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Abstract In this paper, we prove a decomposition result for the Chow groups of projectivizations of
coherent sheaves of homological dimension ≤ 1. In this process, we establish the decomposition of Chow
groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study
the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties
resolving Voisin maps for cubic fourfolds.
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1. Introduction

Let X be a Cohen–Macaulay scheme of pure dimension and G a coherent sheaf on X of

rank r and homological dimension ≤ 1 – that is, locally over X, there is a two-step
resolution 0 → F → E → G → 0, where F and E are finite locally free sheaves. (If

X is regular, this condition on G is equivalent to ExtiX(G ,OX) = 0 for all i ≥ 2.) The

projectivization π : P(G ) := ProjX Sym•
OX

G →X of G is generically a projective bundle
with fiber Pr−1; however, the dimension of the fiber of π jumps along the degeneracy loci

(see §2.1) of G .

The derived category of P(G ) was studied in [25], where we proved (under certain
regularity and dimension conditions) that there is a semiorthogonal decomposition

Db
coh(P(G )) =

〈
Db

coh

(
P
(
Ext1(G ,OX)

))
, Db

coh(X)⊗O(1), . . . ,Db
coh(X)⊗O(r)

〉
.

(For a space Y, Db
coh(Y ) stands for its bounded derived category of coherent sheaves.) The

theorem states that the (right) orthogonal of the ‘projective bundle part’ of Db
coh(P(G ))

is given by the derived category of another projectivization P
(
Ext1(G ,OX)

)
, which is

a Springer-type partial desingularization of the singular locus of G (see [25] for more

details).
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1466 Q. Jiang

In this paper, we establish the Chow-theoretic version of this formula:

Theorem (see Theorem 4.1). Let X and G be as before. Assume either

(A) P(G ) and P
(
Ext1(G ,OX)

)
are nonsingular and quasi-projective, and the degeneracy

loci of G satisfy a weak dimension condition (4.1); or

(B) all degeneracy loci of G (either are empty or) have expected dimensions.

Then for each k ≥ 0, there is an isomorphism of integral Chow groups:

CHk(P(G ))� CHk−r

(
P
(
Ext1(G ,OX)

))
⊕

r−1⊕
i=0

CHk−(r−1)+i(X).

Since the isomorphism of the theorem commutes with the product with another space,

by Manin’s identity principle, if P(G ), P
(
Ext1(G ,OX)

)
and X are smooth and projective

over the ground field k, then there is an isomorphism of integral (pure effective) Chow

motives:

h(P(G ))� h
(
P
(
Ext1(G ,OX)

))
(r)⊕

r−1⊕
i=0

h(X)(i)

(see Corollary 4.3). Note that this result compares nicely with Vial’s work [52] on

Pr−1-fibrations; in our case, P(G ) is a generic Pr−1-fibration. Taking a cohomological

realization – for example, the Betti cohomology if k ⊂ C – the isomorphism of motives
induces an isomorphism of rational Hodge structures:

Hn(P(G ),Q)�Hn−2r
(
P
(
Ext1(G ,OX)

)
, Q

)
⊕

r−1⊕
i=0

Hn−2i(X,Q), ∀n≥ 0.

This paper provides two approaches to proving our theorem, one under each of the
conditions (A) and (B). The idea behind both approaches is that one could view the

projectivization phenomenon as a combination of the Cayley trick and flips.

We study the Chow theory for the Cayley trick in §3.1 (see Theorem 3.1 and Corollary

3.4) and the Chow theory of standard flips in §3.2 (see Theorem 3.6 and Corollary 3.10).
These results are of independent interest on their own. For example, it follows from

Theorem 3.1 and Corollary 3.4 that the Chow group (and., motive) of every complete

intersection variety can be split-embedded into that of a Fano variety (see Example 3.5;
compare [28]).

The first examples of the theorem are universal Hom spaces (see §4.3.1), flops from

Springer-type resolutions of determinantal hypersurfaces (see §4.3.2), and a blowup
formula for blowing up along Cohen–Macaulay codimension 2 subschemes (see §4.3.3).

1.1. Applications

The following applications parallel the applications of the projectivization formula in the

study of derived categories [25].

(1) Symmetric powers of curves (§5.1). Let C be a smooth projective curve of genus

g ≥ 1 and denote by C(k) the kth symmetric power. For any 0 ≤ n ≤ g− 1, the
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relationships between the derived category of C(g−1+n) and C(g−1−n) (and also
the Jacobian variety Jac(C)) was established by Toda [51] using wall crossing of

stable pair moduli, and later by [5, 25] using the projectivization formula. The

main theorem of this paper implies the corresponding Chow-theoretic version of

the formula: for any k ≥ 0, there is an isomorphism of integral Chow groups

CHk

(
C(g−1+n)

)
� CHk−n

(
C(g−1−n)

)
⊕

n−1⊕
i=0

CHk−(n−1)+i(Jac(C)),

and a similar decomposition for integral Chow motives (see Corollary 5.1).

(2) Nested Hilbert schemes of surfaces (§5.2). Let S be a smooth quasi-projective

surface, and denote by Hilbn(S) the Hilbert scheme of n points on S ; by convention,
Hilb1(S) = S, Hilb0 = point. Denote Hilbn,n+1(S) the nested Hilbert scheme. Then

the projectivization formula of derived categories [25] can be applied to obtain a

semiorthogonal decomposition of D (Hilbn,n+1(S)) [5]. In this paper we show that
for any k ≥ 0, there is an isomorphism of integral Chow groups

CHk (Hilbn,n+1(S))� CHk−1 (Hilbn−1,n(S))⊕CHk(Hilbn(S)×S)

�
n⊕

i=0

CHk−i(Hilbn−i(S)×S),

and a similar decomposition for Chow motives (see Corollary 5.4).

(3) Voisin maps (§5.3). Let Y be a cubic fourfold not containing any plane, let F (Y ) be
the Fano variety of lines on Y, and let Z(Y ) be the corresponding LLSvS eightfold

[36]. Voisin [54] constructed a rational map v : F (Y )×F (Y ) ��� Z(Y ) of degree

6, Chen [9] showed that the Voisin map v can be resolved by blowing up the

indeterminacy locus Z = {(L1,L2) ∈ F (Y )×F (Y ) | L1 ∩L2 �= ∅}, and the blowup
variety is a natural relative Quot-scheme over Z(Y ) if Y is very general. The main

theorem can be applied to this case, and implies that for any k ≥ 0, there is an

isomorphism of Chow groups

CHk(BlZ(F (Y )×F (Y )))� CHk−1

(
Z̃
)
⊕CHk(F (Y )×F (Y )),

where Z̃ = P(ωZ) is a Springer-type (partial) resolution of the indeterminacy locus

Z, which is an isomorphism over Z\Δ2, and a P1-bundle over the type II locus

Δ2 =
{
L ∈Δ� F (Y ) | NL/Y � O(1)⊕2⊕O(−1)

}
which is an algebraic surface (see

Corollary 5.6).

The results of this paper could also be applied to many other situations of moduli
spaces, for example, moduli of sheaves on surfaces [43, 44] and the moduli spaces of

extensions of stable objects in K3 categories, which are generalizations of the varieties

resolving Voisin’s maps [9, 54]. Another such example is provided by the pair of Thaddeus
moduli spaces [48] MC(2,L )→ NC(2,L ) and MC (2,L ∨⊗ωC)→ NC(2,L ) studied by

Koseki and Toda [29]. (Here, L is a line bundle of odd degree d > 0, NC(2,L ) is the

moduli space of rank 2 semistable vector bundles over a curve C, with determinant L ,
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and MC(2,L ) is the space Mω of [48], where ω=
[
d−1
2

]
). The results of this paper on flips

(§3.2) and projectivizations (Theorem 4.1) would shed light on the study of the Chow
theory of NC(2,L ).1

1.2. Conventions

Throughout this paper, X is a Noetherian scheme of pure dimension,and G is a coherent

sheaf over X. We say that G has rank r if the rank of G (η) := G ⊗κ(η) is r at the generic

point η of each irreducible component of X. Assume that all schemes in consideration
are defined over some fixed ground field k. The terms ‘locally free sheaves’ and ‘vector

bundles’ will be used interchangeably. We use Grothendieck’s notations : for a coherent

sheaf F on a scheme X, denote by PX(F ) = ProjX Sym•
OX

F its projectivization; we will
write P(F ) if the base scheme is clear from context. For a vector bundle V, we also use

Psub(V ) := P(V ∨) to denote the moduli space of 1-dimensional linear subbundles of V.

For motives, we use the covariant convention of [27, 41, 42, 52, 53]. In particular, [27]
contains a dictionary for translating between covariant and contravariant conventions.

For a smooth projective variety X over a field k, denote by h(X) its class (X, IdX ,0)

in Grothendieck’s category of integral Chow motives of smooth projective varieties over

k. Notice that under the covariant convention, for a morphism f : X → Y of smooth

projective varieties, Γf induces the push-forward map f∗ : h(X)→ h(Y ) and
[
Γt
f

]
induces

the pullback map f∗ : h(Y )→ h(X)(dimY −dimX). Moreover, h
(
P1

)
= 1⊕L= 1⊕1(1),

where 1 = h(Speck), and L = 1(1) is the Lefschetz motive. In particular, the covariant

Tate twist coincides with tensoring with L – that is, h(X)(i) = h(X)⊗Li for all i ∈ Z.

Furthermore, CH�(h(X)(n)) = CH�−n(X) and CHk(h(X)(n)) = CHk−n(X). We will use
h to denote the action c1(O(1))∩ ( ) on motives when the line bundle O(1) is clear from

the context.

2. Preliminaries

2.1. Degeneracy loci

Standard references are [18, 19, 20, 21, 34].

Definition 2.1

(1) Let G be a coherent sheaf of (generic) rank r over a scheme X. For an integer k ∈Z,

the degeneracy locus of G of rank ≥ k is defined to be

X≥k(G ) := {x ∈X | rankG (x)≥ k},

where G (x) := Gx⊗OX,x
κ(x) is the fiber of G at x ∈X. Notice that X≥k(G ) =X

if k ≤ r. We call Xsg(G ) := X≥r+1(G ) the first degeneracy locus (or the singular

locus) of G .

1See [17] for recent results in this direction about rational Chow motives; our results here might
also be helpful in obtaining results for integral coefficients.
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(2) Let σ : F → E be a morphism of OX -modules between locally free sheaves F and

E on X. For an integer �, the degeneracy locus of σ of rank � is defined to be

D�(σ) := {x ∈X | rankσ(x)≤ �},

where σ(x) := σx⊗OX,x
κ(x) : F (x)→ E (x) is the map induced by σ on the fibers.

The degeneracy loci X≥k(G ) and D�(σ) have natural closed subscheme structures given
by Fitting ideals [34, §7,2]. The two notions are related as follows: let σ : F → E be an

OX -module map between finite locally free sheaves and let G := Coker(σ) be the cokernel.

Then X≥k(G ) =DrankE−k(σ) as closed subschemes of X.
The expected codimension of D�(σ) ⊂ X is (rankE − �)(rankF − �) (if � ≤

min{rankE , rankF}). If G has homological dimension ≤ 1 and rank r – for example, if

G = Coker
(
F

σ−→ E
)
is the cokernel of an injective map of OX -modules between finite

locally free sheaves – then for any i ≥ 0, the expected codimension of X≥r+i(G ) ⊂X is
i(r+ i).

In the universal local situation where X = Homk(W,V ) is the total space of maps

between two vector spaces W and V over a field k, there is a tautological map τ : W ⊗
OX → V ⊗OX over X, such that τ(A) =A for A ∈Hom(W,V ).

Lemma 2.2. ([19, 20, 21]). Let X =Homk(W,V ) and denote D� =D�(τ)⊆X the degen-

eracy locus of the tautological map τ of rank�. Then for any 0≤ �≤min{rankW, rankV },
the singular locus of D� is D�−1. Furthermore, for any regular point A ∈ D�\D�−1, the
following are true:

(1) The tangent space of D� at A is TAD� = {T ∈Hom(W,V ) | T (KerA)⊆ ImA}.
(2) The normal space of D� to X at A is ND�

X|A =Hom(KerA,CokerA).

Proof. See [19, §5.1, p. 54–55], [20, Lemma 4.12], or [21, Ex. V (4), p. 145].

In general, let σ : F → E be a map between vector bundles over a scheme X. For a

fixed integer �, regarding the open degeneracy locus D := D�(σ)\D�−1(σ) we have the
following:

Lemma 2.3. Assume X is a Cohen–Macaulay k-scheme and D := D�(σ)\D�−1(σ) ⊂
X has the expected codimension (rankE − �)(rankF − �). Then σ|D : E |D → F |D has
constant rank � over D, and K := Kerσ|D and C := Cokerσ|D are locally free sheaves

over D of ranks rankE − � and rankF − �, respectively. Moreover, D ⊂ X is a locally

complete intersection subscheme with normal bundle ND/X �K∨⊗C.

Proof. First we prove the lemma for the total Hom space H = |HomX(F ,E )|. Denote
π : H = |HomX(F ,E )| →X the projection, and let D� :=D�(τH)⊂H be the degeneracy

locus for the tautological map τH : π∗F → π∗E . As the statement is local, we may

assume X = SpecA, F =W ⊗kA, and E = V ⊗kA, where A is a k-algebra and W,V are
k-vector spaces. Then H =Hom(W,V )×kX is the flat base change of Homk(W,V ) along

X → Speck, and D := D�\D�−1 = D×k X. The desired result holds for H and D by

Lemma 2.2.
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In general, the map σ : F → E induces a section map sσ : X →H, such that σ = s∗στH
and D = D×X H. Since s is the section of a smooth separated morphism, it is a regular
closed immersion. Since H and X are Cohen–Macaulay, D ↪→H is a regular immersion,

and the intersection D = D×X H ↪→ X has the expected codimension; therefore the

inclusion D ↪→ X is also a regular immersion, with normal bundle ND/X = s∗σND/H .
Finally, s∗σND/H =K∨⊗C holds, since K∨ = s∗σCoker(τ

∨
H) and C = s∗σCoker(τH).

2.2. Chow groups of projective bundles

Let X be a scheme and E a locally free sheaf of rank r on X. Denote π : P(E ) :=
Proj(Sym•E )→X the projection. Notice that our convention P(E ) = Psub (E ∨) is dual

to Fulton’s [18]. For simplicity, from now on we will denote ζ = c1
(
OP(E )(1)

)
and use the

notation ζi ·β := c1
(
OP(E )(1)

)i∩β, where β ∈CH(P(E )), to denote the cap product. For

each i ∈ [0,r−1], we introduce the following notations:

π∗
i ( ) = ζi ·π∗( ) : CHk−(r−1)+i(X)→ CHk(P(E )), ∀k ∈ Z.

The following results are summarized and deduced from [18, Proposition 3.1, Theorem
3.3] but presented in a way that fits better into our current work:

Theorem 2.4 (projective bundle formula).

(1) (Duality) For any α ∈ CH(X),

π∗π
∗
i (α) = π∗

(
c1(O(1))i∩π∗(α)

)
=

{
0, i < r−1,

α, i= r−1.

(2) For any k ∈ N, there is an isomorphism of Chow groups:

r−1⊕
i=0

π∗
i :

r−1⊕
i=0

CHk−(r−1)+i(X)
∼−→ CHk(P(E )).

