other variables and the binary
variables.

Using the Bayes’ rule, the conditional posterior distribu-
tion of W

h is given by

p(W
h|X , Wn, H , Z, S) ∝ p(X |W, H , S)p(W

h
), (20)

where the first term (likelihood) is given by equation (1)
and the second term (prior) is given by equation (3). More
specifically, we obtain

W
h
f ∼ G

(
K∑

k=1

T∑
t=1

X f̃ktλ
h
f̃k tk

+ ah ,

K∑
k=1

T∑
t=1

Hh
kt Sknt + bh

)
, (21)

where f̃k = f + (k − 1)� (if f̃k > F , X f̃kt = 0) and λh
f tk is

an auxiliary variable obtained by using the previous samples
of W, H , and S as follows:

λh
f tk = Wh

kf Hh
kt Sknt∑

k′ Wh
k′ f Hh

k′t Sk′nt + Wn
f Hn

t
. (22)

SinceWn and Gn are interdependent in equation (4),Wn

and Gn are sampled alternately as follows:

p(Wn|X , Wh , Gn, H , Z, S)

∝ p(X |W, H , S)p(Wn, Gn), (23)

p(Gn|X , Wh , Wn, H , Z, S) ∝ p(Wn, Gn), (24)

where the first and second terms of equation (23) are given
by equations (1) and (4), respectively. More specifically, we
obtain

Wn
f ∼ G

(
T∑

t=1

X f tλ
n
f t + η,

T∑
t=1

Hn
t + η

(
Gn

f +1 + Gn
f

))
, (25)

Gn
f ∼ G(η, η

(
Wn

f + Wn
f −1

))
, (26)

where λn
f t is an auxiliary variable given by

λn
f t = Wn

f Hn
t∑

k′ Wh
k′ f Hh

k′t Sk′nt + Wn
f Hn

t
. (27)
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The conditional posterior distribution of H is given by

p(H |X , W, Z, S ,�) ∝ p(X |W, H , S)p(H), (28)

where the first term (likelihood) is given by equation (1) and
the second term (prior) is given by equations (3) and (6).
More specifically, we obtain

Hh
kt ∼ G

⎛
⎝ F∑

f =1

X f tλ
h
f tk + ch , Sknt

F∑
f =1

Wh
kf + dh

⎞
⎠, (29)

Hn
t ∼ G

⎛
⎝ F∑

f =1

X f tλ
n
f t + cn,

F∑
f =1

Wn
f + dn

⎞
⎠. (30)

3) Updating chord sequence
The latent variables Z can be updated efficiently by using
a forward filtering-backward sampling algorithm, which
is a stochastic version of the forward-backward algorithm
(Baum–Welch algorithm). The conditional posterior distri-
bution of Z is given by

p(Z|S ,�) ∝ p(S|Z,π)p(Z|φ,ψ), (31)

where the first term is given by equation (9) and the
second term is given by equations (7) and (8). Let a
Matlab-like notation s1:n denote {s1, . . . , sn}, where sn =
[Sn1, . . . , SnK ]T . Henceforth, we often omit the dependency
on � for brevity (� is assumed to be given for estimat-
ing Z). As in a standard HMM, a forward message α(zn) =
p(s1:n, zn) can be calculated recursively as follows:

α(z1) = p(z1)p(s1|z1), (32)

α(zn) = p(sn|zn, sn−1)
∑
zn−1

p(zn|zn−1)α(zn−1), (33)

where p(z1) = φz1 , p(zn|zn−1) = ψzn−1,zn , and p(s1|z1) and
p(sn|zn, sn−1) are given by equation (14) or equation (9).
After calculating the forward messages, we perform the

backward sampling as follows:

p(Z|S) = p(zN |S)
N−1∏
n=1

p(zn|S , zn+1:N), (34)

More specifically, the last latent variable zN is sampled as
follows:

zN ∼ p(zN |S) ∝ α(zN). (35)

The other latent variables z1:N−1 are then sampled recur-
sively in the reverse order as follows:

zn ∼ p(zn|S , zn+1:N) ∝ p(zn+1|zn)α(zn). (36)

4) Updating language model
Using the Bayes’ rule, the posterior distribution of the emis-
sion probabilities π is given by

p(π |S , Z) ∝ p(S|Z,π)p(π), (37)

where the first term (likelihood) is given by equation (9)
and the second term (prior) is give by equation (15) and
equation (16). More specifically, we obtain

π
(0)
jm ∼ β

(
e(0) + r (01)

jm , f (0) + r (00)
jm

)
, (38)

