
The purpose of this article is to present alternative
parameterizations of scalar and non-scalar sex-

limitation models in the Mx matrix algebra program
(Neale et al., 2002). These models are designed for
use with extended pedigrees and take advantage of
the dynamic treatment of covariates within Mx.
Example scripts are provided.

Mx (Neale et al., 2002) is a matrix algebra program
specifically designed for use with twin and family data.
One of the key features of the program is the flexibility
of model specification, which allows researchers to test
hypotheses specific to the trait or sample under investi-
gation. The aim of the present note is to present an
alternate parameterization of scalar and non-scalar sex
limitation models that is especially suited to the
extended twin-family design in which data is available
for sibships of more than two siblings.

Sex-limitation, or sex differences in gene expres-
sion, may be scalar, non-scalar, or general in nature
(Eaves et al., 1978; Neale & Cardon, 1992). Non-
scalar sex-limitation models can be used to detect
differences in the magnitude of genetic and environ-
mental influences between males and females, and 
to determine whether the same set of genetic or envi-
ronmental factors influence a trait in males and
females. The scalar effects model tests the hypothesis
that while the same genes are expressed in males 
and females the magnitude of these effects in males
and females differs across the loci involved by some
constant or scalar. The implementation of these
models will be discussed in the following sections.
Although the scalar model is a sub-model of the
more general non-scalar model, the scalar model will
be discussed first.

Scalar Sex-limitation of Total Variance
In analyses of data collected using the classical twin
design, specification of total variance differences across
sex (but equal heritability) is fairly elementary (Neale
& Cardon, 1992). As shown below for a pair of dizy-
gotic (DZ) twins, to allow for a scalar sex-limitation
the variance of one sex (typically the male twins) is

pre- and post-multiplied by a diagonal matrix (K) in
which the scalar forms the diagonal elements.
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Where σ2
A is the variance due to additive genetic

factors, σ2
C is variance due to common or shared envi-

ronmental influences, σ2
E is the variance due to

unique or non-shared environmental influences, and α
is the scalar multiplier. For opposite or unlike sex
twins where Twin 1 is male the variance multiplier for
the second twin (matrix element 2 2) would be set to
unity, that is

.

The extension of this parameterization to data 
collected using an extended twin-sibling design is rela-
tively straightforward. For a sibship of size four (i.e.,
a pair of twins and two singleton siblings) the struc-
ture for the variance/covariance matrix is described in
Table 1. The K matrix in this situation is an 8 by 8
diagonal matrix, containing the following elements: 
α, 1, α, 1, α, 1, α, 1.

An alternative approach is to compute the matrix
of scalar corrections (the K matrix) for each sibship
based on the sex-structure of the siblings. This
approach takes advantage of the dynamic treatment
of covariates within Mx (Neale et al., 2002). An
example script demonstrating the implementation of
this model is given in Appendix A. In this parameteri-
zation the sex of the individuals (coded as a binary
variable 0/1) is included in the model as a definition
variable, using the following command:

Definition_variable sex1 sex2 sex3 sex4;

The sex-covariates are assigned to a given matrix, in
this case S (defined as a Full matrix of 1 by nsib,
where nsib = the number of siblings), using the fol-
lowing command:

where
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Specify S sex1 sex2 sex3 sex4.

The matrix of sex-covariates is then multiplied
(using a Kronecker multiplication) by a matrix of free
parameters, in this case J (defined as Full matrix of 1 by
nvar, where nvar = the number of variables in the analy-
sis) which will become the scalar sex corrections (the
diagonal of the K matrix). By adding a unit matrix (of
dimensions 1 by nsib*nvar) to the Kronecker product
(denoted by @ in Mx syntax) of S and J, we arrive at a
matrix where the scalar correction equals 1 for the sex
coded 0 and (1 + α) for the sex coded 1.

L = (S@J) + I;

This vector may then be placed in the leading diago-
nal of a square matrix, in this case K, using the vector
to diagonal command:

K = \v2d (L);

Using this parameterization, the structure for the vari-
ance/covariance matrix for the situation described in
Table 1 is given in Table 2. In addition to modeling a
scalar sex limitation on the total variance it is also
possible to model scalar sex limitation of the indi-
vidual variance components. This parameterization
(provided in Appendix B) allows a test of the equiva-
lence of the individual scalars through equating the
relevant parameters.