(3) The projection to the ith summand of this isomorphism is given by

πi∗( ) =

r−1−i∑
j=0

(−1)jcj(E )∩π∗
(
ζr−1−i−j · ( )

)
, for i= 0,1, . . . ,r−1. (2.1)

Therefore for any i,j ∈ [0,r−1], the following hold:

πi∗π
∗
i = IdCH(X) , πi∗π

∗
j = 0,i �= j, IdCH(P(E )) =

r−1∑
i=0

π∗
i πi∗.

Proof. Part (1) follows from [18, Proposition 3.1(a)], and part (2) follows from [18,
Theorem 3.3], which could also be viewed as a special case of [18, Proposition 14.6.5].

For part (3), to agree with Fulton’s notation, let E = E ∨ be the dual vector bundle,

so Psub(E) = P(E ). From part (2), for any β ∈ CHk(P(E )) there exist unique αi ∈
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CHk−(r−1)+i(X), i ∈ [0,r−1], such that

β =

r−1∑
i=0

ζi ·π∗αi.

It follows from the definition of Segre classes si(E)∩α := π∗
(
ζi+r−1 ·π∗α

)
that

π∗
(
ζj ·β

)
=

j∑
i=0

si(E)∩αr−1−j+i, for j = 0,1, . . . ,r−1.

Then the desired results follow from solving αis using 1 = c(E)s(E) = (1 + c1(E) +

c2(E)+ · · ·)(1+s1(E)+s2(E)+ · · ·).

Notice that our maps πi∗ (resp., projectors π∗
i πi∗) are nothing but the explicit

expressions of the correspondences gi (resp., orthogonal projectors pr−i) that are
inductively defined in [39, §7, p 457, Definition] (resp., [39, §7, p 456, Proposition]).

By using these maps, Manin [39, §7, p 457] establishes an isomorphism of Chow motives:

r−1⊕
j=0

hr−1−j ◦π∗ :
r−1⊕
j=0

h(X)(j)
∼−→ h(P(E )).

Remark 2.5. The projector πi∗ can be expressed via the universal quotient bundle as

πi∗ = π∗
(
cr−1−i

(
TP(E )/X(−1)

)
∩ ( )

)
: CH(P(E ))→ CH(X).

This duality is explained for more general Grassmannian bundles in [23].

Remark 2.6 (change of basis). For any identification P(E ) � P(E ⊗L ), where L ∈
PicX, denote ζ ′ = c1

(
OP(E⊗L )(1)

)
= ζ +π∗c1(L ), and π′

i∗ the projectors with respect

to ζ ′i ·π∗( ). Then the two bases
{
ζi
}
0≤i≤r−1

and
{
ζ ′i

}
0≤i≤r−1

differ by an invertible

upper triangular change of basis. In particular, for any 0≤ k ≤ r−1, the following holds:

Span
{
ζi | 0≤ i≤ k

}
= Span

{
ζ ′i | 0≤ i≤ k

}
,

where for any subset S ⊂ CH∗(P(E )), its span is defined by

SpanS :=

{∑
i

αi∩π∗βi | αi ∈ S,βi ∈ CH(X)

}
.

Similarly, for any 0 ≤ k ≤ r− 1, we can express π′
k∗ as a CH(X)-linear combination of

πk∗,πk+1∗, . . . ,πr−1∗, and vice versa.

Lemma 2.7 ([47, Lemma 5.3]). The following equality holds:

ck
(
ΩP(E )/X(1)

)
=

k∑
i=0

(−1)iζi ·π∗ck−i(E ) = (−1)k
k∑

i=0

ζi ·π∗ck−i (E
∨) .
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2.3. Blowups

Let Z ⊂X be a codimension r ≥ 2 locally complete intersection subscheme. Denote π :

X̃ →X the blowup of X along Z, with exceptional divisor E ⊂ X̃. Then E = P

(
N ∨

Z/X

)
is a projective bundle over Z. We have a Cartesian diagram

E X̃

Z X.

p

j

π

i

The excess bundle V for the diagram is defined by the short exact sequence

0→ NE/X̃ → p∗NZ/X → V → 0.

From the excess bundle formula [18, Theorem 6.3], one obtains the key formula for

blowup:

π∗i∗( ) = j∗(cr−1(V )∩p∗( )) : CHk(Z)→ CHk

(
X̃
)
. (2.2)

The following is summarized from [18, Proposition 6.7]:

Theorem 2.8 (blowups).

(1) The following hold:

π∗π
∗ = IdCH(X) , p∗(cr−1(V )∩p∗( )) = IdCH(Z) .

(2) For any k ≥ 0, there exists a split short exact sequence

0→ CHk(Z)
(cr−1(V )∩p∗( ),−i∗)−−−−−−−−−−−−−−→ CHk(E)⊕CHk(X)

(ε,α) �→j∗ε+π∗α−−−−−−−−−−→ CHk

(
X̃
)
→ 0,

where a left inverse of the first map is given by (ε,α) �→ p∗ε.

(3) This exact sequence induces an isomorphism of Chow groups

CHk(X)⊕
r−2⊕
i=0

CHk−(r−1)+i(Z)
∼−→ CHk

(
X̃
)
,

given by
(
α,⊕r−2

i=0 βi

)
�→ π∗α+ j∗

(∑r−2
i=0 ζ

i ·p∗βi

)
, where ζ = c1

(
O

P
(

N ∨
Z/X

)(1)
)
.

Note that the well-known formula of part (3) follows from part (2) by the identification

CHk

(
X̃
)
= π∗CHk(X)⊕ j∗ (CHk(E)p∗=0)

= π∗CHk(X)⊕
r−2⊕
i=0

j∗
(
ζi ·p∗CHk−(r−1)+i(Z)

)
,

where CHk(E)p∗=0 denotes the subgroup {γ ∈ CHk(E) | p∗γ = 0} of CHk(E). A similar

and more detailed argument is given later in the case of standard flips (see Theorem 3.6).

There are similar results on Chow motives by Manin [39] (see also our Corollary 3.10).
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3. The Cayley trick and standard flips

The projectivization can be viewed as a combination of the situation of the Cayley trick
and flips. In this section we study the Chow theory of the latter two cases.

3.1. The Cayley trick and Chow groups

The Cayley trick is a method to relate the geometry of the zero scheme of a regular section

of a vector bundle to the geometry of a hypersurface (see the discussions of [25, §2.3]).
The relationships for their derived categories were established by Orlov [46, Proposition

2.10]; we now focus on their Chow groups.

Let E be a locally free sheaf of rank r≥ 2 on a scheme X and s∈H0(X,E ) be a regular
section, and denote Z := Z(s) the zero locus of the section s. Denote the projectivization

by q : P(E ) = ProjSym•E →X. Then under the canonical identification

H0(X,E ) =H0
(
P(E ),OP(E )(1)

)
,

the section s corresponds canonically to a section fs of OP(E )(1) on P(E ). Denote the

divisor defined by fs by

Hs := Z(fs)⊂ P(E ).

Then Hs =P(G ) =ProjSym•G , where G =Coker
(
OX

s−−→ E
)
. Thus Hs is a Pr−2-bundle

over X\Z, and a Pr−1-bundle over Z. It follows that Hs|Z coincides with PZ(Ni), the

projectivization of the normal bundle of inclusion i : Z ↪→X. The situation is illustrated

in the following commutative diagram, with maps as labeled:

P(Ni) Hs P(E )

Z X.

p

j

π

ι

q

i

(3.1)

Since Ni = E |Z and OP(E )(1)|P(Ni) = OP(Ni)(1), by abuse of notation we use ζ · ( ) to

denote both c1
(
OP(E )(1)

)
∩ ( ) and c1

(
OP(Ni)(1)

)
∩ ( ). The main result of this section

is the following:

Theorem 3.1 (the Cayley trick for Chow groups). There exists a split short exact

sequence

0→
r−2⊕
i=0

CHk−(r−2)+i(Z)
f−→

r−2⊕
i=0

CHk−(r−2)+i(X)⊕CHk(P(Ni))
g−→ CHk(Hs)→ 0, (3.2)
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where the maps f and g are given by

f : ⊕r−2
i=0 γi �→

(
−⊕r−2

i=0 i∗γi,
r−2∑
i=0

ζi+1 ·p∗γi

)
,

g :
(
⊕r−2

i=0αi,ε
)
�→

r−2∑
i=0

ζi ·π∗αi+ j∗ε,

where pi∗ is defined similarly to equation (2.1). A left inverse of f is given by
(
⊕r−2

i=0αi,ε
)
�→

⊕r−2
i=0 pi+1∗ε. Furthermore, the sequence induces an isomorphism

r−2⊕
i=0

CHk−(r−2)+i(X)⊕CHk−(r−1)(Z)
∼−→ CHk(Hs), (3.3)

given by
(
⊕r−2

i=0αi,γ
)
�→

∑r−2
i=0 ζ

i ·π∗αi+ j∗p
∗γ, and in this decomposition the projection

map to the first (r−1)-summands CHk(Hs)→CHk−(r−2)+i(X), i=0,1, . . . ,r−2, is given

by β �→ πi∗β, where πi∗ is defined by equation (3.4) and the projection to the last summand

CHk(Hs)→ CHk−(r−1)(Z) is given by β �→ (−1)r−1p∗j
∗β.

For simplicity, we introduce the following notation. For the projective bundles q :P(E )→
X and p : P(Ni) → Z, similar to equation (2.1), we denote the projections to the ith

factors by

qi∗ : CHk(P(E ))→ CHk−(r−1)+i(X), pi∗ : CHk(P(Ni))→ CHk−(r−1)+i(Z),

which are explicitly given as follows: for any i= 0,1, . . . ,r−1,

qi∗( ) =

r−1−i∑
j=0

(−1)jcj(E )∩ q∗
(
ζr−1−i−j · ( )

)
,

pi∗( ) =

r−1−i∑
j=0

(−1)jcj(Ni)∩p∗
(
ζr−1−i−j · ( )

)
.

Furthermore, for any i ∈ [0,r−1], α ∈ CH(X), and γ ∈ CH(Z), we denote

q∗i α := ζi · q∗α, p∗i γ := ζi ·p∗γ.

Then the projective bundle formula (Theorem 2.4) states the following:

(1) For all i,j ∈ [0,r−1],

qi∗q
∗
j = δi,j IdCH(X) , pi∗p

∗
j = δi,j IdCH(Z) .

(2) For all β ∈ CH(P(E )) and ε ∈ CH(P(Ni)), the following relations hold:

β =
r−1∑
i=0

q∗i qi∗β ε=
r−1∑
i=0

p∗i pi∗ε.

Now for all α ∈ CH�(X) and β ∈ CHk(Hs), and all i ∈ [0,r−2], we define

π∗
i α := ι∗q∗i α ∈ CH�+(r−2)−i(Hs), πi∗β := qi+1∗ι∗β ∈ CHk−(r−2)+i(X).
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Then it follows from the projection formula that π∗
i α= ζi ·π∗α, and πr−2∗ = π∗ and

πi∗( ) =

r−2−i∑
j=0

(−1)jcj(E )∩π∗
(
ζr−2−i−j · ( )

)
, i= 0, . . . ,r−2. (3.4)

Notice that ci(E ) = ci(G ) for i∈ [0,r−2], where G =Coker
(
OX

s−−→ E
)
; the relationships

between πi∗s and π∗
i s are similar to the case of a Pr−2-bundle.

We prove the theorem by the same steps as the blowup case in [18, §6.7]:

Proposition 3.2 (compare [18, Proposition 6.7]).

(a) (Key formula). For all α ∈ CHk(Z),

π∗i∗α= j∗(ζ ·p∗α) ∈ CHk+r−2(Hs).

Then by the projection formula, π∗
i i∗α= j∗ (ζ ·p∗iα) for all i ∈ [0,r−2].

(b) For any α ∈ CHk(X), i,j ∈ [0,r−2], we have πi∗π
∗
i α= α, πi∗π

∗
jα= 0 if i �= j.

(c) For ε ∈ CH(P(Ni)), if j
∗j∗ε= 0 and p1∗ε= · · ·= pr−1∗ε= 0, then ε= 0.

(d) (i) For any β ∈ CHk(Hs), there is an ε ∈ CHk(P(Ni)) such that

β =

r−2∑
i=0

π∗
i πi∗β+ j∗ε.

(ii) For any β ∈ CHk(Hs), if πi∗β = 0, i ∈ [0,r−2], and j∗β = 0, then β = 0.

Proof.

(a) In fact, from [25, Remark. 2.5], the Euler sequence for P(Ni) is equivalent to

0→ Nj → p∗Ni → OP(Ni)(1)→ 0, (3.5)

where Ni = E |Z and Nj �ΩP(E )/X(1)|P(Ni). Therefore the excess bundle for diagram 3.1

is given by OP(Ni)(1). Now from [18, Theorem 6.3, Propositions 6.2(1) and 6.6], one has:

π∗i∗( ) = j∗π
!
P(Ni)

( ) = j∗
(
c1
(
OP(Ni)(1)

)
∩p∗( )

)
.

(b) Since ι : Hs ↪→ P(E ) is a divisor of OP(E )(1), we have ι∗ι∗( ) = ζ · ( ), and

πi∗π
∗
jα= qi+1∗ι∗

(
ι∗
(
q∗jα

))
= qi+1∗

(
ζ · ζj · q∗α

)
= qi+1∗q

∗
j+1α= δi,jα.

(c) Since j∗j∗ε= cr−1 (Nj)∩ε, from the Euler sequence (3.5) and Ni = E |Z ,

cr−1(Nj) =

r−1∑
i=0

(−1)iζip∗cr−1−i(E ) = (−1)r−1ζr−1+(lower order terms of ζi).

Therefore j∗j∗ε= cr−1 (Nj)∩ε=0 and p1∗ε= · · ·= pr−1∗ε=0 imply p0∗ε= p∗
(
ζr−1 ·ε

)
+

p∗
((
lower-order terms of ζi

)
∩ε

)
= ±p∗ (cr−1 (Nj)∩ε) + p∗

((
lower-order terms of ζi

)
∩ε) = 0. Hence ε=

∑r−1
i=0 p

∗
i pi∗ε= 0.

(d)(i) Over the open subscheme U =X\Z, Hs|π−1(U) = P(G |U ) is a projective bundle

with fiber Pr−2. In fact, over U there is an exact sequence of vector bundles 0→ OU →
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E |U → G |U → 0. Then the linear subbundle P(G |U )⊂ P(E |U ) is a divisor representing the

class ζ = c1(O(1)). For any β ∈CH(P(G |U )), by Theorem 2.4 applied to P(GU ) there exists

a unique αi ∈ CH(U) such that β =
∑r−2

i=0 (ι
∗ζ)i ·π∗αi. Therefore the following holds:

ι∗β =

r−2∑
i=0

ι∗
((
ι∗(ζ)i · ι∗(q∗α)

)
=

r−2∑
i=0

ζi+1 · q∗αi,

where the last equality follows from the projection formula and ι∗ι
∗( ) = ζ · ( ). From

the uniqueness statement of Theorem 2.4 applied to P(E ), we know that

αi = qi+1∗ι∗β = πi∗β.

Therefore, over U, we have β =
∑r−2

i=0 π
∗
i πi∗β. Now for any β ∈ CHk(Hs),(

β−
∑r−2

i=0 π
∗
i πi∗β

)∣∣
U

= 0. From the exact sequence CH(P(Ni)) → CH(Hs) →
CH(Hs|U )→ 0, there exists an ε ∈ CH(P(Ni)) such that β−

∑r−2
i=0 π

∗
i πi∗β = j∗ε.