π
(1)
jm ∼ β

(
e(1) + r (11)

jm , f (1) + r (10)
jm

)
, (39)

where r (00)
jm , r (01)

jm , r (10)
jm , and r (11)

jm are count data given by

r (00)
jm =

∑
n∈Aj

∑
k∈Bnm

(1 − Sk,n−1)(1 − Skn), (40)

r (01)
jm =

∑
n∈Aj

∑
k∈Bnm

(1 − Sk,n−1)Skn, (41)

r (10)
jm =

∑
n∈Aj

∑
k∈Bnm

Sk,n−1(1 − Skn), (42)

r (11)
jm =

∑
n∈Aj

∑
k∈Bnm

Sk,n−1Skn, (43)

where Aj and Bnm are subsets of indices given by Aj =
{n|type(zn) = j} and Bnm = {k|mod(class(k)− root(zn),
12) = m}. When the sequential dependency of S is not
considered, we obtain

π jm ∼ β
(
e + r (00)

jm + r (10)
jm , f + r (01)

jm + r (11)
jm

)
. (44)

The posterior distributions of the initial probabilities φ
and the transition probabilities ψ are given by

p(φ,ψ |S , Z) ∝ p(Z|φ,ψ)p(φ)p(ψ), (45)

where the first term is given by equations (7) and (8), the
second term is given by equation (11), and the third term is
given by equation (12). More specifically, we obtain

φ ∼ Dir
(
1I + ez1

)
, (46)

ψ i ∼ Dir (vi + ui ) , (47)

where ei is the unit vector whose i-th element is 1 and ui is
the I -dimensional vector whose j -th element indicates the
number of transitions from state i to state j .

B) Weighted integration
In naive integration of the language model and acoustic
models, the language model does not effectively affect the
posterior distribution of piano roll S , i.e., musically inap-
propriate allocation of musical notes is not given a large
penalty. To balance the impact of the language model with
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that of the acoustic model, we introduce a weighting factor
α as in ASR, i.e., equation (18) is replaced with

p(Skn|zn, S¬kn,π)

∝
((
π
(Sk,n−1)

zn ,k

)Skn
(
1 − π

(Sk,n−1)

zn ,k

)1−Skn

×
(
π
(Sk,n)

zn+1,k

)Sk,n+1
(
1 − π

(Sk,n)

zn+1,k

)1−Sk,n+1
)αDn

, (48)

where Dn indicates the number of time frames in time unit
n. When the sequential dependency of S is not considered,
equation (19) is replaced with

p(Skn|zn, S¬kn,π)

∝
((
πzn ,k

)Skn
(
1 − πzn ,k

)1−Skn
)αDn

. (49)

We empirically investigated the effect of thesemodifications
(see Section V).

C) Prior training
The language model can be trained in advance from exist-
ing piano rolls (musical scores) even if no chord annotations
are available. Here we assume that there a single piano roll Ŝ
is given as training data for simplicity because it is straight-
forward to deal with multiple piano rolls. The underlying
chords Ẑ and the parameters � = {φ,ψ ,π} can be esti-
mated from Ŝ instead of S as in Section IV-A-3. After using
the Gibbs sampling, we determine Ẑ by using the Viterbi
algorithm and calculate the posterior distributions of π
based on the estimate of Ẑ according to equations (38) and
(39), which is then used as a prior distribution of π instead
of equations (15) and (16). This is a strong advantage of
Bayesian formulation. Since the chord transitions are dif-
ferent for each musical piece, φ and ψ are trained in an
unsupervised manner.

V . EVALUAT ION

We evaluated the performance of the proposed method for
AMT. First, we conducted a preliminary experiment to con-
firm that the language model can learn chord progressions
and typical cooccurrences of pitches from piano rolls in an
unsupervisedmanner. Next, we evaluated the performances
of multipitch estimation obtained by using different lan-
guage models and those obtained by the pre-trained and
unsupervised models. Finally, we compared the proposed
model with several unsupervised models.

A) Experimental conditions
We used 30 classical piano pieces labeled as ‘ENSTDkCl’
selected from the MAPS database [11]. An audio signal of
30 sec was extracted from the beginning of each piece.
Themagnitude spectrogram of size F = 926 and T = 3000
was obtained using variable-Q transform [36], where the

number of frequency bins in one octavewas set to 96. A har-
monic and percussive source separation method [37] was
used for suppressing non-harmonic components. All hyper-
parameters were determined empirically for maximizing
the performance as described below.

We considered K = 84 unique pitches (MIDI note num-
bers 21–104) and I = 24 unique chords.Wemanually made
tatum and chord annotations on 16th-note-level grids.1
Since noise components were assumed to be smaller than
harmonic components, the hyperparameters of Wh and
Wn were set as ah = bh = 1, an = 2, and bn = 4 such
that E[W

h
f ] = 1 and E[Wn

f ] = 0.5. The hyperparameters
of Hh were set as ch = 10 and dh = 10 to favor non-zero
gains. This was effective to avoid Sknt = 1 when Hkt takes
almost zero. The hyperparameters of Hn, on the other
hand, were set as cn = 5 and dn = 5 to allow Hn

t to take
almost zero. The hyperparameters of π were set as e =
e(1) = e(0) = 10−9, f = f (1) = f (0) = 1 to make a binary
matrix S sparse. The hyperparameter η was empirically
determined as η = 30000.