Non-scalar Sex-limitation
In non-scalar sex-limitation models the variance com-
ponents of males and females are allowed to vary and
an additional set of genes affecting only one sex may
be postulated (Neale & Cardon, 1992). The variance
covariance matrix for a pair of DZ opposite sex twins
(where Twin 1 is female), is shown below:

where the subscripts m and f denote male and female
variance components. Thus, for example, σ2

Af is the
female variance due to additive genetic factors, σ2

Am is
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Table 1

The Structure for the Variance/Covariance Matrix for a Sibship of Size Four Using the Traditional Parameterization

Twin 1 Twin 1 Twin 2 Twin 1 Sib 1 Sib 1 Sib 2 Sib 2
Male Female Male Female male Female Male Female
(M1) (F1) (M2) (F2) (M3) (F3) (M4) (F4)

M1 Var M1

F1 — Var F1

M2 CovM1-M2 CovF1-M2 Var M2

F2 CovM1-M2 CovF1-M2 — Var F2

M3 CovM1-M3 CovF1-M3 CovM2-M3 CovF2-M3 Var M3

F3 CovM1-F3 CovF1-F3 CovM2-F3 CovF2-F3 — Var F3

M4 CovM1-M4 CovF1-M4 CovM2-M4 CovF2-M4 CovM3-M4 CovF3-M4 Var M4

F4 CovM1-F4 CovF1-F4 CovM2-F4 CovF2-F4 CovM3-F4 CovF3-F4 — Var F4

the male variance due to additive genetic factors, and
σ2

Gm refers to the variance due to a uniquely male set
of genes. The non-scalar model is usually described as
a general sex-limitation model when σ2

Gm is estimated
and a common sex-limitation model when σ2

Gm is set
to 0. The extension of this parameterization to the
extended twin design is simple assuming the covari-
ances are arranged as shown in Table 1.

An alternative approach utilizing the dynamic
nature of Mx follows; an example script is given in
Appendix C. Two matrices that specify the combina-
tion of male and female parameters will be used to
define the variance/covariance matrix for each
sibship. As was the case in the scalar sex limitation
model above, in this parameterization the sex of the
individuals is included in the model as definition vari-
ables (in this case it will be assumed that males are
coded as 1, females as 0 and “missing” as .5). The
matrix of sex-covariates (S: defined as Full nsib by 1)
will be used to stipulate that the male path coeffi-
cients (σ2

Am + σ2
Cm + σ2

Em, and σ2
Gm) should be used

for male participants.
To produce an equivalent matrix for females (P)

the sex covariate matrix (S) is subtracted from matrix
J, a unit matrix (defined as nsib by 1): P = J – S. The
resulting matrix is a vector of sex coefficients where
male is coded as 0, female as 1, and “missing” as .5,
that will be used to specify female path coefficients.
For example, in sibship j where the sex of the four sib-
lings is male, female, female, male,

These two matrices (S and P) are then multiplied
(using Kronecker multiplication) by the male and
female additive genetic and common environmental
path coefficients (X, Y and U, V respectively). The
addition of the two resultant matrices produces the
correct combination of male and female parameters.
A similar procedure is used to specify the variance
due to the uniquely male set of genes (R):
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been used. However, the computational efficiency of
traditional parameterization without definition vari-
ables is expected to be greater than that of the
alternative parameterization presented here. In small
data sets, the traditional formulation may result in
low numbers of siblings in each cell. This may be par-
ticularly problematic in the analysis of categorical
data where such an approach may result in empty
cells in the contingency table. For example, in a vari-
able with three categories of decreasing prevalence,
(i.e., mild, moderate, and severe) the number of fami-
lies required to ensure that there are sufficient male
and female siblings who fall into the severe category
within each of the zygosity groups may prohibit the
inclusion of sibling data in this analysis. By tailoring
the structure of the variance-covariance matrix to
each family the alternative parameterization allows
the analysis of male and female data together, which
will help to minimize this problem.
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Table 2

The Structure for the Variance/Covariance Matrix for a Sibship of Size
Four Using the Alternate Parameterization

Twin 1 (T1) Twin 2 (T2) Sibling 1 (S1) Sibling 2 (S2)
T1 Var T1

T2 Cov T1-T2 Var T2

S1 Cov T1-S1 Cov T2-S1 Var S1

S2 Cov T1-S2 Cov T2-S2 Cov S1-S2 Var S2

(S@ X+P@U) — for the additive genetic path coefficients.
(S@Y+P@V) — for the common environmental path
coefficients.
(S@R) — for the additional set of uniquely male genes.

These matrices are then multiplied by their trans-
pose and the resultant additive genetic parameters are
multiplied by a matrix (in this case H) which contains
the additive genetic correlations between siblings (i.e.,
1 between monozygotic (MZ) twins and .5 between
DZ twins):

((S@X+P@U)*(S@X+P@U)’).H + ((S@R)*(S@R)’).H
+((S@Y+P@V)* (S@Y+P@V)’)

The result is the sum of the additive genetic and
common environmental structures corrected for the
sex of the siblings to which the unique environmental
structure is added.