(d)(ii) From part (d)(i) we know that β = j∗ε, for ε ∈ CHk(P(Ni)). Since the ambient

square of diagram (3.1) is flat, by the flat base-change formula we have

i∗pi+1∗ = qi+1∗(ι◦ j)∗ = πi∗j∗, for i= 0,1, . . . ,r−2.

Therefore i∗(pi+1∗ε) = πi ∗β = 0 for i ∈ [0,r−2]. Notice that since ε =
∑r−1

i=0 p
∗
i pi∗ε, one

has

j∗ (p
∗
0p0∗ε) = j∗(ε)− j∗

(
ζ ·

r−2∑
i=0

p∗i pi+1∗ε

)
= j∗(ε)−

r−2∑
i=0

π∗
i i∗(pi+1∗ε) = j∗(ε).

Here the second equality follows from the key formula of part (a). Now j∗j∗ (p
∗
0p0∗ε) =

j∗j∗ε= 0. By part (c), p∗0p0∗ε= 0, hence β = j∗ε= 0.

Theorem 3.1 follows from Proposition 3.2 as follows:

Proof of Theorem 3.1. The fact gf = 0 follows from part (a). The surjectivity of g is

part (d)(i). By part (b), a left inverse of f is given by h :
(
⊕r−2

i=0αi,ε
)
�→ ⊕r−2

i=0 pi+1∗ε. In
fact, hf is

⊕r−2
i=0 γi �→ ⊕r−2

i=0 pi+1∗

⎛⎝r−2∑
j=0

ζj+1 ·p∗γj

⎞⎠=⊕r−2
i=0

⎛⎝pi+1∗

r−2∑
j=0

p∗j+1γi

⎞⎠=⊕r−2
i=0 γi.

To show the exactness of formula (3.2), suppose that for αi ∈CH(X) and ε∈CH(P(Ni)),

we have
∑r−2

i=0 π
∗
i αi+j∗ε=0. Then similar to part (d)(ii), from part (b), for all i∈ [0,r−2],

αi =−πi∗(j∗ε) =−i∗pi+1∗ε ∈ CH(X).

Now consider ε′ = ε−
∑r−2

i=0 p
∗
i+1pi+1∗ε. Then similar to the proof of part (d)(ii), we have

j∗ε
′ = j∗(ε)− j∗

(
ζ ·

r−2∑
i=0

p∗i pi+1∗ε

)
= j∗(ε)−

r−2∑
i=0

π∗
i i∗(pi+1∗ε) = j∗(ε)+

r−2∑
i=0

π∗
i αi = 0,
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and p1∗ε
′ = · · · = pr−1∗ε

′ = 0 (since ε′ = p∗0p0∗ε). Therefore by part (c), ε′ = 0. Hence

(⊕iαi,ε) =
(
−⊕i i∗γi,

∑r−2
i=0 p

∗
i+1γi

)
for γi = pi+1∗ε. Hence the sequence (3.2) is exact.

To prove the last statement, we show that for any β ∈ CH(Hs), there exists a unique

ε ∈ CH(P(Ni)) such that p1∗ε= · · ·= pr−1∗ε= 0, and

β =
r−2∑
i=0

π∗
i πi∗β+ j∗ε.

In fact, for any expression β =
∑r−2

i=0 π
∗
i αi+ j∗ε, by replacing ε with ε−

∑r−2
i=0 p

∗
i+1pi+1∗ε

and αi with αi + i∗(pi+1∗ε), we may assume p1∗ε = · · · = pr−1∗ε = 0. Hence by the

projective bundle formula, ε= p∗γ for a unique γ ∈ CH(Z). Now by the flat base-change
formula,

πi∗(j∗p
∗γ) = qi+1∗(ι◦ j)∗p∗γ = qi+1∗q

∗(i∗γ) = 0, i ∈ [0,r−2].

Therefore πi∗β = πi∗
(∑r−2

i=0 π
∗
i αi+ j∗p

∗γ
)
= αi for all i = 0,1, . . . ,r− 2. Hence we have

established the identification

CHk(Hs) =

r−2⊕
i=0

π∗
i CHk−(r−2)+i(X)⊕ j∗

(
CHk(P(Ni))p1∗=···=pr−1∗=0

)
=

r−2⊕
i=0

π∗
i CHk−(r−2)+i(X)⊕ j∗p

∗CHk−(r−1)(Z),

where CHk(P(Ni))p1∗=···=pr−1∗=0 denotes the subgroup {γ ∈ CHk(P(Ni)) | p1∗γ = · · · =
pr−1∗γ = 0} of CHk(P(Ni)). Moreover, the projection maps to the first (r−1)-summands
are respectively given by β �→ αi = πi∗β, for i = 0,1, . . . ,r− 2. For the formula of the

projection to the last summand, it suffices to notice that p∗j
∗π∗

i ( ) = p∗ (p
∗
i (i

∗( ))) = 0

for i ∈ [0,r−2] and that p∗j
∗j∗p

∗( ) = p∗
(
cr−1

(
ΩP(E )(1)

)
∩p∗( )

)
= (−1)r−1 Id. �

Remark 3.3. If we denote Γ = P(Ni) = Hs ×X Z and Γ∗ : CH(Hs) → CH(Z) (resp.,

Γ∗ : CH(Z)→CH(Hs)) the map induced by the correspondence [Γ] ∈CH(Hs×Z) (resp.,

by the transpose [Γ]t ∈ CH(Z×Hs) of [Γ]), then

Γ∗ = p∗ ◦ j∗ and Γ∗ = j∗ ◦p∗.

In the foregoing proof, we have actually shown that the relations

Γ∗Γ
∗ = (−1)r IdCH(Z) , πi∗π

∗
j = δi,j IdCH(X) , Γ∗π

∗
i = πi∗Γ

∗ = 0

hold for any i,j ∈ [0,r−2], and that the isomorphism (3.3) is given by

IdCH(Hs) =

r−2∑
i=0

π∗
i πi∗+Γ∗Γ∗.
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Corollary 3.4. If X, Hs, and Z are smooth and projective varieties over some ground
field k, then there is an isomorphism of Chow motives:(

r−2⊕
i=0

hr−2−i ◦π∗

)
⊕ [Γ]t :

(
r−2⊕
i=0

h(X)(i)

)
⊕h(Z)(r−1)

∼−→ h(Hs).

Proof. By Manin’s identity principle, it suffices to notice that for any smooth T, the
schemes Z ×T ⊂ X ×T and Hs ×T are also in the same situation as the Cayley trick

(Theorem 3.4). Hence the identities of Remark 3.3 hold for the Chow motives.

Example 3.5. Let Y ⊂ Pn be any complete intersection subvariety over a field k of

codimension c ≥ 1, say cut out by a regular section of the vector bundle
⊕c

i=1OPn(di).

Following [28], if we fix a positive integer r ≥ max{
∑

di−n− c,1− c}, then Y ⊂ Pn ⊂
Pn+r =X is the zero subscheme of a regular section s of the ample vector bundle

E := OPn+r (1)⊕r⊕
c⊕

i=1

OPn+r(di).

It is shown in [28] that FY :=Hs ⊂ P(E ) is a Fano variety. Theorem 3.1 implies

CH∗(FY ) = CH∗−r−c+1(Y )⊕
r+c−2⊕
i=0

CH∗−r−c+2+i(P
n+r),

and similarly for Chow motives if we assume Y is smooth. Hence the Chow group (resp.,

motive, rational Hodge structure if k⊂C and Y is smooth) of every complete intersection
Y can be split-embedded into that of a Fano variety FY , with complement given by copies

of the Chow group (resp., motive, rational Hodge structure) of a projective space Pn+r.

3.2. Standard flips

Let (Ψ,ψ) : (X,P )→
(
X,S

)
be a log-extremal contraction such that

(i) P = PS,sub(F ) for a vector bundle F of rank n+1 on S and

(ii) over every s ∈ S,
(
NP/X

)∣∣
Ps

� OPn(−1)⊕(m+1) for some fixed integer m.

By (the same argument as) [35, §1], there exists a vector bundle F ′ of rank m+1 such

that NP/X = OPsub(F )(−1)⊗ψ∗F ′. If we blow up X along P, we get π : X̃ → X with

exceptional divisor E = Psub

(
NP/X

)
= PS,sub(F )×S PS,sub(F

′). Furthermore, one can

blow down E along fibers of PS,sub(F ) and get π′ : X̃ →X ′ and π′(E) =: P ′ � PS,sub(F
′),

with NP ′/X′ � OPsub(F ′)(−1)⊗ψ′∗F , where ψ′ : P ′ → S is the natural projection. Hence

we obtain another log-extremal contraction (Ψ′,ψ′) : (X ′,P ′)→
(
X,S

)
, which is birational

to (X,P ).

The birational map f :X ���X ′ is called a standard (or ordinary) flip of type (n,m).

Note that X >K X ′ (resp., X �K X ′) if and only if n >m (resp., n=m).
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The geometry is illustrated in the following diagram, with maps as labeled:

E = P ×S P ′

X̃

P = PS,sub(F ) X X ′ P ′ = PS,sub(F
′)

X

S.

j

p p′

π π′

i

ψ

Ψ Ψ′

i′

ψ′

If X >K X ′ (resp., X �K X ′), the expected relations of derived categories for the flip

(resp., flop) f : X ��� X ′ are established by Bondal and Orlov [8]. In this section we

establish the corresponding relations on Chow groups, which complement the results of
[35, §3].
From now on we assume n ≥m – that is, X ≥K X ′. Denote Γ the graph closure of f

in X ′×X, which is nothing but X̃ =X×X X ′. Denote by Γ∗ : CHk(X)→ CHk(X
′) and

Γ∗ : CHk(X
′)→ CHk(X) the maps induced by [Γ] ∈ CHdimX(X ×X ′). It is easy to see

that

Γ∗( ) = π′
∗π

∗( ), Γ∗( ) = π∗π
′∗( ).

Denote by V and V ′ the respective excess bundles for the blowups π : X̃→X and π′ : X̃→
X ′ – that is, they are defined by the short exact sequences

0→ NE/X̃ → p∗NP/X → V → 0, 0→ NE/X̃ → p′∗NP ′/X′ → V ′ → 0.

Denote by Φ∗ : CHk(P )→ CHk(P
′) (resp., Φ∗ : CHk(P

′)→ CHk(P )) the maps given by
the correspondence cm(V ) ∈ CHm(P ×S P ′) (resp., cn(V ′) ∈ CHn(P ′×S P )) – that is,

Φ∗( ) = p′∗(cm(V )∩p∗( )) Φ∗( ) = p∗(cn(V
′)∩p′∗( )).

It follows from the Euler sequence that V = OP (−1)�TP ′/S(−1) and V ′ = TP/S(−1)�
OP ′(−1).

Theorem 3.6 (standard flips). Let f : X ��� X ′ be a standard flip and assume X ′ is
nonsingular and quasi-projective. Then we have the following:

(1) The following holds:

Γ∗Γ
∗ = IdCH(X′) , Φ∗Φ

∗ = IdCH(P ′) .

(2) There exists a split short exact sequence

0→ CHk(P
′)

(Φ∗,−i′∗)−−−−−−→ CHk(P )⊕CHk(X
′)

(γ,α′) �→i∗γ+Γ∗α′

−−−−−−−−−−−−→ CHk(X)→ 0,

where a left inverse of the first map is given by (γ,α′) �→ Φ∗γ.
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(3) This exact sequence induces an isomorphism of Chow groups

CHk(X
′)⊕

n−m−1⊕
i=0

CHk−n+i(S)
∼−→ CHk(X), (3.6)

given by
(
α′,⊕n−m−1

i=0 βi

)
�→ Γ∗α′ + i∗

(∑n−m−1
i=0 ζi ·ψ∗βi

)
. Furthermore, in this

decomposition, the projection to the first summand is given by α �→ α′ = Γ∗α.

Notice that in the flop case m= n, this result recovers the invariance of Chow groups

under flops in [35]; and in the flip case m< n, this theorem completes the discussion of

[35, §2.3] by providing the complementary summands of the image of Γ∗ in the Chow
group CH(X). Finally, as a blowup can be viewed as a standard flip of type (n,0), the

theorem recovers the blowup formula in Theorem 2.8.

Proof of the first part of Theorem 3.6(1). The equality Γ∗Γ
∗ = Id follows exactly

the same line of proof as [35, Theorem 2.1], as already mentioned in [35, §2.3]. We sketch
the proof here for completeness. For any class [W ′] ∈CHk(X

′), by Chow’s moving lemma

(if allowing negative coefficients), we may assume it is represented by a cycle W ′ which

intersects P ′ transversely. Therefore π′∗[W ′] =
[
W̃

]
by [18, Corollary 6.7.2], where W̃ is

the blowup of W ′ along W ′∩P ′. Hence Γ∗[W ′] = π∗
[
W̃

]
= [W ], where W is the image

of W̃ and is also the proper transform of W ′ along the birational rational map f−1. Now

we have

π∗[W ] =
[
W̃

]
+ j∗

∑
B

[EB ],

where we let B′ ⊂ W ′ ∩P ′ be a component; then EB ⊂ E are k -cycles supported over

components B = ψ′(B′) ⊂ ψ′(W ′ ∩P ′) ⊂ S. A direct computation of dimensions shows

that for a general point s, the fiber EB,s over s has dimension

dimEB,s ≥ dimEB −dim
(
B
)
≥ dimEB −dim(B′) = k− (k− (n+1)) = n+1.

Now EB,s must contain positive fibers of of p′s : P
n
s ×Pm

s → Pm
s , as n+1> n≥m. Hence

π∗j∗[EB ] = p∗[EB ] = 0, and Γ∗Γ
∗[W ′] = π′

∗π
∗[W ] = π′

∗

[
W̃

]
= [W ′]. �

Remark 3.7. Notice that this argument does not work in the other direction for Γ∗Γ∗[V ],

where [V ] ∈ CHk(X). The reason is as follows: the fiber EB′,s of the k -cycle EB′ in

π′∗Γ∗[V ] = π′∗[V ′] = Ṽ + j∗
∑

EB′ has dimension ≥ m+1, but m ≤ n, and thus EB′,s

is not necessarily contracted by p∗. However, if k ≤ m (in which case we may assume

V ∩P = ∅) or k ≥ n+1+dimψ(V ∩S) – for example, if k ≥ dimS+n+1 – then the

argument still works:

Γ∗Γ∗[V ] = [V ] if k ≤m+1 or k ≥ n+dimψ(V ∩S).

For the intermediate cases m+1≤ k ≤ n+dimψ(V ∩S)≤ n+dimS, the same argument

implies only Γ∗Γ∗[V ] = [V ]+ i∗
∑

Z⊂P [Z] for certain cycles Z ⊂ P supported on P ; these

cycles will be precisely explained by statements (2) and (3) of the theorem.
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Proof of the second part of Theorem 3.6(1). It follows from Lemma 2.7 that

cm(V ) = (−1)mcm
(
OP (1)�ΩP ′/S(1)

)
= (−1)m

m∑
t=0

ζt · cm−t

(
ΩP ′/S(1)

)
= (−1)m

m∑
t=0

(−1)m−t
m−t∑
s=0

cs(F
′) · (ζ ′)m−s−t · ζt

and

cn(V
′) = (−1)ncn

(
ΩP/S(1)�OP ′(1)

)
= (−1)n

n∑
j=0

cn−j

(
ΩP/S(1)

)
· (ζ ′)j

= (−1)n
n∑

j=0

(−1)n−j

n−j∑
i=0

ci(F ) · ζn−i−j · (ζ ′)j .