We tested two kinds of time resolutions for the language
model, i.e., a frame-level model with a time resolution of
10 ms and a tatum-level model defined on a 16th-note-level
grid. The hyperparameter of the initial probabilities φ was
set as u = [1, . . . , 1]T ∈ R

I . In the frame-level model, the
self-transition probability of each chord i was set as ψi i =
0.99 to favor temporal continuity and the transition prob-
abilities from chord i to the other 23 chords were assumed
to follow aDirichlet distribution, 100ψ i ,¬i ∼ Dir (1I−1). In
the tatum-level model, the hyperparameter of the transition
probabilities ψ was set as vi = [0.2, . . . , 1, . . . , 0.2]T ∈ R

I ,
where only the i-th dimension takes 1. The weighting fac-
tor of the language model, which has a strong impact on
the performance, was empirically set to α = 12.5 unless
otherwise noted.

B) Chord estimation for piano rolls
We investigated whether chord progressions and typical
cooccurrences of pitches (chords) can be learned from
a piano roll obtained by concatenating the ground-truth
piano rolls of the 30 pieces. The size of the matrix used as
an input was thus 84 ×∑30

i=1 Ni , where Ni indicates the
number of time frames or tatum times in the beginning
30 s of the i-th musical piece. We measured the perfor-
mance of chord estimation as the ratio of the number of
correctly estimated time frames or tatum times to the total
number of those with major, minor, dominant 7th, and
minor 7th chords. Dominant 7th was treated as a major
chord, minor 7th as a minor chord, and the other chords
were ignored. Since chords were estimated in an unsuper-
vised manner, the estimated states were associated with
chord labels tomaximize the performancewhile conserving
circular-shifting relationships.

1The beat and chord annotations used for evaluation are available
onhttp://sap.ist.i.kyoto-u.ac.jp/members/yoshii/annotations/MAPS_beats.
zip, http://sap.ist.i.kyoto-u.ac.jp/members/yoshii/annotations/MAPS_
chords.zip
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Table 1. Accuracy of unsupervised chord estimation.

Pitch emission Frame-level model Tatum-level model

Independent 58.9 66.5
Markov 42.7 50.3

As shown in Table 1, the accuracy of unsupervised chord
estimation was around 60 and the tatum-level model out-
performed the frame-level model. As shown in Fig. 5, chord
structures (emission probabilities π0 and π1) correspond-
ing to major and minor chords were learned when all the
elements of S were assumed to be independent. When the
sequential dependency of S was considered, the emission
probabilities π (0)0 , π (0)1 , π (1)0 , and π (1)1 were strongly affected
by the previous binary variables, as shown in Fig. 6. Inter-
estingly, when the previous binary variables were 0, typical
pitch structures corresponding to a major chord and the
diatonic scale were learned. This implies that amusical scale
is more focused on than a chord when a new sound occurs.
When the previous binary variable of a pitch was 1, the
model prefers to continuously activate the pitch regardless
of its pitch class because musical sounds usually continue
for several time units.

C) Multipitch estimation for music signals
We evaluated the performance of multipitch estimation in
the frame level in terms of the recall rate, precision rate, and
F-measure defined as

R =
∑T

t=1 ct∑T
t=1 rt

, P =
∑T

t=1 ct∑T
t=1 et

, F = 2RP
R + P , (50)

where rt , et , and ct indicate the numbers of ground-truth,
estimated, and correct pitches at time frame t, respectively.
The tatum-level measures are defined similarly.

In addition, we measured the note-onset F-measure Fon

[38] defined as follows:

Ron = Ndet

Ngt
, Pon = Ncor

Nest
,Fon = 2RonPon

Ron + Pon
, (51)

where Ndet is the number of musical notes that were
included both in the ground-truth data and in output of the
model, Ngt is the number of musical notes in the ground-
truth data, Ncor is the number of musical notes regarded as
correct in the estimated notes, and Nest is the number of
musical notes in the output. For the frame-level model, an
estimated note was regarded as correct if its pitch matched
a ground-truth pitch and its onset was within 50ms of

Fig. 5. The emission probabilities π obtained by the tatum-level model assuming the independence of S .

Fig. 6. The emission probabilities π obtained by the tatum-level model assuming the sequential dependency of S .
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the ground-truth onset. A musical note in the ground-
truth data was regarded as detected if its pitch matched
an estimated pitch and its onset was within 50 ms of an
estimated note onset. For the tatum-level model, an esti-
mated note was regarded as correct only if both its pitch and
onsetmatched the ground-truth ones. Amusical note in the
ground-truth data was regarded as detected if both its pitch
and its onset matched the estimated ones.