As the specific environmental influences are not
correlated between siblings a different approach is
used for their inclusion in the variance/covariance
matrix. To obtain the male-specific environment
structure the male path coefficient (Z) is multiplied
by its transpose and the result is then multiplied
(using Kronecker multiplication) by a matrix (O)
which contains the elements of S on its diagonal (O
= \v2d(S’)). A similar process is followed for
females: the path coefficient is multiplied by its
transpose and the result is multiplied by matrix T (T
= \v2d(P’)). The resulting diagonal matrices are
added together to produce the specific environmen-
tal variance structure:

O@(Z*Z’)+T@(W*W’).

Thus the complete variance covariance matrix is
given by:

Covariances ((S@X+(P@U))*(S@X+(P@U))’).H +
((S@R)*(S@R)’).H +((S@Y+(P@V))* (S@Y+(P@V))’) +
O@(Z*Z’)+T@(W*W’).

Using this parameterization, the structure for the
variance/covariance matrix for the situation described
in Table 1 is given in Table 2.

Conclusion
The computational efficiency of alternate parameteri-
zation is expected to be similar to that of a traditional
parameterization in which definition variables have
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Appendix A

! SCALAR SEX LIMITATION MODEL FOR 2 TWINS AND 2 SIBLINGS

#define nvar 1 !number of variables — this is a univariate example so 1
#define nsib 4 !size of largest sibship — in this case 4
#define tvar 4 !nvar * nsib

G1: Data from the MZ Twins and Their Siblings

Data NGroups = 2 NI = 10
Rectangular File = mz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Begin Matrices ;
X Lower nvar nvar Free ! Genetic structure
Z Lower nvar nvar Free ! Specific environmental structure
Y Lower nvar nvar Free ! Common environmental structure
M Full nsib nvar Free ! Means
S Full 1 nsib ! Sex definition variables
B Full nvar 1 ! Sex correction for means model
I Unit 1 tvar ! 1 to add to sex correction
J Full 1 nvar Free ! Scalar sex correction
H Full 1 1 ! .5
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Matrix H .5 ;
Begin Algebra;
L = (S@J) + I ;
K = \v2d(L) ;
A = X*X’ ;
E = Z*Z’ ;
C = Y*Y’ ;
T = A+C+E;
End Algebra ;
Means M + (B*S)’ ;
Covariances K*( T | A+C | H@A+C | H@A+C_

A+C | T | H@A+C | H@A+C_
H@A+C | H@A+C |T | H@A+C_
H@A+C | H@A+C | H@A+C |T )*K’ ;

Start 13 M 1 1 — M nsib nvar
Start 0.1 J 1 1 — J 1 nvar
Start 4 Y 1 1
Start 6 X 1 1
Start 4 Z 1 1
op rs
End

G2: Data from the DZ Twins and Their Siblings

Data NI = 10
Rectangular File = dz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Begin Matrices = Group 1
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Begin Algebra;
L = (S@J) + I ;
K = \v2d(L) ;
End Algebra ;
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Means M + (B*S)’ ;
Covariances K*( T | H@A+C | H@A+C | H@A+C_

H@A+C | T | H@A+C | H@A+C_
H@A+C | H@A+C |T | H@A+C_
H@A+C | H@A+C | H@A+C |T )*K’ ;

End

Appendix B

! SCALAR SEX LIMITATION MODEL FOR 2 TWINS AND 2 SIBLINGS

#define nvar 1 !number of variables — this is a univariate example so 1
#define nsib 4 !size of largest sibship — in this case 4
#define tvar 4 !nvar * nsib

G1: Data from the MZ Twins and Their Siblings

Data NGroups = 2 NI = 10
Rectangular File = mz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Begin Matrices ;
X Lower nvar nvar Free ! Genetic structure
Z Lower nvar nvar Free ! Specific environmental structure
Y Lower nvar nvar Free ! Common environmental structure
M Full nsib nvar Free ! Means
S Full 1 nsib ! Sex definition variables
B Full nvar 1 ! Sex correction for means model
I Unit 1 tvar ! 1 to add to sex correction
J Full 1 nvar Free ! Scalar sex correction for A
K Full 1 nvar Free ! Scalar sex correction for C
L Full 1 nvar Free ! Scalar sex correction for E
H Stand nsib nsib ! To specify the additive genetic correlation
U Unit nsib nsib
T Diag nsib nsib
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Value .5 H 2 1 — H nsib 3 ;
Value 1 H 2 1 ;
Value 1 T 1 1 — T nsib nsib ;
Begin Algebra;
O = \v2d((S@J) + I) ;
P = \v2d((S@K) + I) ;
Q = \v2d((S@L) + I) ;
A = X*X’ ;
E = Z*Z’ ;
C = Y*Y’ ;
End Algebra ;
Means M + (B*S)’ ;
Covariances (O*(H@A)*O’)+(P*(U@C)*P’)+(Q*(T@E)*Q’) ;
Start 13 M 1 1 — M nsib nvar
Start 0.1 J 1 1 — J 1 nvar
Start 0.1 K 1 1 — K 1 nvar
Start 0.1 L 1 1 — L 1 nvar
Start 4 Y 1 1
Start 6 X 1 1
Start 4 Z 1 1
op rs
End
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G2: Data from the DZ Twins and Their Siblings