The map Φ∗ ◦Φ∗ is given by the convolution of correspondences

cm(V )∗ cn(V ′) := p13∗ (p
∗
12(cn(V

′)) ·p∗23(cm(V ))) ∈ CHm(P ′×S P ′),

where pij are the obvious projections from P ′×SP ×SP
′ to the corresponding factors and

the cohomological degree m is computed via m+n−dim(P/S) =m. To avoid confusion,
we denote the product P ′×S P ×S P ′ by P ′

1×S P ×S P ′
2, and denote the relative O(1)-

classes of P ′
1 and P ′

2 by ζ ′1 and ζ ′2, respectively. Therefore,

cm(V )∗ cn(V ′) = p13∗

⎛⎝ n∑
j=0

m∑
t=0

(−1)j+t
m−t∑
s=0

n−j∑
i=0

cs(F
′
2) · ci(F ) · ζn+t−i−j ·(ζ ′1)

j ·(ζ ′2)
m−s−t

⎞⎠.

Since p13∗(ζ
k) = 0 for all 0≤ k ≤ n−1, the only terms inside the parentheses that could

survive p13∗ are the ones whose indices satisfy t− i−j ≥ 0. Thus we may assume that the

indices of the summation satisfy j ≤ t ≤m and 0 ≤ i ≤ t− j. From the definition of the
Segre class of F, we have p13∗

(
ζn+k

)
= sk(F ), hence

cm(V )∗ cn(V ′) =
m∑
j=0

m∑
t=j

(−1)j+t
m−t∑
s=0

t−j∑
i=0

ci(F ) ·st−i−j(F ) · cs (F ′
2) · (ζ ′1)

j · (ζ ′2)
m−s−t

.

From c(F )s(F ) = 1, we know that
∑t−j

i=0 ci(F ) · st−i−j(F ) = 0 unless t= j, in which case
c0(F )s0(F ) = 1. Hence this expression reduces to

cm(V )∗ cn(V ′) =
m∑
j=0

m−j∑
s=0

cs (F
′
2) · (ζ ′1)

j · (ζ ′2)
m−j−s

=

m∑
j=0

cm−j

(
TP ′

2/S
(−1)

)
· (ζ ′1)

j

= cm
(
OP ′

1
(1)�TP ′

2/S
(−1)

)
.

(For the second equality, we used Lemma 2.7.) On the other hand, the diagonal ΔP ′ ⊂
P ′×S P ′ is the zero locus of a regular section s of the rank m vector bundle OP ′(1)�
TP ′/S(−1); the section s under the canonical identification

Γ
(
P ′×S P ′,OP ′(1)�TP ′/S(−1)

)
= Γ(S,F ′∨⊗F ′) = HomS(F

′,F ′)
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corresponds to 1F ′ : F ′ → F ′. Hence [ΔP ′ ] = cm
(
OP ′(1)�TP ′/S(−1)

)
, and therefore

cm(V )∗ cn(V ′) = [ΔP ′ ], hence Φ∗Φ
∗ = IdCH(P ′) . �

Before proceeding the rest of the proof of Theorem 3.6, we study more about the maps

Φ∗ and Φ∗. First, notice that the projective bundle formula (Theorem 2.4) can be regarded

as equipping CH(P ) and CH(P ′) with natural ‘free module structures over CH(S)’:

Lemma 3.8.

(1) The maps Φ∗ : CH(P )→ CH(P ′) and Φ∗ : CH(P ′)→ CH(P ) are ‘CH(S)-linear’ –

that is, for all α ∈ CH∗(P ), α′ ∈ CH∗(P ′), and θ ∈ CH∗(S),

Φ∗(α∩ψ∗θ) = Φ∗(α)∩ψ′∗θ, Φ∗(α′∩ψ′∗θ) = Φ∗(α′)∩ψ∗θ.

(2) Consider the following ‘sub-CH(S)-modules’ of CH(P ):

CH(P )m := Span
{
ζn−m,ζn−m+1, . . . ,ζm

}
= ζn−m ·CH(S)⊕·· ·⊕ ζm ·CH(S)⊂ CH(P ),

CH(P )Φ∗=0 := Span
{
1,ζ, . . . ,ζn−m−1

}
=1 ·CH(S)⊕·· ·⊕ ζn−m−1 ·CH(S)⊂ CH(P ).

Then Φ∗ is injective on CH(P )m, and with image Φ∗(CH(P )m) =CH(P ′). Further-
more, Φ∗ is zero on CH(P )Φ∗=0.

(3) Φ∗ is injective, and its image Im(Φ∗) satisfies CH(P )Φ∗=0 � CH(P )/ Im(Φ∗).

Proof. Statement (1) follows directly from the projection formula [18, Theorem 3.2(c)]
and Theorem 2.4(1). For statement (2), notice that for any 0≤ i≤m,

Φ∗
(
ζn−m+i

)
= p′∗

(
cm(V )∪p∗ζn−m+i

)
= p′∗

(
(−1)m

m∑
t=0

(−1)m−t
m−t∑
s=0

cs(F
′) · (ζ ′)m−s−t · ζn−m+i+t

)

=

m∑
t=m−i

(−1)t
m−t∑
s=0

cs(F
′) ·st−(m−i)(F ) · (ζ ′)m−s−t

= (−1)m−i(ζ ′)i+(lower-order terms).

(For example, Φ∗(ζ
m) = (ζ ′)n + (lower-order terms) and Φ∗(ζ

n) = (−1)n(ζ ′)0.)
This computation together with statement (1) shows that Φ∗

(
ζn−m+i∩ψ∗θ

)
=(

±ζ ′i+(lower-order terms)
)
∩ψ′∗θ for all θ ∈ CH(S), which implies the injectivity of

Φ∗ on CH(P )m. The same computation in the case i < 0 shows that Φ∗ is zero on
CH(P )Φ∗=0. A similar computation shows

Φ∗ (ζ ′i)=±ζn−m+i+(lower-order terms)

for 0≤ i≤m, which implies statement (3).

Lemma 3.9. For any γ ∈ CH(P ), if Φ∗(γ) = 0 and i∗i∗γ = 0, then γ = 0.
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Proof. Let γ =
∑n

i=0 ζ
i ·ψ∗θi for θi ∈ CH(S). Then from the lemma, Φ∗γ = 0 implies

θn−m = θn−m+1 = · · ·= θn = 0. On the other hand, i∗i∗γ = cm+1

(
NP/X

)
∩γ = cm+1(F

′⊗
OP (−1))∩γ = 0, and

cm+1(F
′⊗OP (−1)) =

m+1∑
i=0

cm+1−i(F
′)(−ζ)i

= (−1)m+1ζm+1+(lower-order terms).

Hence by the uniqueness of an expression of the form
∑n

i=0 ζ
i ·ψ∗( ), one can inductively

show θn−m−1 = 0,θn−m−2 = 0, . . . ,θ0 = 0. Therefore γ = 0.

Proof of Theorem 3.6(2). To show that the sequence is a complex, simply observe

that for any γ′ ∈ CH(P ),

i∗Φ
∗γ′+Γ∗ (−i′∗γ

′) = i∗p∗(cn(V
′)∩p′∗γ′)−Γ∗ i′∗ γ

′

= π∗j∗(cn(V
′)∩p′∗γ′)−Γ∗i′∗γ

′

(k.f.)
= π∗π

′∗i′∗γ
′−π∗π

′∗i′∗γ
′ = 0.

(Here and later, ‘(k.f.)’ means the key formula (2.2) for blowup.)
For any α ∈ CHk(X), α−Γ∗Γ∗α = 0 on CHk(X\P ). Then from the exact sequence

CHk(P ) → CHk(X) → CHk(X\P ) → 0, there exists an element γ ∈ CHk(P ) such that

α = Γ∗Γ∗α+ i∗γ. This establishes the surjectivity of the last map of the sequence of
Theorem 3.6(2). The injectivity of the first map and the left inverse statement follow

directly from Φ∗Φ∗ = Id. To show that the sequence is exactness in the middle, assume

(γ,α′) ∈CH(P )⊕CH(X ′) such that i∗γ+Γ∗α′ = 0; we want to find γ′ such that (γ,α′) =
(Φ∗γ′,− i′∗γ), since

α′ = Γ∗Γ
∗α′ =−Γ∗i∗γ =−π′

∗π
∗i∗γ

(k.f.)
= −π′

∗j∗(cm(V )∩p∗γ)

=−i′∗p
′
∗(cm(V )∩p∗γ) =−i′∗Φ∗(γ).

Define γ0 = γ−Φ∗Φ∗γ. The goal is to show γ0 = 0. Notice that

Φ∗γ0 =Φ∗γ−Φ∗Φ
∗Φ∗γ = 0

and

i∗γ0 = i∗γ− i∗Φ
∗Φ∗γ = i∗γ− i∗p∗(cnV ′∩p′∗(Φ∗γ))

= i∗γ−π∗j∗(cnV ′∩p′∗(Φ∗γ))
(k.f.)
= i∗γ−π∗π

′∗i′∗Φ∗γ

= i∗γ−Γ∗ (i′∗Φ∗γ) = i∗γ+Γ∗α′ = 0.

From Lemma 3.9, γ0 = 0, hence (γ,α′) = (Φ∗γ′,− i′∗γ) for γ
′ =Φ∗ γ. �
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Proof of Theorem 3.6(3). As before, from Lemma 3.8(3) and the exact sequence of

part (2), we obtain that for any α ∈ CHk(X), there exist an α′ ∈ CHk(X) and a unique

γ ∈ CHk(P ) such that Φ∗γ = 0 and α= Γ∗α′+ i∗γ. Further notice that

Γ∗i∗γ = π′
∗π

∗i∗γ
(k.f.)
= π′

∗j∗(cn(V )∩p∗γ) = i′∗p
′
∗j∗(cn(V )∩p∗γ) = i′∗Φ∗γ = 0.

Therefore α′ = Γ∗α. Hence we have established

CHk(X) = Γ∗CHk(X
′)⊕ i∗ (CH(P )Φ∗=0)

= Γ∗CHk(X
′)⊕ i∗

(
n−m−1⊕

i=0

ζi ·ψ∗CHk−n+i(S)

)
,

and the projection to the first summand is given by α �→ α′ = Γ∗α. �

We could also write down explicitly the projectors to the last (n−m) summands; we
omit the details here, as we will not need them. As before, by Manin’s identity principle

we have the following:

Corollary 3.10. If X and X ′ are smooth and projective over some ground field k, then
there is an isomorphism of Chow motives over k:

[Γ]t⊕
(

n⊕
i=m+1

i∗ ◦hn−i ◦ψ∗

)
: h(X ′)⊕

(
n⊕

i=m+1

h(S)(i)

)
∼−→ h(X).

As before, the blowup formula for Chow motives of [39] could be viewed as the case

m= 0 of this corollary, as a blowup can be viewed as a standard flip of type (n,0).

4. Main results

Let G be a coherent sheaf of homological dimension ≤ 1 on X – that is, X is covered by

open subschemes U ⊂X over which there is a resolution F
σ−−→ E � G such that F and

E are locally free of rank m and n, respectively, and G =Coker(σ) is of rank r= n−m≥ 0.

Denote the projection by π : P(G ) → X. Similar to the projective bundle case, for any

i ∈ [0,r− 1], denote by π∗
i : CHk−(r−1)+i(X) → CHk(P(G )) the map π∗

i ( ) = ζi ·π∗( ),
where ζ = c1

(
OP(G )(1)

)
. Consider the fiber product

Γ := P(G )×X P
(
Ext1(G ,OX)

)
.

Denote the projections by r+ : Γ → P(G ) and r− : Γ → P
(
Ext1(G ,OX)

)
. As before, we

denote Γ∗ : CHk−r(P(G )) → CHk

(
P
(
Ext1(G ,OX)

))
and Γ∗ : CHk

(
P
(
Ext1(G ,OX)

))
→

CHk−r(P(G )) the maps induced by the correspondence [Γ]∈CH
(
P(G )×P

(
Ext1(G ,OX)

))
– that is,

Γ∗( ) = r−∗r
∗
+( ), Γ∗( ) = r+∗r

∗
−( ).

The main result of this paper is the following:

Theorem 4.1. Let X be a Cohen–Macaulay scheme of pure dimension, and let G be a

coherent sheaf of rank r ≥ 0 on X of homological dimension ≤ 1. Assume either of the

following:
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(A) P(G ) and P
(
Ext1(G ,OX)

)
are nonsingular and quasi-projective, and we have

codim
(
X≥r+1(G )⊂X

)
= r+1, codim

(
X≥r+i(G )⊂X

)
≥ r+2i if i≥ 2; or

(4.1)

(B) codim
(
X≥r+i(G )⊂X

)
= i(r+ i) (the expected codimension) for all i≥ 1.

Then for any k ≥ 0, there is an isomorphism of Chow groups

r−1⊕
i=0

CHk−(r−1)+i(X)⊕CHk−r

(
P
(
Ext1(G ,OX)

)) ∼−→ CHk(P(G )) (4.2)

given by
(
⊕r−1

i=0αi,γ
)
�→ β =

∑r−1
i=0 c1

(
OP(G )(1)

)i ∩π∗αi+Γ∗γ. The projection β �→ αi is
given by the map πi∗ of Lemma 4.4, 0 ≤ i ≤ r− 1, and the projection β �→ γ is given by

(−1)rΓ∗.

Remark 4.2.

(i) If X is irreducible, then the dimension condition (4.1) of (A) is equivalent to

the requirement that P
(
Ext1(G ,OX)

)
map birationally to X≥r+1(G ), and P(G ),

P
(
Ext1(G ,OX)

)
, and Γ are irreducible and have expected dimensions:

dimP(G ) = dimX−1+ r, dimP
(
Ext1(G ,OX)

)
= dimX−1− r,

dimΓ = dimX−1.

(ii) The only place that we need P(G ) and P
(
Ext1(G ,OX)

)
to be nonsingular and

quasi-projective in (A) is in using Chow’s moving lemma. Hence the result holds

as long as Chow’s moving lemma holds for P(G ) and P
(
Ext1(G ,OX)

)
.

(iii) It follows from [25, Theorem 3.4] that if X is nonsingular and P(G ) and

P
(
Ext1(G ,OX)

)
have expected dimension, then P(G ) is nonsingular if and only

if P
(
Ext1(G ,OX)

)
is.

(iv) The required codimension r+2i when i≥ 2 in (A) is much weaker than the expected
codimension i(r+ i), required by (B), if i � 1. On the other hand, (B) requires

only very weak regularity conditions on the schemes – X being Cohen-Macaulay.

(In fact, the Cohen–Macaulay condition can be dropped; we need each stratum
X≥i(G )\X≥i+1(G )⊂X to be a regular immersion of expected dimension.)

Corollary 4.3. If P(G ), P
(
Ext1(G ,OX)

)
, and X are smooth and projective over some

ground field k, then there is an isomorphism of Chow motives:

r−1⊕
i=0

hr−1−i ◦π∗⊕ [Γ]t :

r−1⊕
i=0

h(X)(i)⊕h
(
P
(
Ext1(G ,OX)

))
(r)

∼−→ h(P(G )).