1) Evaluation of language modeling
We evaluated the effectiveness of each component of the
language model by testing different priors on piano roll S .
More specifically, we compared the performances of the
following five conditions:

(a) Uniformmodel: The emission probabilitiesπ were fixed
to 0.0625.

(b) Sparse model [9]: The emission probabilities π were
assumed to be independent and were given sparse prior
distributions πik ∼ β(10−9, 1).

(c) Key-aware model: The emission probabilities π were
estimated by fixing the latent variables Z to the same
value, i.e., z1 = · · · = zN = 1. In this case, the emission
probabilities π1 of the 12 pitch classes were expected to
indicate the key profile of a target piece.

(d) Chord-aware model (HMM): Both Z and π were esti-
mated by equations (36) and (44), respectively, without
considering the sequential dependency of each pitch.

(e) Chord-aware Markov model (autoregressive HMM):
Both Z andπ were estimated by equation (36) and equa-
tions (38) and (39), respectively, based on the sequential
dependency of each pitch.

We further examined the impact of the weighting factor
α by testing α = 1 and α = 12.5 under the conditions (b)

and (d). The performances were measured in the frame or
tatum level. To evaluate the frame-level model in the tatum
level, the existence of each pitch in each tatum interval was
determined by taking themajority of binary variables in the
interval. It was straightforward to evaluate the tatum-level
model in the frame level.

As shown in Tables 2 and 3, the chord-aware model that
does not consider sequential dependency of pitches per-
formed best (69.8 without tatum information and 71.3
with tatum information). Note that the tatum information
was not used in the frame-level evaluation of the frame-
level model while it was used under the other conditions
for estimation and/or evaluation. The F-measure obtained
by the frame-level model was improved for 28 out of the
30 pieces (58.8 → 69.8) by jointly estimating chords
and pitches, even when the language and acoustic models
were equally considered (56.8 → 57.6). If the weight-
ing factor α was increased from α = 1 to α = 12.5, the
F-measure was significantly improved from 57.6 to 69.8,
even when the only key profile was learned (69.3). This
indicates the effectiveness of the language model weighting
as discussed in Section IV-B. Introducing chord transitions
further improved the F-measure from 69.3 to 69.8.

Examples of estimated piano rolls are shown in Fig. 7.
The F-measure obtained by the sparse model (Fig. 7(a)) was
improved by 1.7 pts by estimating chords (Fig. 7(b)), and
was further improved by 3.1 pts by emphasizing the language
model (Fig. 7(c)). The sequential-dependency modeling of
a piano roll, however, degraded the performance (Fig. 7(d)).
As shown in Fig. 9, the emission probabilities estimated by
the chord-aware Markov model indicate that the language
model tends to focus on temporal continuity of pitches
instead of learning typical note cooccurrences as chords. To
solve this problem, the language model should be improved

Table 2. Experimental results of multipitch analysis based on the frame-level model for 30 piano pieces labeled as ENSTDkCl.

Frame-level evaluation Tatum-level evaluation

Language model (prior distribution on S) R P F Fon R P F Fon

Uniform model 88.7 38.8 53.0 9.7 89.3 40.8 54.9 30.8
Sparse model (α = 12.5) 77.5 49.6 58.8 37.0 78.4 50.6 59.8 55.2
Key-aware model (α = 12.5) 70.4 71.3 69.3 50.6 71.6 73.1 70.8 64.8
Chord-aware model (α = 12.5) 73.7 69.0 69.8 49.4 75.1 70.6 71.3 64.1
Chord-aware Markov model (α = 12.5) 87.9 43.8 57.3 22.0 88.5 44.8 58.2 37.0
Sparse model (α = 1) 87.6 43.2 56.8 13.6 88.3 45.0 58.5 35.8
Chord-aware model (α = 1) 87.5 44.2 57.6 14.6 88.3 46.2 59.5 37.3

Table 3. Experimental results of multipitch analysis based on the tatum-level model for 30 piano pieces labeled as ENSTDkCl.