Data NI = 10
Rectangular File = dz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Begin Matrices = Group 1
S Full 1 nsib ! Sex definition variables
H Stand nsib nsib ! .5
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Value .5 H 2 1 - H nsib 3 ;
Value 1 T 1 1 - T nsib nsib ;
Begin Algebra;
O = \v2d((S@J) + I) ;
P = \v2d((S@K) + I) ;
Q = \v2d((S@L) + I) ;
End Algebra ;
Means M + (B*S)’ ;
Covariances (O*(H@A)*O’)+(P*(U@C)*P’)+(Q*(T@E)*Q’) ;
Options multiple
End
EQ J 1 1 1 K 1 1 1 L 1 1 1 
! Reduces the model to a total variance scalar sex limitation model
End

Appendix C

! NON-SCALAR SEX LIMITATION MODEL FOR 2 TWINS AND 2 SIBLINGS

#define nvar 1 !number of variables — this is a univariate example so 1
#define nsib 4 !size of largest sibship — in this case 4

G1: Data from the MZ Twins and Their Siblings

Data NGroups = 2 NI = 10
Rectangular File = mz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Begin Matrices ;
X Lower nvar nvar Free ! Male genetic structure
Y Lower nvar nvar Free ! Male common environmental structure
Z Lower nvar nvar Free ! Male specific environmental structure
R Lower nvar nvar Free ! An additional uniquely male set of genes
U Lower nvar nvar Free ! Female genetic structure
V Lower nvar nvar Free ! Female common environmental structure
W Lower nvar nvar Free ! Female specific environmental structure
M Full nsib nvar Free ! Means
S Full nsib 1 ! Sex definition variables
B Full nvar 1 ! Sex correction for means model
J Unit nsib 1 ! Matrix of 1s to create sex correction
L Unit nvar nvar ! To generalise to the multivariate case
F Stand 4 4
! F is used to specify the additive genetic correlations between siblings
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Value 1 F 2 1
Value .5 F 3 1 — F nsib 3
Begin Algebra;
H = F@L;
A = (U*U’)+(V*V’)+(W*W’) ; ! FEMALE VARIANCE
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C = (X*X’)+(Y*Y’)+(Z*Z’)+(R*R’); ! MALE VARIANCE
P =J-S;
O = \v2d(S’);
T = \v2d(P’);
End Algebra ;
Means M + (B*S’)’ ;
Covariances ((S@X+(P@U))* (S@X+(P@U))’).H + ((S@R)*(S@R)’).H +
((S@Y+(P@V))* (S@Y+(P@V))’) + O@(Z*Z’)+T@(W*W’) ;
Start 130 M 1 1 — M nsib nvar
Start 4 Y 1 1 V 1 1 R 1 1
Start 6 X 1 1 U 1 1
Start 4 Z 1 1 W 1 1
op rs
End

G2: Data from the DZ Twins and Their Siblings

Data NGroups = 2 NI = 10
Rectangular File = dz.dat
labels family zygosity sex1 trait1 sex2 trait2 sex3 trait3 sex4 trait4
select trait1 trait2 trait3 trait4 sex1 sex2 sex3 sex4 ;
Definition_variables sex1 sex2 sex3 sex4 ;
Matrices = Group 1;
S Full nsib 1 ! Sex definition variables
F Stand 4 4
! F is used to specify the additive genetic correlations between siblings
End matrices ;
Specify S sex1 sex2 sex3 sex4 ;
Value .5 F 2 1 — F nsib 3
Begin Algebra;
H = F@L;
P =J-S;
O = \v2d(S’);
T = \v2d(P’);
End Algebra ;
Means M + (B*S’)’ ;
Covariances ((S@X+(P@U))* (S@X+(P@U))’).H + ((S@R)*(S@R)’).H +
((S@Y+(P@V))* (S@Y+(P@V))’) + O@(Z*Z’)+T@(W*W’) ;
Options Multiple
End
Drop R 1 1 1 
! Dropping Gm — testing the general vs the common sex limitation model
End

305Twin Research June 2004

Sex-limitation in Mx

https://doi.org/10.1375/twin.7.3.299 Published online by Cambridge University Press

https://doi.org/10.1375/twin.7.3.299