Proof. Similarly as Corollary 3.4, for any smooth T the same constructions and the

theorem apply to X × T and G �OT ; hence in particular the identities Id = Γ∗Γ∗ +∑
π∗
i πi∗, Γ∗Γ

∗ = Id, πi∗π
∗
i = Id, and so on (see Lemmas 4.4 and 4.9) hold for all X×T

and G �OT . Then the result follows from Manin’s identity principle.

Before proceeding with the proofs of the theorem, we first explore some general facts.
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Lemma 4.4.

(1) Define πi∗ : CHk(P(G ))→ CHk−(r−1)+i(X) the same way as in equation (2.1):

πi∗( ) :=

r−1−i∑
j=0

(−1)jcj(G )∩π∗
(
ζr−1−i−j · ( )

)
, for i= 0,1, . . . ,r−1.

Then the maps πi∗ and π∗
j satisfy

πi∗π
∗
i = IdCH(X) , πi∗π

∗
j = 0, if i �= j, i,j ∈ [0,r−1].

(2) In the local situation G =Coker
(
F

σ−→ E
)
, denote qi∗ the corresponding projection

functor for the projective bundle q : P(E ) → X defined by equation (2.1) and

ι : P(G ) ↪→ P(E ) the natural inclusion; then the following holds:

πi∗( ) =

r−1−i∑
j=0

(−1)jsj(F ) · qm+i+j∗(ι∗( )).

If we consider the subgroup

CHk(P(G ))tor. := {β | πi∗β = 0,i ∈ [0,r−1]} ⊂ CHk(P(G )),

then the lemma implies that there is a decomposition

CHk(P(G )) =

(
r−1⊕
i=0

π∗
i CHk−r−1+i(X)

)
⊕CHk(P(G ))tor..

Proof. For simplicity, we may assume G =Coker
(
F

σ−→ E
)
; then c(G ) = c(E )/c(F ), and

ι : P(G ) ↪→ P(E ) is given by a regular section of the vector bundle F∨⊗OP(E )(1). Then

for any a ∈ [0,r−1],

πa∗

(
r−1∑
i=0

π∗
i αi

)
= πa∗

(
r−1∑
i=0

ζi · ι∗q∗αi

)

=
r−1−a∑
j=0

(−1)jcj(G )∩ q∗ι∗

(
ζr−1−a−j ·

r−1∑
i=0

ζi · ι∗q∗αi

)

=
r−1−a∑
j=0

(−1)jcj(G )∩ q∗

(
r−1∑
i=0

cm (F∨(1))ζr−1−a−j+ic · q∗αi

)

=
r−1−a∑
j=0

r−1∑
i=0

m∑
ν=0

(−1)j+νcj(G )cν(F ) · q∗
(
ζn−1−a−j+i−ν · q∗αi

)
.
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Now set μ := ν+ j, and notice that the terms in the foregoing which survive under q∗
have indices in the ranges 0≤ μ≤ i−1, i= μ+a≥ a, and 0≤ ν ≤ μ Therefore

πa∗

(
r−1∑
i=0

π∗
i αi

)
=

r−1∑
i=a

i−a∑
μ=0

μ∑
ν=0

(−1)μcj(G )cν(F ) · q∗
(
ζn−1+(i−a)−μ · q∗αi

)

=

r−1∑
i=a

i−a∑
μ=0

(−1)μcμ(E ) · q∗
(
ζn−1+(i−a)−μ · q∗αi

)

=

r−1∑
i=a

i−a∑
μ=0

(−1)μcμ(E )(−1)i−a−μsi−a−μ(E )∩αi = αa.

Hence part (1) follows. In general, it suffices to notice that the maps πi∗π
∗
i and πi∗π

∗
j

are globally defined and their values do not depend on local presentations.

Statement (2) follows directly from expressing ι∗
(∑r−1

i=0 ζ
i · ι∗q∗αi

)
= cm (F∨(1)) ∩(∑r−1

i=0 ζ
i · q∗αi

)
in terms of the basis

{
ζi
}
of CH(P(E )). Notice that one can also show

part (2) first, and then part (1) follows easily.

For simplicity of notation, from now on we denote

K := Ext1(G ,OX), π′ : P(K ) = P
(
Ext1(G ,OX)

)
→X.

Therefore we have a fibered diagram

Γ := P(G )×X P(K ) P(G )

P(K ) X.

r−

r+

π

π′

(4.3)

Lemma 4.5. Assume P(G ), P(K ), and Γ have expected dimensions (see Remark 4.2i).

(1) The sheaf π′∗G has homological dimension ≤ 1 and rank r+1 over P(K ), and

Γ = PP(K )(π
′∗G ) = PP(G )(π

∗K ).

(2) The excess bundle for diagram (4.3) is O(1,1) := OP(G )(1)⊗OP(K )(1). Hence

π∗π′
∗( ) = r+∗(c1(O(1,1))∩ r∗−( )).

(3) The following holds:

πi∗π
∗
j = δi,j IdCH(X) , Γ∗π

∗
i = πi∗Γ

∗ = 0, for all i,j ∈ [0,r−1].

Proof. It suffices to prove in a local situation – that is, 0→ F
σ−→ E → G → 0 for vector

bundles F and E of rank m and n. Dually, we have E ∨ σ∨
−−→ F∨ → K → 0.

For part (1), notice that over P(K ) ⊂ P(F∨), the composition of the map

OP(F∨)(−1)→ π′∗F
σ−→ π′∗E is zero, hence σ factorizes through a map of vector bundles
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σ : TP(F∨)/X(−1)→ π′∗E . By reason of ranks, it easy to see that the following sequence

is exact:

0→TP(F∨)/X(−1)
σ−→ π′∗E → π′∗G → 0.

Therefore π′∗G has homological dimension ≤ 1, and P(π′∗G )⊂ P(π′∗E ) = P(K )×X P(E )

is the zero scheme of a regular section of the vector bundle ΩP(F∨)(1)�OP(E )(1). The
last equality follows directly from commutativity of projectivization and fiber products.

For part (2), consider the following factorization of (the transpose of) diagram (4.3):

Γ P(K )×X P(E ) = PP(K )(E ) P(K )

P(G ) P(E )≡ PX(E ) X.

ι′

r+

r−

π′×Id

q′

π′

ι

π

q

(Here for simplicity we use q to denote both projections of projectivization of E .) The
normal bundles are Nι = F∨�OP(E )(1) and Nι′ =ΩP(F∨)(1)�OP(E )(1). Since the right

square of the diagram is a smooth and flat, the excess bundle is given by r∗+Nι/Nι =

O(1,1).
For part (3), the first equality is Lemma 4.4. For any γ ∈ CH(P(K )), for i ∈ [0,r−1],

πi∗Γ
∗γ =

r−1−i∑
j=0

sj (F
∨) · qm+i+j∗

(
ι∗r+∗r

∗
−γ

)
=

r−1−i∑
j=0

sj (F
∨) · qm+i+j∗ ((π

′× Id)∗ι
′
∗ι

′∗(γ�1))

=

r−1−i∑
j=0

sj (F
∨) ·π′

∗qm+i+j∗ (ι
′
∗ι

′∗q∗γ)

=

r−1−i∑
j=0

sj (F
∨) ·π′

∗qm+i+j∗
(
cm−1

(
ΩP(F∨)(1)�OP(E )(1)

)
∩ q∗γ

)
=

r−1−i∑
j=0

sj (F
∨) ·π′

∗qm+i+j∗
((
ζm−1+lower-order terms

)
· q∗γ

)
= 0.

(The last equality holds because qm+i+j∗ has index range m+ i+ j ≥ m.) Similarly for

any α ∈ CH(X) and i ∈ [0,r−1],

Γ∗π
∗
i α= r−∗r

∗
+

(
ζi ·π∗α

)
= r−∗ι

′∗ (ζi · (π′× Id)∗q∗α
)
= q∗ι

′
∗ι

′∗ (ζi · (π′∗α�1)
)

= q∗
((
ζm−1+i+lower-order terms

)
· q∗π′∗α

)
= 0,

since q is the projection of a Pn−1-bundle and m−1+ i≤m+ r−2≤ n−2.

https://doi.org/10.1017/S1474748021000451 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000451


On the Chow theory of projectivizations 1489

4.1. First approach

In this approach, we use Chow’s moving lemma, and hence need P(G ) and P(K ) to be

nonsingular and quasi-projective. The idea is: over the open part of the first degeneracy

locus, the theorem is almost the case of the Cayley trick. Then the ‘error’ terms over

higher degeneracy loci can be estimated by dimension counting. A similar strategy was
used by Fu and Wang to show the invariance of Chow groups under stratified Mukai

flops [16].

We first need the following variant of the Cayley trick:

Lemma 4.6 (variant of the Cayley trick). Assume G is a coherent sheaf of homological

dimension 1 over a variety X, and let i : Z ↪→ X be a locally complete intersection
subscheme of codimension r+1, such that G has constant rank r over X\Z and constant

rank r+1 over Z. Denote Γ :=PZ(i
∗G )=P(G )×XZ, and denote Γ∗ : CH(P(G ))→CH(Z)

and Γ∗ : CH(Z)→ CH(P(G )) the maps induced by [Γ] and [Γ]t. Then the following hold:

Γ∗Γ
∗ = (−1)r IdCH(Z) , πi∗π

∗
j = δi,j IdCH(X) , Γ∗π

∗
i = πi∗Γ

∗ = 0,

for any i,j ∈ [0,r−1]. Furthermore, the following decomposition of identity holds:

IdCH(P(G )) = Γ∗Γ∗+
r−1∑
i=0

π∗
i πi∗.

Proof. It suffices to notice that the argument of Theorem 3.1 for these statements depends
only on the properties of the normal bundles, and thus still works here. More precisely,

we may assume G =Coker
(
F

σ−→ E
)
for simplicity; then over Z there exists a line bundle

L such that there is an exact sequence of vector bundles

0→ L→ F |Z → E |Z → i∗G → 0.

Also we have a similar picture as with the Cayley trick (3.1):

P(E |Z) P(E )

Γ = P(i∗G ) P(G )

Z X.

p

j

π

ι

i

Denote GZ := i∗G , which is a vector bundle on Z. Then it is easy to compute that

the normal bundles are Ni = L∨ ⊗GZ , Nj = L∨ ⊗Ω1
P(GZ)/Z(1), and the excess bundle

for the left square is V = p∗Ni/Nj � L∨ ⊗OP(GZ)(1) (see Lemma 4.10 for the more

general situation). Therefore Γ∗Γ
∗ = p∗

(
cr

(
L∨⊗Ω1

P(GZ)/Z(1)
)
∩p∗( )

)
= p∗(((−1)rζr+

lower-order terms)∩p∗( ))= (−1)r Id, and the rest of the orthogonal relations follow from

Lemma 4.5. Finally, for the last identity it suffices to show the surjectivity of Γ∗+
∑

π∗
i .

For any β ∈CH(P(G ), β′ = β−
∑

π∗
i πi∗β is supported on PZ(GZ), and hence can always

be expressed in the form β′ = j∗
(
p∗β0+(ζ− c1(L))

∑r−1
i=0 ζ

i∩p∗βi+1

)
. Therefore β′ =

Γ∗β0+
∑r−1

i=0 π
∗
i i∗β

′
i+1, and hence we are done.
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Remark 4.7. If we modify the map f in Theorem 3.1 by f : ⊕r−2
i=0 γi �→(

−⊕r−2
i=0 i∗γi,(ζ− c1(L))

∑r−2
i=0 ζ

i ·p∗γi
)
, then the sequence of the theorem is still exact.

In fact, if we denote pi∗ the projectors with respect to OP(E )(1), then p∗i ◦ i∗ = j∗ ◦π∗
i

holds, although for i ∈ [0,r− 1], i∗ ◦ pi+1∗ and πi∗ ◦ j∗ are no longer the same, due to

the additional factor c1(L) – but they differ by an invertible upper triangular change of

basis as in Remark 2.6. Hence in Proposition 3.2, except for the key formula (a), which
now becomes π∗

i ◦ i∗ = j∗(ζ−c1(L)∩p∗( )), the rest still holds. The process is similar for

other the statements.

Denote Xi :=X≥r+i+1(G ) for i ≥ −1; then there is a stratification · · · ⊂Xi+1 ⊂Xi ⊂
·· · ⊂X1 ⊂X0 ⊂X−1 =X. This induces the corresponding stratifications P(G )i := π−1Xi,

P(K )i := π′−1Xi, and Γi := r−1
+ π−1Xi = r−1

− π′−1Xi. Notice that P(G )−1 = P(G ), but

· · · ⊂ P(K )1 ⊂ P(K )0 = P(K )−1 = P(K ) and · · · ⊂ Γ1 ⊂ Γ0 = Γ−1 = Γ,

since P(K ) is supported on X0. Over each stratum Xi\Xi+1, i≥ 0, diagram (4.3) is

Γi\Γi+1 P(G )i\P(G )i+1

P(K )i\P(K )i+1 Xi\Xi+1.

Pr+i-bundle

Pi-bundle

Pr+i-bundle

Pi-bundle

The codimension condition (4.1) translates into dimX0 =dimX−(r+1) and codim(Xi ⊂
X0)≥ 2i+1. From the diagram, this implies that for any i≥ 1,

codim(P(K )i ⊂ P(K ))≥ i+1 and codim(P(G )i ⊂ P(G ))≥ r+ i+1.

Lemma 4.8. If P(K ) = P
(
Ext1(G ,OX)

)
is nonsingular and quasi-projective, and the

dimension condition (4.1) holds, then the following holds:

Γ∗Γ
∗ = (−1)r IdP(K ) .

Proof. The following arguments follow the strategy of Fu and Wang [16] for stratified
Mukai flops, which is itself a generalization of [35]’s treatment for standard flops and

flips (see also §3.2). For any class [W ] ∈ CHk(P(K )), by Chow’s moving lemma we may

assume that W intersects transversely with
∑

i≥1P(K )i.

First, notice that over the open subset X̊ := X\X1, P̊(K ) := P(K )0\P(K )1 � Z̊ :=

X0\X1
i−→ X̊ is an inclusion of codimension r+1; G has constant rank r over X̊\Z̊ and

constant rank r+1 over Z̊; and Γ̊ � P(i∗G ) ⊂ P̊(G ) := P(G )0\P(G )1. Therefore we are

in the situation of the variant of the Cayley trick (Lemma 4.6). Therefore if we set

W̊ = W ∩ X̊, then the cycle r∗+r+∗r
∗
−

[
W̊

]
is represented by a k -cycle

˚̃
W which maps

generically one-to-one to a k -cycle which is rationally equivalent to W̊ , and r∗

[
˚̃
W

]
=

Γ∗Γ
∗
[
W̊

]
= (−1)r

[
W̊

]
.
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Now back to the whole space. If we let W̃ be the closure of
˚̃
W in Γ, then

r∗+r+∗r
∗
−[W ] =

[
W̃

]
+
∑
C

aC [FC ],

where W̃ is the k -dimensional cycle as before, mapping generically one-to-one to a

k -cycle that is rationally equivalent to (−1)rW , aC ∈ Z, and FC are k -dimensional

irreducible schemes supported over π′
(
W ∩

∑
i≥1P(K )i

)
. More precisely, let C ′ be

irreducible components of π−1π′
(
W ∩

∑
i≥1P(K )i

)
; then the fiber FC runs through

the components
{
C = π(C ′)⊂ π′

(
W ∩

∑
i≥1P(K )i

)}
; here different C ′s may have the

same image C. For any FC , take the largest i such that there is a component D ⊂ P(K )i
with BC := πr+(FC) = π′r−(FC) ⊂ π′(W ∩D). For a general s ∈ BC , the fiber FC,s ⊂
Γs � Pi

κ(s)×κ(s) P
r+i
κ(s) over s has dimension

dimFC,s ≥ dimFC −dim(BC)≥ dimFC −dimr−(FC)

≥ dimFC −dim(W ∩D) = k− (k− codim(P(K )i ⊂ P(K )))

= codim(P(K )i ⊂ P(K ))≥ i+1.