Frame-level evaluation Tatum-level evaluation

Language model (prior distribution on S) R P F Fon R P F Fon

Uniform model 89.2 41.3 55.1 21.5 89.7 40.9 54.9 21.8
Sparse model (α = 12.5) 77.4 52.5 60.7 40.3 78.3 52.4 60.9 41.9
Key-aware model (α = 12.5) 73.8 68.6 69.6 53.9 74.9 68.6 70.1 55.2
Chord-aware model (α = 12.5) 74.5 68.5 70.0 55.6 75.6 68.6 70.5 57.0
Chord-aware Markov model (α = 12.5) 84.6 51.2 62.2 34.3 85.3 50.9 62.3 36.9
Sparse model (α = 1) 88.3 44.1 57.5 24.0 88.9 43.7 57.3 24.3
Chord-aware model (α = 1) 89.2 41.5 55.3 21.6 89.7 41.0 55.1 21.8
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Fig. 7. Piano rolls estimated forMUS-chpn_p19_ENSTDkCl. (a) Sparsemodel, (b) chord-awaremodel (α = 1), (c) chord-awaremodel (α = 12.5), (d) chord-aware
Markov model (α = 12.5).

to separately deal with the dependencies of each musical
note on the previous note and the current chord.

The similar results were obtained by the tatum-level
model. Contrary to expectations, the F-measures obtained
by the tatum-levelmodel were not as good as those obtained
by the frame-level model in the tatum-level evaluation. The
piano rolls estimated by both models are shown in Fig. 8,
where the tatum-level model outperformed and under-
performed the frame-level model in the upper and lower
examples, respectively. The tatum-level model tended to
overestimate the durations of musical notes because the
acoustic likelihood used for sampling a binary variable Skn

is given by the product of the acoustic likelihoods of all
time frames contained in tatum unit n. If the likelihood
of Skn = 1 was larger by several orders of magnitude than
that of Skn = 0 at a time frame, the acoustic likelihood of
the tatum unit tended to support Skn = 1. The tatum-level
model thus performed worse than the frame-level model,
even in the tatum-level evaluation, whenmusical notes (e.g.,
triplet or arpeggio) that cannot be represented on a 16th-
note-level grid were included in a target piece (Fig. 8). In
such cases, the tatum-level model worked well, as shown in
the upper example.

2) Evaluation of prior training
We evaluated the effectiveness of prior training of the lan-
guage model via leave-one-out cross validation in which
one musical piece was used for evaluation and the others
were used for training the language model. We compared
the performances of the following three conditions:

(a) Baseline: Thewholemodelwas trained in anunsupervised
manner. This model is the same as the chord-aware
model (d) in Section V-C-1.

(b) Learning from piano rolls without chord annotations:
The ground-truth piano rolls were used for training the
language model while estimating underlying chords.

(c) Learning from piano rolls with chord annotations: The
ground-truth piano rolls with ground-truth chord
annotations were used for training the language
model.

As shown in Tables 4 and 5, the note-onset F-measures
were improved by 1.8 pts in the frame-levelmodel and 1.1 pts
in the tatum-level model thanks to the improvement of
the precision rate when the language model was trained by
using piano rolls with chord annotations. We found that
musically unnatural short musical notes can be avoided
by using the pretrained language model, i.e., considering
the note components of chords. On the other hand, the
frame-wise F-measures remained almost the same, while
the accuracy of chord estimation was improved by 15.0
in the frame-level model and 14.1 in the tatum-level
model. One reason for this would be that the musical notes
that were wrongly detected by the baseline method and
were corrected by the language model were very short and
had little impact on the frame-wise F-measures. Another
reason is that the typical note cooccurrences could be
learned as chords even in an unsupervised condition. We
thus need to incorporate other musical structures (e.g.,
rhythm structures or phrase structures) in the language
model.
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Fig. 8. Piano rolls of two musical pieces estimated by using the frame-level and tatum-level models.

Fig. 9. The emission probabilities π estimated for MUS-chpn_p19_ENSTDkCl.

Table 4. Experimental results of multipitch analysis based on the
pre-trained frame-level model.

Prior training using Frame-level evaluation

Piano rolls Chords R P F Fon

73.7 69.0 69.8 49.4
� 72.3 70.4 69.6 50.5
� � 71.6 71.0 69.5 51.2

3) Comparison with existing methods
We compared the performance of the proposed model with
four existing unsupervised models: two PLCA-based mod-
els proposed by Benetos et al. [16] and by Berg-Kirkpatrick
et al. [17] and two NMF-based models proposed by Vincent

Table 5. Experimental results of multipitch analysis based on the
pre-trained tatum-level model.

Prior training using Frame-level evaluation

Piano rolls Chords R P F Fon

75.6 68.6 70.5 57.0
� 75.1 69.2 70.5 57.2
� � 74.3 69.9 70.3 58.1

et al. [4] and by O’Hanlon et al. [20]. These models were
trained using audio data produced by pianos that were not
included in the test data.

Table 6 shows the performances reported in [17] and
obtained by the proposed model. Our model, required no

https://doi.org/10.1017/ATSIP.2018.17 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2018.17


chord-aware automatic music transcription based on hierarchical bayesian integration 13

Table 6. Performance comparison between five methods.

Method R P F Fon

Proposed model 73.7 69.0 69.8 49.4

Benetos et al. [16] – – 68.0 68.6
Berg-Kirkpatrick et al. [17] 80.7 69.1 74.4 76.4
Vincent et al. [4] 63.6 79.6 70.7 69.0
O’Hanlon et al. [20] 72.8 73.4 73.2 58.3

prior training, outperformed the NMF-based method [16]
by 1.8 pts in terms of the frame-level F-measure. This con-
sidered to be promising because the NMF-based models
[4, 20] are purely based on acoustic modeling and could be
extended in the same way as the proposed model.

V I . CONCLUS ION

This paper presented a unified statistical model for multi-
pitch analysis that can jointly estimate pitches and chords
from music signals in an unsupervised manner. The pro-
posedmodel consists of an acoustic model (Bayesian NMF)
and a language model (Bayesian HMM), and both models
can contribute to estimating a piano roll. When a piano roll
is given, these models can be updated independently. The
piano roll can then be estimated considering the difference
in time resolution between the two models.

The experimental results showed the potential of the pro-
posedmethod for unifiedmusic transcription and grammar
induction. Although the performance of multipitch estima-
tion was improved by iteratively updating the language and
acoustic models, the proposed model did not always out-
perform other existing methods. The main reason is that
simplified acoustic and language models (shift invariance
of basis spectra and local dependency of pitches) are used
in the current model because the main goal of this paper
is to show the effectiveness of integrating the acoustic and
language models and the feasibility of unsupervised joint
estimation of chords and pitches.

We plan to integrate the state-of-the-art acoustic models
such as [20] and [15] with our language model. To improve
the language model, we need to deal with music gram-
mar of chords, rhythms, and keys. Probabilistic rhythm
models, for example, have already been proposed by Naka-
mura et al. [39], which could be integrated with our lan-
guage model. Moreover, we try to use a deep generative
model as a languagemodel to learnmore complicatedmusic
grammar. Since the performance of the proposedmethod is
considered to be degraded if we use tatum times obtained
by a beat tracking method instead of using correct tatum
times, joint estimation of tatum times, pitches, and chords
is another important direction of research.

Our approach has a deep connection to language acqui-
sition. In the field of natural language processing, unsuper-
vised grammar induction from a sequence of words and
unsupervised word segmentation for a sequence of charac-
ters have actively been studied [40, 41]. Since ourmodel can

directly infer music grammars (e.g., chord compositions)
from either musical scores (discrete symbols) or music sig-
nals, the proposed technique is expected to be useful for
the emerging topic of language acquisition from continuous
speech signals [42].

F INANC IAL SUPPORT

This study was partially supported by JSPS KAKENHI No.
26700020 andNo. 16H01744, JSPSGrant-in-Aid for Fellows
No. 16J05486, and JST ACCEL No. JPMJAC1602.

REFERENCES

[1] Smaragdis, P.; Brown, J.C.: Non-negative matrix factorization for
polyphonic music transcription, in IEEEWorkshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), 2003, 177–180.

[2] Hoffman, M.; Blei, D.M.; Cook, P.R.: Bayesian nonparametric matrix
factorization for recorded music, in Int. Conf. on Machine Learning
(ICML), 2010, 439–446.

[3] Virtanen, T.; Klapuri, A.: Analysis of polyphonic audio using source-
filtermodel and non-negativematrix factorization, inNIPSWorkshop
on Advances in Models for Acoustic Processing, 2006.

[4] Vincent, E.; Bertin, N.; Badeau, R.: Adaptive harmonic spectral
decomposition for multiple pitch estimation. IEEE Trans. Audio,
Speech, Language Process., 18 (3) (2010), 528–537.

[5] Rocher, T.; Robine, M.; Hanna, P.; Strandh, R.: Dynamic chord anal-
ysis for symbolic music, in Int. Computer Music Conf. (ICMC), 2009,
41–48.

[6] Sheh, A.; Ellis, D.P.: Chord segmentation and recognition using
EM-trained hidden Markov models, in Int. Society for Music Infor-
mation Retrieval Conf. (ISMIR), 2003, 185–191.

[7] Maruo, S.; Yoshii, K.; Itoyama, K.; Mauch, M.; Goto, M.: A feedback
framework for improved chord recognition based on NMF-based
approximate note transcription, in Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), 2015, 196–200.

[8] Ueda, Y.; Uchiyama, Y.; Nishimoto, T.; Ono, N.; Sagayama, S.: HMM-
based approach for automatic chord detection using refined acoustic
features, in Int. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), 2010, 5518–5521.

[9] Liang, D.; Hoffman, M.: Beta process non-negative matrix factoriza-
tion with stochastic structured mean-field variational inference, in
NIPS Workshop on Advances in Variational Inference, 2014.