But since the general fiber of π′ over s has dimension i, then FC,s contains positive-

dimension fibers of r−. Therefore r−∗[FC ] = 0, and hence

Γ∗Γ
∗[W ] = r−∗

([
W̃

]
+
∑
C

aC [FC ]

)
= r−∗

[
W̃

]
= (−1)r[W ].

Lemma 4.9. If P(G ) is nonsingular and quasi-projective, and the dimension condition
(4.1) holds, then for every [V ] ∈ CHk(P(G ))tor., the following holds:

Γ∗Γ∗[V ] = (−1)r[V ].

Proof. Set [V ] ∈ CHk(P(G ))tor. – that is, [V ] ∈ CHk(P(G )) such that πi∗[V ] = 0 for all

i ∈ [0,r− 1]. By the moving lemma we may assume that V intersects transversely with∑
i≥1P(G )i. Similar to the proof of Lemma 4.8, by the variant of the Cayley trick (Lemma

4.6), Γ∗Γ∗
[
V̊
]
= (−1)r

[
V̊
]
over X̊ := X\X1, where V̊ = V ∩ X̊ and [V0] ∈ P(G )tor..

Therefore there exists W̊ representing Γ∗
[
V̊
]
∈ CHk−r(P(K )) such that r−1

−

(
W̊

)
is

a k -dimensional cycle and r+∗
(
r−1
−

(
W̊

))
, though supported on P(G )1, is rationally

equivalent to (−1)rV̊ in P(G ).

Therefore over the whole space, we have

r∗−r−∗r
∗
+[V ] =

[
Ṽ
]
+
∑
C

aC [FC ],

where Ṽ is the closure of r−1
−

(
W̊

)
in Γ, and hence r+∗Ṽ is rationally equivalent

to (−1)rV , aC ∈ Z, and FC are irreducible k -dimensional cycles supported over
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π
(
V ∩

∑
i≥1P(G )i

)
. Similarly as before, for any FC , take the largest i ≥ 1 such that

there is a component D ⊂ P(G )i with BC := πr+(FC) = π′r−(FC) ⊂ π(V ∩D). For a

general s ∈BC , the fiber FC,s has dimension

dimFC,s ≥ dimFC −dim(BC)≥ dimFC −dimr−(FC)

≥ dimFC −dim(V ∩D) = codim(P(G )i ⊂ P(G ))≥ r+ i+1.

Now since the general fiber of π over s has dimension r+ i, then FC,s contains positive-
dimension fibers of r+. Therefore r+∗[FC ] = 0, and

Γ∗Γ∗[V ] = r+∗

([
Ṽ
]
+
∑
C

aC [FC ]

)
= r+∗

[
Ṽ
]
= (−1)r[V ].

Proof of Theorem 4.1 under condition (A). The injectivity of map (4.2) follows

directly from Lemmas 4.4 and 4.8; the surjectivity follows from Lemmas 4.4 and 4.9. This
completes the proof.

4.2. Second approach

The idea of this second approach is that if we stratify the space X as before, then over

each stratum the theorem reduces to a situation very similar to the case of standard
flips (§3.2). Since we will argue over each stratum, we will need all strata to achieve the

expected dimensions, but we do not require regularity on the total space.

Lemma 4.10. Let G be a coherent sheaf on a Cohen–Macaulay scheme X of homological

dimension ≤ 1 and rank r. For a fixed integer i≥ 0, denote Z =X≥r+i+1(G ), and assume
X≥r+i+2(G ) = ∅. (That is, Z is the bottom degeneracy locus of G , and G has constant

rank r+ i+1 over Z and rank ≤ r+ i over X\Z.) Assume furthermore that Z ⊂X has

the expected codimension (i+1)(r+ i+1). Denote K = Ext1(G ,O), with i : Z ↪→X the
inclusion. Then GZ := i∗G , KZ := i∗K are vector bundles over Z of rank r+ i+1 and

i+1, respectively. Set Γ = P(G )×X P(K ) as usual, and assume that P(G ), P(K ), and

Γ have the expected dimensions (see Remark 4.2i). Consider the following base-change

diagram for the fibered product Γ = P(G )×X P(K ) along the base change Z ↪→X, with
names of maps as indicated:

ΓZ = P(GZ)×Z P(KZ) Γ

P(GZ) P(G )

P(KZ) P(K )

Z X,

rZ−

�

rZ+

r−

r+

πZ

j

π′
Z

k

π′
i

π
(4.4)

where ΓZ := Z×X Γ = P(GZ)×Z P(KZ).
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Then the normal bundles of the closed immersions i,j,k,� are respectively given by

Ni =GZ ⊗KZ, Nj =ΩP(GZ)/Z(1)�KZ,

Nk =GZ �ΩP(KZ)/Z(1), N� =ΩP(GZ)/Z(1)�ΩP(KZ)/Z(1).

The excess bundle for the front square is given by V = OP(GZ)(1)�KZ , and the excess

bundle for the back square is V ′ = OP(GZ)(1)�ΩP(KZ)/Z(1). Therefore

π∗i∗( ) = j∗ (ctop(V )∩π∗
Z( )), r∗−k∗( ) = �∗

(
ctop(V

′)∩ r∗Z−( )
)
.

Similarly, the excess bundle for the bottom square is given by W =GZ �OP(KZ)(1), and

for the top square it is W ′ =ΩP(GZ)/Z(1)�OP(KZ)(1). Therefore

π′∗i∗( ) = k∗ (ctop(W )∩π′∗
Z ( )), r∗+j∗( ) = �∗

(
ctop(W

′)∩ r∗Z+( )
)
.

Proof. As the statements are local, we may assume G =Coker
(
F

σ−→ E
)
, where E,F are

vector bundles of rank n and m. Then by our assumption on Z and Lemma 2.3, Z ⊂X

is a closed locally complete intersection subscheme, and Ni = GZ ⊗KZ . Moreover, the

image im(σ|Z)⊂ E|Z is a vector sub-bundle; let us denote it by BZ . Therefore the map
σ|Z induces two short exact sequences of vector bundles over Z :

0→K∨
Z → F |Z →BZ → 0, 0→BZ → E|Z →GZ → 0.

Next, over P(G )⊂ P(E), the composition π∗F
π∗σ−−→ π∗E → OP(E)(1) is zero, hence π∗σ

factors through a map between vector bundles σ̃ : π∗F →Ω1
P(E)/X(1). The rank of σ̃ at a

point p ∈ P(G ) agrees with the rank of σ at π(p), so Z̃ := π−1(Z) = P(GZ) is the bottom

degeneracy locus of σ̃. We claim that there is an exact sequence of vector bundles

0→ π∗
ZK

∨
Z → π∗

ZFZ
σ̃−→ Ω1

P(E)/X(1)|Z̃ → Ω1
P(GZ)/Z(1)→ 0.

Then by Lemma 2.3, Nj =Ω1
P(GZ)/Z(1)�KZ and V = π∗

ZNi/Nj � OP(GZ)(1)�KZ .

To prove the claim, it suffices to notice that over Z̃ there is a commutative diagram

π∗
ZBZ Ω1

P(E)/X(1)|Z̃ Ω1
P(GZ)/Z(1)

π∗
ZBZ π∗

ZEZ π∗
ZGZ

OP(E)(1)|Z̃ OP(GZ)(1).

The three columns and the last two rows are exact, hence the first row is a short exact

sequence. Combining with the short exact sequence of vector bundles 0 → π∗
Z (K∨

Z) →
π∗
Z(F |Z) → π∗

Z(BZ) → 0, the claim follows. Notice that we do not use the condition
n≥m, so the same argument works for all the other cases.
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Lemma 4.11 (‘virtual’ flips). In the situation of Lemma 4.10, denote

Ψ∗( ) := rZ−∗
(
ctop(W

′)∩ r∗Z+( )
)
: CH(P(GZ))→ CH(P(KZ)),

Ψ∗( ) := rZ+∗
(
ctop(V

′)∩ r∗Z−( )
)
: CH(P(KZ))→ CH(P(GZ)).

Furthermore, for any a ∈ [0,r − 1], denote π∗
Z,a( ) := ctop(V ) · ζa ∩ π∗

Z( ). Then the

following are true:

(1) Ψ∗Ψ
∗ = (−1)r Id.

(2) For any k ≥ 0, there is an isomorphism of Chow groups

r−1⊕
a=0

CHk−(r−1)+a(Z)⊕CHk−r(P(KZ))
∼−→ CHk(P(GZ)),

given by
(
⊕r−1

a=0αa,γ
)
�→

∑r−1
a=0π

∗
Z,aαa+Ψ∗γ.

(3) For any a ∈ [0,r−1],

Γ∗k∗( ) = j∗Ψ
∗( ), Γ∗j∗( ) = k∗Ψ∗( ), π∗

ai∗( ) = j∗π
∗
Z,a( ).

Proof. For the first two statements, notice that if we write F =G∨
Z , F

′ =K∨
Z , with rank

n= r+ i and m= i, and S = Z, then P = P(GZ), P
′ = P(KZ), and E = ΓZ , and we are

in a very similar situation as the case of standard flips (§3.2). In fact, for part (1), using
the notation of the proof of Theorem 3.6, Ψ∗ and Ψ∗ correspond to the correspondences

given by (−1)ncn(V ′) and (−1)mcm(V ), respectively (instead of cm(V ) for Φ∗ and cn(V ′)
for Φ∗). However, by the commutativity of the intersection product, the composition
cn(V ′)∗cm(V ) is still computed by the same formula as cm(V )∗cn(V ′), with the role of

the first and third factors of the product P ′×S P ×S P
′ switched. Hence cn(V ′)∗cm(V ) =

[ΔP ′ ], and Ψ∗Ψ
∗ = (−1)m+n Id = (−1)r Id.

For part (2), the same argument as in Lemma 3.8 works. In fact, the image of Ψ∗

is the ‘sub-CH(Z)-module’ generated by 1,ζ, . . . ,ζi. Hence up to elements of ImΨ∗ =

Span
{
1,ζ1, . . . ,ζi

}
, the map

π∗
Z,a( ) = ζa · ctop(V ) ·∩π∗

Z( ) = ζa ·
(
ζi+1+lower-order terms

)
·π∗

Z( )

hits each element of the basis
{
ζi+a+1 mod ImΨ∗}

a∈[0,r−1]
of the quotient CH(P(GZ))/

ImΨ∗. Therefore the result follows.

For part (3), it follows directly from Lemma 4.10 that for any γ ∈ CH(P(KZ)),

Γ∗k∗γ = r+∗r
∗
−k∗γ = r+∗�∗

(
ctop(V

′)∩ r∗Z−γ
)
= j∗rZ+∗

(
ctop(V

′)∩ r∗Z−γ
)
= j∗Ψ

∗γ,

and similarly, Γ∗j∗ = k∗Ψ∗. Also, for any a ∈ [0,r−1] and α ∈ CH(Z),

π∗
a(i∗α) = π∗(ζa · i∗α) = j∗ (ζ

a · ctop(V )∩π∗
Z(α)) = j∗π

∗
Z,a(α).

Proof of Theorem 4.1 under condition (B). Stratify the space X the same way as in
the first approach, namely Xi :=X≥r+i+1(G ) for i≥−1, and similarly for P(G )i, P(K )i,

and Γi. For each i≥−1, we will denote the natural inclusions by ii : Xi ↪→X, ji : P(G )i ↪→
P(G ), ki : P(K )i ↪→ P(K ), and �i : Γi ↪→ Γ. For i ≥ 0, we also denote ii,i−1 : Xi ↪→Xi−1
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the natural inclusion, and ji,i−1, ki,i−1, and �i,i−1 are defined similarly. Finally, for each
pair (i,j) with j > i≥−1, denote Xi\j :=Xi\Xj ; P(G )i\j , P(K )i\j , and Γi\j are defined

in the same manner. By abuse of notation, the inclusion ii : Xi\j ↪→X\Xj =X−1\j is also
denoted by ii, and similarly for other inclusions.
For any fixed integer i≥ 0, if we assume that condition (B) of Theorem 4.1 is satisfied,

then Z := Xi\i+1 ⊂ X\Xi+1 = X−1\i+1 is a locally complete intersection subscheme of

codimension (i+1)(r+ i+1), and G has constant rank r+ i+1 over Z. Therefore the

conditions of Lemma 4.10 are satisfied by Z ⊂X\Xi+1 and G , with P(GZ) = P(G )i\i+1,
P(KZ) = P(K )i\i+1, and ΓZ = Γi\i+1, as well as i= ii, j = ji, k = ki, and �= �i. Hence

the results of Lemma 4.11 can be applied.

Now our goal is to show that the isomorphism of Lemma 4.11(2) over each stratum can
indeed be integrated into an isomorphism of map (4.2) of Theorem 4.1.

Surjectivity of map (4.2). For each i≥−1, there is an exact sequence

CH
(
P(G )i\i+1

)
CH(P(G )\P(G )i+1) CH(P(G )\P(G )i) 0,

ji∗

for which if i= imax+1, then the middle term is the whole space, where imax is the largest

number such that Ximax
�= ∅. (Since X is locally Noetherian of pure dimension, there exist

only finitely many strata, and such an imax always exists.) Therefore inductively we see
that CH(P(G )) is generated by the images of ji∗ : CH

(
P(G )i\i+1

)
→ CH(P(G )) for all

strata P(G )i\i+1, i≥−1, where i=−1 corresponds to the open stratum.

Hence we need only show that the image of map (4.2) contains the image of the strata
CH

(
P(G )i\i+1

)
in CH(P(G )) for each i ≥ −1. The open-stratum case i = −1 follows

from the projective bundle formula. For other cases – that is, i ≥ 0 – set Z :=Xi\i+1 ⊂
X\Xi+1 as before, and for simplicity denote j∗ := ji∗ : CH

(
P(G )i\i+1

)
→ CH(P(G )),

which agrees with the notation of Lemmas 4.10 and 4.11, and similarly for the maps

i,k,�. Then by Lemma 4.11(2), any α ∈ CH
(
P(G )i\i+1

)
= CH(P(GZ)) can be written as

α=
∑r−1

a=0π
∗
Z,aαa+Ψ∗γ, for certain αa ∈ CH(Z) and γ ∈ P(KZ) = P(K )i\i+1. Therefore

by Lemma 4.11(3),

j∗(α) = j∗

(
r−1∑
a=0

π∗
Z,aαa+Ψ∗γ

)
=

r−1∑
a=0

π∗
a(i∗αa)+Γ∗(k∗γ).