[10] Ojima, Y.; Nakamura, E.; Itoyama, I.; Yoshii, K.: A hierarchical
Bayesian model of chords, pitches, and spectrograms for multipitch
analysis, in Int. Society forMusic Information Retrieval Conf. (ISMIR),
2016, 309–315.

[11] Emiya, V.; Badeau, R.; David, B.: Multipitch estimation of piano
sounds using a new probabilistic spectral smoothness principle. IEEE
Trans. Audio, Speech, Language Process., 18 (6) (2010), 1643–1654.

[12] Ycart, A.; Benetos, E.: A-MAPS: Augmented MAPS dataset with
rhythm and key annotations, in Int. Society for Music Information
Retrieval Conf. (ISMIR), Late Breaking Demo, 2018.

[13] Cemgil, A.T.: Bayesian inference for nonnegativematrix factorisation
models. Comput. Intell. Neurosci., 2009 (ID:785152) (2009, 1–17.

[14] Durrieu, J.L.; Richard, G.; David, B.; Févotte, C.: Source/filter model
for unsupervised main melody extraction from polyphonic audio
signals. IEEE Trans. Audio, Speech, Language Process., 18 (3) (2010),
564–575.

https://doi.org/10.1017/ATSIP.2018.17 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2018.17


14 yuta ojima et al.

[15] Cheng, T.; Mauch, M.; Benetos, E.; Dixon, S.: An attack/decay model
for piano transcription, in Int. Society for Music Information Retrieval
Conf. (ISMIR), 2016, 584–590.

[16] Benetos, E.; Weyde, T.: Explicit duration hidden Markov models for
multiple-instrument polyphonic music transcription, in Int. Society
for Music Information Retrieval Conf. (ISMIR), 2013, 269–274.

[17] Berg-Kirkpatrick, T.; Andreas, J.; Klein, D.: Unsupervised transcrip-
tion of piano music, in Advances in Neural Information Processing
Systems (NIPS), 2014, 1538–1546.

[18] Benetos, E.; Weyde, T.: An efficient temporally-constrained prob-
abilistic model for multiple-instrument music transcription, in
Int. Society for Music Information Retrieval Conf. (ISMIR), 2015,
701–707.

[19] Smaragdis, P.: Convolutive speech bases and their application to
speech separation. IEEE Trans. Audio, Speech, Language Process.,
15 (1) (2007), 1–14.

[20] O’Hanlon, K.; Plumbley, M.D.: Polyphonic piano transcription using
non-negativematrix factorisation with group sparsity, in Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), 2014, 3112–3116.

[21] Nam, J.; Ngiam, J.; Lee, H.; Slaney, M.: A classification-based poly-
phonic piano transcription approach using learned feature represen-
tations, in Int. Society for Music Information Retrieval Conf. (ISMIR),
2011, 175–180.

[22] Boulanger-Lewandowski, N.; Bengio, Y.; Vincent, P.: High-
dimensional sequence transduction, in Int. Conf. onAcoustics, Speech,
and Signal Processing (ICASSP), 2013, 3178–3182.

[23] Hamanaka, M.; Hirata, K.; Tojo, S.: Implementing “A Generative
Theory of Tonal Music”. J. New. Music. Res., 35 (4) (2006), 249–277.

[24] Jackendoff, R.; Lerdahl, F.: A Generative Theory of Tonal Music. MIT
Press, Cambridge, Massachusetts, 1985.

[25] Nakamura, E.; Hamanaka, M.; Hirata, K.; Yoshii, K.: Tree-structured
probabilistic model of monophonic written music based on the gen-
erative theory of tonal music, in Int. Conf. on Acoustics, Speech, and
Signal Processing (ICASSP), 2016, 276–280.

[26] Hu, D.; Saul, L.K.: A probabilistic topic model for unsupervised
learning of musical key-profiles, in Int. Society for Music Information
Retrieval Conf. (ISMIR), 2009, 441–446.

[27] Raczyński, S.; Vincent, E.; Bimbot, F.; Sagayama, S.: Multiple pitch
transcription using DBN-based musicological models, in Int. Society
for Music Information Retrieval Conf. (ISMIR), 2010, 363–368.

[28] Raczyński, S.; Vincent, E.; Sagayama, S.: Dynamic Bayesian networks
for symbolic polyphonic pitch modeling. IEEE Trans. Audio, Speech,
Language Process., 21 (9) (2013), 1830–1840.

[29] Böck, S.; Schedl, M.: Polyphonic piano note transcription with recur-
rent neural networks, in Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), 2012, 121–124.

[30] Sigtia, S.; Benetos, E.; Dixon, S.: An end-to-end neural network for
polyphonic piano music transcription. IEEE Trans. Audio, Speech,
Language Process., 24 (5) (2016), 927–939.