That is, the image of j∗ is contained in the image of map (4.2), and hence we are done.
Injectivity of map (4.2). This part is a little tricky; the key observation is that the

excision exact sequence becomes a short exact sequence if we take the image of first map.

The injectivity of π∗
a follows from Lemma 4.4; it remains to show the injectivity of Γ∗.

For each i≥−1, there is a commutative diagram of short exact sequences

0 Imki∗ CH
(
P(K )−1\i+1

)
CH

(
P(K )−1\i

)
0

0 Imji∗ CH
(
P(G )−1\i+1

)
CH

(
P(G )−1\i

)
0,

Γ∗|Imki∗ Γ∗|−1\i+1 Γ∗|−1\i
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where we recall that the maps ki∗ and ji∗ are the inclusions to (an open subset of) the

whole space:

ki∗ : CH
(
P(K )i\i+1

)
→ CH

(
P(K )−1\i

)
, ji∗ : CH

(
P(G )i\i+1

)
→ CH

(
P(G )−1\i+1

)
.

We want to show that for each i ≥ 0, the map Γ∗|Imki∗ is injective. Set Z := Xi\i+1 ⊂
X\Xi+1 as before; then the question reduces to showing that in the commutative diagram

CH
(
P(K )i\i+1

)
CH

(
P(G )i\i+1

)

Imki∗ Imji∗

Ψ∗

ki∗ ji∗

Γ∗|Imki∗

(which is commutative by Lemma 4.11(3)), the injection Ψ∗ induces an injection Γ∗ on
the image. In fact, for any γ ∈ CH

(
P(K )i\i+1

)
, if Γ∗ki∗γ = ji∗Ψ

∗γ = 0, then by Lemma

4.11(1), we have γ = (−1)rΨ∗Ψ
∗γ. Therefore by Lemma 4.11(3),

ki∗γ = (−1)rki∗Ψ∗Ψ
∗γ = (−1)rΓ∗ji∗Ψ

∗γ = 0.

Hence Γ∗|Imki∗ is injective. Now by induction, starting with the case i = 0, when the

injectivity of Γ∗|−1\1 follows from the commutative diagram

0 Imk0∗ CH
(
P(K )−1\1

)
0 0

0 Imj0∗ CH
(
P(G )−1\1

)
CH

(
P(G )−1\0

)
0,

Γ∗|Imki∗ Γ∗|−1\1 0

we can inductively show that Γ∗|−1\i is injective for all i= 0,1,2, . . . ,imax,imax+1, where

imax is the largest number such that Ximax
�= ∅. Therefore Γ∗ =Γ∗|−1\imax+1 is injective on

the whole space. Notice that from the preceding argument, we also obtain Γ∗Γ
∗ =(−1)r Id,

since it is true on the image of each stratum. Together with Lemmas 4.4 and 4.5, this
completes the proof of Theorem 4.1. �

4.3. First examples

4.3.1. Universal Hom spaces. Let S be a Cohen–Macaulay scheme, and let V and W
be two vector bundles over S. Without loss of generality, we may assume rankW ≤ rankV .

Consider the total space of maps between V and W :

X = |HomS(W,V )|= |HomS (V
∨,W∨)| .

Then there are tautological maps over X :

φ : W ⊗OX → V ⊗OX, φ∨ : V ∨⊗OX →W∨⊗OX .

Let G = Coker(φ) and K = Ext1(G ,OX) = Coker(φ∨). Then it is easy to see that

condition (B) of Theorem 4.1 is satisfied, and Theorem 4.1 holds for

P(G ) = TotP(V )

(
W∨⊗S ΩP(V )/S(1)

)
, P(K ) = TotP(W∨)

(
ΩP(W∨)/S(1)⊗S V

)
.
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Notice that any map σ : W → V over S determines a section sσ : S→X such that s∗σφ= σ
and s∗σφ

∨ = σ∨. Then Coker(σ) and Coker(σ∨) (and their projectivizations) are just the

pullbacks of G and K (and the projectivizations P(G ) and P(K )) along the section

map sσ.
Similarly, we can consider the projectivization version

Y = PS,sub(HomS(W,V )) = PS,sub (HomS (V
∨,W∨)) .

Over Y there are tautological maps

ψ : W ⊗OY (−1)→ V ⊗OY , ψ∨ : V ∨⊗OY →W∨⊗OY (1).

Then condition (B) of Theorem 4.1 is satisfied for M = Coker(ψ) and N =

Ext1(M ,OX) = Coker(ψ∨), and Theorem 4.1 holds for

P(M ) = PP(V ),sub

(
W∨⊗ΩP(V )/S(1)

)
, P(N ) = PP(W∨),sub

(
ΩP(W∨)/S(1)⊗V

)
.

One may also consider the linear sections of the space Y as in HPD theory [6, 30].

4.3.2. Flops and Springer resolutions. In the situation of Theorem 4.1, if we

take r = 0, then P(G ) and P(K ) = P
(
Ext1(G ,OX)

)
are both Springer-type partial

desingularizations of the first degeneracy locus Xsg(G ) =X≥1(G )⊂X. They are related

by a flop, and Γ=P(G )×X P(K ) is the graph closure for the rational mapP(G ) ���P(K ).

For simplicity, we assume X is irreducible. Then Theorem 4.1 states that if either

(A) P(G ) and P(K ) are smooth and quasi-projective (hence both resolutions of
Xsg(G )), Γ = P(G )×X P(K ) is irreducible, and dimΓ = dimX−1, or

(B) X is Cohen–Macaulay and codimX≥i(G ) = i2 for i≥ 1,

then the graph closure Γ of the flopP(G ) ��� P(K ) induces isomorphisms

Γ∗ : CH(P(K ))� CH(P(G )), Γ∗ : CH(P(G ))� CH(P(K )).

4.3.3. Cohen–Macaulay subschemes of codimension 2. Let X be an irreducible

scheme and Z ⊂X a codimension 2 subscheme whose ideal IZ has homological dimension
≤ 1. This holds in particular for any codimension 2 Cohen-Macaulay subscheme Z ⊂X

inside a regular scheme X, by the Auslander–Buchsbaum theorem. (In fact, in this case

X clearly has the resolution property and there always exist locally free sheaves F and

E , and a short exact sequence 0→ F → E → IZ → 0, with rankF = rankE −1; and by
the Hilbert–Burch theorem, any Cohen–Macaulay codimension 2 subscheme of X arises

in this way.)

Consider the degeneracy X≥1+i(IZ) for i ≥ 0 as before (note rankIZ = 1); then
X≥1+i(IZ) are the loci where the ideal IZ needs no less than i+1 generators. It is known

(e.g., [15]) that if codimX≥1+i(IZ)≥ i+1 for i≥ 1, then π : P(IZ) = BlZX →X is the

blowup of X along Z and is irreducible, and Z̃ := P
(
Ext1(IZ,OX)

)
is the Springer-type

desingularization of Z. Notice that if X is Gorenstein, then Z̃ �P
(
Ext1(IZ,ωX)

)
=P(ωZ),

where ωX and ωZ are the dualizing sheaves. Theorem 4.1 states that if either
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(A) BlZX and Z̃ are smooth and quasi-projective, Z̃ maps birationally to Z (hence

Z̃ is a resolution of Z ), and codimX≥1+i(IZ) ≥ 1+2i for i ≥ 2 (or equivalently,

Γ := BlZX×X Z̃ is irreducible and dimΓ = dimX−1), or

(B) X is Cohen–Macaulay and codimX≥1+i(IZ) = i(1+ i) for i≥ 1,

then for any k ≥ 0, there is an isomorphism of Chow groups

Γ∗⊕π∗ : CHk−1

(
Z̃
)
⊕CHk(X)

∼−→ CHk(BlZX).

5. Applications

5.1. Symmetric powers of curves

Let C be a smooth projective curve of genus g≥ 1 over C, and for d∈Z denote by C(d) the

dth symmetric power of C. Then C(d) is smooth projective of dimension d, parametrizes

effective zero cycles of degree d on C. By convention, C(0) = {0} is the trivial zero cycle;
C(d) = ∅ for d < 0. There is an Abel–Jacobi map

AJ : C(d) → Picd(C), AJ : D �→ O(D),

where Picd(C) is the Picard variety of line bundles of degree d on C. The fiber of AJ

over a point L = O(D) ∈ X = Picd(C) is the linear system |L | = Psub

(
H0(C,L )

)
=

P
(
H0(C,L )∨

)
. If d ≥ 2g− 1, by Riemann–Roch AJ is a projective Pd−g-bundle over

Picd(C), which makes the case 0 ≤ d ≤ 2g− 2 most interesting. If g ≤ d ≤ 2g− 1, then

AJ is surjective, with generic fiber Pd−g, and the fiber dimension jumps over W d−g+i
d for

i≥ 1, where W k
d is the Brill–Noether locus, defined as

W k
d :=W k

d (C) :=
{
L | dimH0(C,L )≥ k+1

}
⊂ Picd(C).

If 0 ≤ d ≤ g− 1, then AJ maps birationally onto the Brill–Noether loci W 0
d ⊂ Picd(C),

which have codimension g−d, and the dimension jumps over W i
d for i≥ 1.

The cases g− 1 ≤ d ≤ 2g− 2 and 0 ≤ d ≤ g− 1 are naturally related by the involution

O(D) �→ O(K−D), which induces a canonical isomorphism W k
d �W g−d+k−1

2g−2−d . Following
Toda [51], from now on we use the following notation: set an integer n ≥ 0, and

set

d= g−1+n, d′ = 2g−2−d= g−1−n.

(We do not restrict ourselves to n ≤ g− 1, though this is the most interesting case.)

Therefore, apart from the usual Abel–Jacobi map, we also have its involution version

AJ∨ : C(d′) = C(g−1−n) → Picd(C), AJ∨ : D �→ O(KC −D).
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The fiber of AJ∨ over a point L ∈ Picd(C) is the linear system |L ∨(KC)| =
Psub

(
H1(C,L )∗

)
= P

(
H1(C,L )

)
. Therefore we have the following fibered

diagram:

Γ := C(g−1+n)×Picg−1+n(C)C
(g−1−n)

C(g−1+n) C(g−1−n)

Picg−1+n(C).

r+ r−

AJ AJ∨

(5.1)

Corollary 5.1. For a smooth projective curve C of genus g≥ 1 and integers n≥ 0, k≥ 0,

there is an isomorphism of integral Chow groups

CHk−n

(
C(g−1−n)

)
⊕

n−1⊕
i=0

CHk−(n−1)+i

(
Picg−1+nC

) ∼−→ CHk

(
C(g−1+n)

)
,

given by
(
γ,⊕n−1

i=0 αi

)
�→ β =Γ∗γ+

∑n−1
i=0 c1(O(1))i∩ (AJ)∗αi, where Γ∗ = r+∗r

∗
− as usual

and O(1) is the line bundle OP(G )(1) under the identification C(g−1+n) = P(G ) later. The

same map also induces an isomorphism of Chow motives

[Γ]t⊕
n−1⊕
i=0

hi ◦ (AJ)∗ : h
(
C(g−1−n)

)
(n)⊕

(
n−1⊕
i=0

h
(
Picg−1+n(C)

)
(i)

)
∼−→ h

(
C(g−1+n)

)
.

Notice that C(g−1−n) = ∅ if n > g− 1, hence the result is most interesting if 0 ≤ n ≤
g−1. To prove the corollary, we show that the foregoing situation fits into the picture of
Theorem 4.2 and satisfies condition (A) (if C is not hyperelliptic).

Set X := Picg−1+n(C), and let D be an effective divisor of large degree on C. For

all L ∈ Pic(X), the exact sequence 0 → L → L (D) → L (D)|D → 0 induces an exact
sequence

0→H0(C,L )→H0(C,L (D))
μD−−→H0(C,L (D)|D)→H1(C,L )→ 0.

Globalizing (the dual of) this sequence yields the desired picture: let Luniv be the universal

line bundle of degree g−1+n on C×X, and let prC , prX be obvious projections. Then

E := (prX∗ (pr
∗
C O(D)⊗Luniv))

∨
and F := (prX∗ (pr

∗
C OD(D)⊗Luniv))

∨

are vector bundles on X of ranks deg(D)+n and deg(D), with a short exact sequence

0→ F
σ=μ∨

D−−−−→ E � G → 0,

where G := Coker(σ) is the sheafification of H0(C,L )∨, with homological dimension

≤ 1 and rank n, and K := Ext1(G ,OX) = Coker(σ∨) is the sheafification of H1(C,L ).

Therefore

C(d) ≡ C(g−1+n) � P(G ) and C(d′) ≡ C(g−1−n) � P(K ).
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Then the stratification Xi := X≥n+i+1(G ) for i ≥ −1 of Theorem 4.2 corresponds to
Brill–Noether loci as follows (recall d= g−1+n, d′ = g−1−n):

Xi =Wn+i
d �W i

d′ .

Recall the following facts from [3]:

(1) (Brill–Noether inequality) The expected dimension of W k
d is the Brill–Noether

number ρ(g,k,d) := g− (k+1)(g− d+ k). We have dimW k
d ≥ ρ(g,d,k), W k

d �= ∅ if

ρ(g,k,d)≥ 0, and W k
d is connected if ρ(g,k,d)≥ 1.

(2) (Clifford’s inequality) For an effective divisor D of degree d, 1≤ d≤ 2g−1, we have

r(D) := dimH0(C,O(D))−1≤ 1
2d.

(3) (Martens’ theorem) Assume g ≥ 3 and (d,k) ∈
{
2≤ d≤ g−1,1≤ k ≤ d

2

}
∪{

g−1≤ d≤ 2g−4,d−g+2≤ k ≤ d
2

}
. If C is not hyperelliptic, then dimW k

d ≤
d−2k−1. If C is hyperelliptic, then dimW k

d = d−2k.

Proof of Corollary 5.1. We proceed by cases.

Uninteresting cases. Note that Γ �= ∅ if and only if 0 ≤ n ≤ g−1; the corollary for the
cases n≥ g follows from the projective bundle formula (Theorem 2.4). If n= g−1, then

AJ∨ : C(g−1−n) � {[ωC ]} ∈ Pic2g−2(C), and Γ = Psub

(
H0(C,ωC)

)
� Pg−1 ⊂ C(2g−2), and

the fibered diagram is a Cayley-trick diagram with Z = {[ωC ]} a point. Then the results
follow from Theorem 3.1. Hence we need only consider the case 0≤ n≤ g−2 and g ≥ 2.

If g = 2, then n = 0, d = d′ = 1, Γ � C, and Γ∗ : CH(C) � CH(C) is the isomorphism

induced by the hyperelliptic involution on C. Hence we may assume from now on g ≥ 3,

0≤ n≤ g−2, and d= g−1+n ∈ [g−1,2g−3].
The case g ≥ 3, C not hyperelliptic. We show that condition (A) is satisfied – that is,

codim(Wn
d ⊂X) = n+1, codim

(
Wn+i

d ⊂X
)
≥ n+2i+2, for i≥ 1.

The first equality always holds, since C(d′) maps birationally onto Wn
d � W 0

d′ . For the

second inequality, notice that if d = 2g− 3 and n = g− 2, then Wn+i
d = ∅ if i ≥ 1 by

Clifford’s inequality, since 2n+2i = 2g− 4+2i > d if i ≥ 1. Hence we may assume d ∈
[g−1,2g−4], and Martens’ theorem can be applied. Therefore if C is not hyperelliptic,

then for any i≥ 1,

codim
(
Wn+i

d ⊂X
)
≥ g− (d−2(n+ i)−1) = g− (g−1+n)+2(n+ i)+1 = n+2i+2.