[31] Holzapfel, A.; Benetos, E.: The Sousta corpus: Beat-informed auto-
matic transcription of traditional dance tunes, in Int. Society forMusic
Information Retrieval Conf. (ISMIR), 2016, 531–537.

[32] Ycart, A.; Benetos, E.: A study on LSTM networks for polyphonic
music sequence modelling, in Int. Society for Music Information
Retrieval Conf. (ISMIR), 2017, 421–427.

[33] Smaragdis, P.; Raj, B.; Shashanka, M.: Sparse and shift-invariant fea-
ture extraction from non-negative data, in Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), 2008, 2069–2072.

[34] Cemgil, A.T.; Dikmen, O.: Conjugate gamma Markov random fields
for modelling nonstationary sources, in Independent Component
Analysis and Signal Separation, 2007, 697–705.

[35] Benetos, E.; Dixon, S.: Multiple-instrument polyphonic music tran-
scription using a convolutive probabilisticmodel, in Sound andMusic
Computing Conf. (SMC), 2011, 19–24.

[36] Schörkhuber, C.; Klapuri, A.; Holighaus, N.; Dörfler, M.: A Matlab
toolbox for efficient perfect reconstruction time-frequency trans-
forms with log-frequency resolution, in Audio Engineering Society
Conf., 2014, 1–8.

[37] Fitzgerald, D.: Harmonic/percussive separation using median filter-
ing, in Int. Conf. on Digital Audio Effects (DAFx), 2010, 1–4.

[38] Dixon, S.: On the computer recognition of solo piano music, in
Australasian Computer Music Conf., 2000, 31–37.

[39] Nakamura, E.; Yoshii, K.; Sagayama, S.: Rhythm transcription of poly-
phonic piano music based on merged-output HMM for multiple
voices. IEEE Trans. Audio, Speech, Language Process., 25 (4) (2017),
794–806.

[40] Johnson, M.: Using adaptor grammars to identify synergies in the
unsupervised acquisition of linguistic structure, inAnnualMeeting of
the Association of Computational Linguistics (ACL), 2008, 398–406.

[41] Mochihashi, D.; Yamada, T.; Ueda, N.: Bayesian unsupervised word
segmentation with nested Pitman-Yor language modeling, in Annual
Meeting of the Association of Computational Linguistics (ACL), 2009,
100–108.

[42] Taniguchi, T.; Nagasaka, S.; Nakashima, R.: Nonparametric Bayesian
double articulation analyzer for direct language acquisition fromcon-
tinuous speech signals. IEEE Trans. Cogn. Develop. Syst., 8 (3) (2016),
171–185.

YutaOjima received theM.S. degree in informatics fromKyoto
University, Kyoto, Japan, in 2018. His expertise is automatic
music transcription.

Eita Nakamura received the Ph.D. degree in physics from the
University of Tokyo, Tokyo, Japan, in 2012. After having been a
Postdoctoral Researcher at the National Institute of Informat-
ics, Meiji University, and Kyoto University, Kyoto, Japan, he is
currently a Research Fellow of Japan Society for the Promotion
of Science. His research interests include music modeling and
analysis,music information processing, and statisticalmachine
learning.

Katsutoshi Itoyama received the M.S. and Ph.D. degrees in
informatics from Kyoto University, Kyoto, Japan, in 2008 and
2011, respectively. He had been an Assistant Professor at the
Graduate School of Informatics, Kyoto University, until 2018
and is currently a Senior Lecturer at Tokyo Institute of Tech-
nology. His research interests include musical sound source
separation, music listening interfaces, and music information
retrieval.

Kazuyoshi Yoshii received the M.S. and Ph.D. degrees in
informatics from Kyoto University, Kyoto, Japan, in 2005 and
2008, respectively. He had been a Senior Lecturer and is
currently an Associate Professor at the Graduate School of
Informatics, Kyoto University, and concurrently the Leader
of the Sound Scene Understanding Team, RIKEN Center
for Advanced Intelligence Project, Tokyo, Japan. His research
interests include music analysis, audio signal processing, and
machine learning.

https://doi.org/10.1017/ATSIP.2018.17 Published online by Cambridge University Press

https://doi.org/10.1017/ATSIP.2018.17

	I Introduction
	II Related Work
	A Acoustic modeling
	B Language modeling
	C Acoustic and language modeling

	III Generative Modeling
	A Problem specification
	B Acoustic modeling
	C Language modeling

	IV Posterior Inference
	A Bayesian inference
	1 Updating piano roll
	2 Updating acoustic model
	3 Updating chord sequence
	4 Updating language model

	B Weighted integration
	C Prior training

	V Evaluation
	A Experimental conditions
	B Chord estimation for piano rolls
	C Multipitch estimation for music signals
	1 Evaluation of language modeling
	2 Evaluation of prior training
	3 Comparison with existing methods


	VI Conclusion