The case g ≥ 3, C hyperelliptic. Take a disc D in the moduli space Mg intersecting

transversely the hyperelliptic locus, with zero point [C], and consider the universal curve

C over D. Then the general fiber of C is nonhyperelliptic, and by the foregoing estimates
condition (A) is satisfied by the family C (with relative Hilbert schemes Hilbg−1±n(C /D)

of 0-dimensional subscheme on the fibers of length g−1±n) as well as the generic fiber Cη.

Therefore the identities of the maps between Chow groups (Γ∗Γ
∗ = Id, the decomposition

of Id = Γ∗Γ∗+
∑

iπ
∗
i πi∗, etc.) of Theorem 4.1 for Hilbg−1±n(C /D) or C

(g−1±n)
η specialize

to the same identities for the central fiber C0 = C [18, Ch. 10] and hence induce the

isomorphism of Corollary 5.1 for the hyperelliptic curve C. �
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Remark 5.2. The isomorphisms of Corollary 5.1 are over the ring Z. If working with
rational coefficients, as pointed out to us by the referee, one could also deduce the Q-linear

version of Corollary 5.1 from del Baño’s works [14, 13]: [13, Proposition 3.7] implies

hQ

(
C(n)

)
�

⊕
n0+n1+n2=n

1⊗n0 ⊗λn1h1Q(C)⊗L⊗n2 =
⊕

n0+n1+n2=n

(
λn1h1Q(C)

)
(n2),

where n0,n1,n2 are nonnegative integers, hQ( ) = h( )⊗Q, and λn is the λ-structure on

the Q-linear pseudoabelian category of effective Chow motives. By [14],

hQ(Jac(C)) =

2g⊕
k=0

λkh1Q(C).

Combining these two formulae, one obtains the desired result for hQ. Using del

Baño’s works [14, 13] in this way, [22, Proposition 1.6] also independently obtains the

isomorphism of Chow motives of Corollary 5.1 with rational coefficients.

5.2. Nested Hilbert schemes of surfaces

Let S be a smooth surface over C, and for n ≥ 0, denote Hilbn = Hilbn(S) the Hilbert
scheme of n-points on S – that is, Hilbn parametrizes colength n ideals In ⊂ OS (or

equivalently, length n0-dimension subschemes ζn = V (In) ⊂ S). Furthermore, define the

nested Hilbert scheme by

Hilbn,n+1 = {(In+1 ⊂ In) | In/In+1 � C(x), for somex ∈ S} ⊂Hilbn×Hilbn+1.

Then Hilbn,n+1 parametrizes 0-dimensional subschemes ηn =V (In)⊂ ηn+1 =V (In+1)⊂S

of length n and n+1, respectively, such that ηn+1/ηn = C(x) for some x ∈ S. Similarly,

one can consider a higher nested Hilbert scheme

Hilbn−1,n,n+1 = {In+1 ⊂ In ⊂ In−1 | In/In+1 � C(x),In/In−1 � C(x), for somex ∈ S}.

Let X = Hilbn(S)×S, and let Zn ⊂X be the universal subscheme. Then X is smooth,
and Zn ⊂X is a Cohen–Macaulay subscheme of codimension 2.

The following is summarised from Ellingsrud and Strømme [15], Neguţ [43, 44], and

Maulik and Neguţ [40, Proposition 6.3 & 6.8]:

Lemma 5.3.

(1) Hilbn,n+1(S) = P(IZn
) = BlZn

(X) is smooth of dimension 2n+2.

(2) Hilbn−1,n(S) = P
(
Ext1 (IZn

,OX)
)
= P(ωZn

) is smooth of dimension 2n.

(3) Hilbn−1,n,n+1(S) = Hilbn−1,n(S)×X Hilbn,n+1(S) is smooth of dimension 2n+1.

Consider the fibered diagram

Γn := Hilbn−1,n,n+1(S)

Hilbn−1,n(S) Hilbn,n+1(S)

X =Hilbn(S)×S.

r− r+

π− π+
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Corollary 5.4.

(1) For any k ≥ 0, there is an isomorphism of Chow groups

CHk−1 (Hilbn−1,n(S))⊕CHk(Hilbn(S)×S)
∼−→ CHk (Hilbn,n+1(S))

given by (γ,α) �→ β = Γ∗
nγ+π∗

+α. The same map also induces

[Γn]
t⊕π∗

+ : h(Hilbn−1,n(S))(1)⊕h(Hilbn(S)×S)
∼−→ h(Hilbn,n+1(S)) .

(2) Consider the ‘zig-zag shape’ diagram of length d ∈ [0,n]:

Γn−d+1 · · · Γn

Hilbn−d,n−d+1 Hilbn−d+1,n−d+2 Hilbn−1,n Hilbn,n+1.
r− r+ r− r+ r− r+

Then it follows from (1) that the following maps are split injective:

Γ∗
nΓ

∗
n−1 · · ·Γ∗

n−d+1 : CHk−d (Hilbn−d,n−d+1) ↪→ CHk (Hilbn,n+1), for d= 1,2, . . . ,n,

Γ∗
nΓ

∗
n−1 · · ·Γ∗

n−d+1π
∗
+ : CHk−d(Hilbn−d×S) ↪→ CHk (Hilbn,n+1), for d= 0,1, . . . ,n.

It follows similarly for Chow motives. (Note that Γ∗
i = r+∗r

∗
− as usual.)

(3) The maps Γ∗
n · · ·Γ∗

n−d+1π
∗
+ for d ∈ [0,n] from part (2) induce decompositions

CHk (Hilbn,n+1(S)) = CHk(Hilbn(S)×S)⊕CHk−1(Hilbn−1(S)×S)

⊕·· ·⊕CHk−n+1(S×S)⊕CHk−n(S), ∀k ≥ 0,

h(Hilbn,n+1(S)) = h(Hilbn(S)×S)⊕h(Hilbn−1(S)×S)(1)

⊕·· ·⊕h(S×S)(n−1)⊕h(S)(n).

These results are especially interesting in the case when S is a K3 surface [40, 45,
55]. Note that the map Γn ◦Γn−1 is also given by the correspondence [Γn] ∗ [Γn−1] =

[Hilbn−2,n−1,n,n+1]. This is because the fiber squares for the fiber product

Hilbn−2,n−1,n,n+1 =Hilbn−2,n−1,n×Hilbn−1,n
Hilbn−1,n,n+1

does not have an excess bundle (see [44, Proposition 2.21]; the result there was shown for

stable sheaves, but the same proof works for nested Hilbert schemes).

Proof of Corollary 5.4. Let G =IZ . It remains to check that condition (A) of Theorem

4.2 is satisfied. In fact, notice that X≥r+i(G ) =X≥1+i (IZn
) are the loci where IZn

needs

≥ 1+ i generators at a point (I,x) – or equivalently,

X≥1+i (IZn
) = {(I,x) ∈Hilbn×S | dimI(x)≥ 1+ i}.

It follows from [15, proof of Proposition 3.2] that codim
(
X≥1+i ⊂X

)
≥ 2i for all i ≥ 1.

On the other hand, we already know that Γ = Hilbn−1,n,n+1(S) is irreducible and of
expected dimension, by Lemma 5.3(3); therefore codim

(
X≥1+i ⊂X

)
≥ 1+2i for all i≥ 2

and condition (4.1) is satisfied (see Remark 4.2i). Finally, parts (2) and (3) follow from

part (1). �
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Remark 5.5. De Cataldo and Migliorini established the decompositions of the rational
Chow groups of Hilbn(S) in [11, Corollary 5.1.5] and of Hilbn,n+1(S) in [12, Theorem

3.3.1]. In view of Remark 5.2, it is reasonable to expect that one could also deduce

the Q-linear version of Corollary 5.4 from the decompositions of CH(Hilbn(S))Q and
CH(Hilbn,n+1(S))Q in [11, 12].

5.3. Voisin maps

Let Y ⊂P5
C be a cubic fourfold not containing any plane, F (Y ) be the Fano variety of lines

on Y which is a hyperkähler fourfold of type K3[2], and Z(Y ) be the LLSvS eightfold

constructed in [36], which is a hyperkähler manifold of type K3[4]. Voisin constructed

a rational map v : F (Y )×F (Y ) ��� Z(Y ) of degree 6 in [54] using the geometry of Y.
In [9], Chen showed that the Voisin map v can be resolved by blowing up the incident

locus

Z = {(L1,L2) ∈ F (Y )×F (Y ) | L1∩L2 �= ∅}

using the interpretation [33, 38] of these spaces as moduli of stable objects in the

Kuznetsov component Ku(Y ) = 〈OY ,OY (1),OY (2)〉⊥ [31], with respect to a Bridgeland
stability condition σ on Ku(Y ) constructed in [4].

More precisely, following [9], the Voisin map can be viewed as a family of extensions

v : Mσ(λ1)×Mσ(λ1+λ2) ���Mσ(2λ1+λ2) as follows, where λ1,λ2 ∈ Knum(Ku(Y )) are

the natural basis of an A2 lattice [1]. By [33, 38] , there are identifications of moduli
spaces Mσ(λ1) = F (Y ), Mσ(λ1+λ2) = F (Y ), and Mσ(2λ1+λ2) = Z(Y ). Let F , P, and

E be the respective pullbacks of the (quasi-)universal objects on Mσ ×Y to the moduli

spaces Mσ(λ1), Mσ(λ1 + λ2), and Mσ(2λ1 + λ2). Then the Voisin map v sends a pair
(F,P ) ∈Mσ(λ1)×Mσ(λ1+λ2) which satisfies dimExt1(F,P ) = 1 to the unique class of

nontrivial extension of F by P.

If we denote X = F (Y )×F (Y ) and let Extif (F ,P) be the sheafification of the group

Exti(F,P ) for the family f : X×Y →X, the following are proved in [9]:

(1) Ext1f (F ,P) = IZ (where IZ is the ideal sheaf of Z ⊂ X, and Z is the incident

locus {L1 ∩L2 �= ∅} already defined) has homological dimension 1, and Z ⊂ X =

F (Y )×F (Y ) is Cohen–Macaulay of codimension 2.

(2) The degeneracy loci of Ext1f (F ,P) =IZ over X are given by
(
X =X≥1(IZ) and

)
Z =X≥2(IZ) =

{
(F,P ) | dimExt1(F,P )≥ 2

}
,

Δ2 =X≥3(IZ) =
{
(F,P ) | dimExt1(F,P )≥ 3

}
,

and X≥1+i(IZ) = ∅ for i ≥ 3. Here Δ2 ⊂ F (Y )× F (Y ) is the type II locus{
L ∈Δ� F (Y ) | NL/Y � O(1)⊕2⊕O(−1)

}
, which is an algebraic surface [54].

(3) Ext1(IZ,OX) = Ext2f (P,F) = ωZ , where ωZ is the dualizing sheaf of Z.

(4) The blowup π : P(IZ) =BlZ(F (Y )×F (Y ))→F (Y )×F (Y ) resolves the Voisin map

v, and if Y is very general (i.e., Knum(Ku(Y )) =A2), then the resolved Voisin map
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ṽ : BlZ(F (Y )×F (Y ))→ Z(Y ) is (the projection of) a relative Quot-scheme

BlZ(F (Y )×F (Y )) =QuotKu(Y )/Z(Y )(E,λ1+λ2)

of stable quotients of E inside A⊂Ku(Y ) over Z(Y ), where A is the heart of σ.

Therefore the sheaf IZ satisfies condition (B) of Theorem 4.2. If we consider

π′ : Z̃ := PX

(
Ext2f (P,F)

)
= PZ(ωZ)→X,

which is a small (partial) resolution of the incidence locus Z, then the projection Z̃ →Z ⊂
X is an isomorphism over Z\Δ2 and a P1-bundle over Δ2. Therefore we have a diagram

Γ := Z̃×X BlZ(F (Y )×F (Y ))

Z̃ = P

(
Ext2f (P,F)

)
BlZ(F (Y )×F (Y ))

X = F (Y )×F (Y ).

r− r+

π′ π

Corollary 5.6. For any k ≥ 0, there is an isomorphism of Chow groups

Γ∗⊕π∗ : CHk−1

(
Z̃
)
⊕CHk(F (Y )×F (Y ))

∼−→ CHk(BlZ(F (Y )×F (Y ))),

where Γ∗ = r+∗r
∗
− as usual. If Z̃ and BlZ(F (Y )×F (Y )) are smooth, then the same map

induces an isomorphism of Chow motives

[Γ]t⊕π∗ : h
(
Z̃
)
(1)⊕h((F (Y )×F (Y ))

∼−→ h(BlZ(F (Y )×F (Y ))).

Note that from [25], it follows that there is a semiorthogonal decomposition

D(BlZ(F (Y )×F (Y ))) =
〈
D(F (Y )×F (Y )),D(Z̃)

〉
,

and therefore Z̃ is smooth if and only if BlZ(F (Y )×F (Y )) is. If this is the case,2 since

the resolution Z̃ → Z is IH-small, through taking the Betti cohomology realization of the
Chow motives, this map induces isomorphisms of Hodge structures

Hn(BlZ(F (Y )×F (Y )),Q)�Hn(F (Y )×F (Y ),Q)⊕Hn−2
(
Z̃,Q

)
�Hn(F (Y )×F (Y ),Q)⊕ IHn−2(Z,Q)

for any n≥ 0, where IH is the intersection cohomology.

5.4. Further speculations

(1) Let σ : F → E be a map between vector bundles over a Cohen–Macaulay scheme
S ; then there is a section map sσ : S → |Hom(E ,F )|. Condition (B) of Theorem 4.2

2In fact, one can show ˜Z is smooth if Δ2 is a smooth surface (see, e.g., [25, Lemma B3]); Amerik
[2] shows that Δ2 is smooth for a general Y. On the other hand, if Y is very general, Chen’s

interpretation [9] of ˜Z as a Quot-scheme over X shows that BlZ X is smooth.
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always holds over |Hom(E ,F )|. Assume that a suitable relative Chow theory

CH(X → S) has a well-behaved Tor-independent base-change theory, similar to

the base-change theory for derived categories [32]. Then one can pull back along
the section map σ and obtain a projectivization formula for S under a much

weaker condition. The candidate theories we have in mind are Fulton’s bivariant

intersection theory [18, Chapter 17], the theory of pure Chow motives over a base
S [10], and the theory of higher Chow groups over a base S [37, Chapter II].

(2) This work is inspired by its counterpart in derived categories [25], where the

projectivization formula was proved using the techniques developed in [26, 30 49]. It

is interesting whether or not one can ‘decategorify’ other interesting semiorthogonal
decompositions obtained by these techniques. Examples include various cases of

homological projective duality and flops [26, 25, 30, 49]. Note that usually, results

of derived categories imply only ungraded results for rational Chow groups and
motives; but see [7], where essential graded information of Chow groups is recovered

from derived categories.

(3) The projectivization formula for derived categories is closely related to the wall-

crossing and d-critical flips studied by Toda [50, 51]. It would be interesting to
extend the results of this paper to the cases of Donaldson–Thomas-type moduli

spaces considered there.

(4) The projectivization formula considered in this paper fits into a broad framework
of the study of Quot-schemes of locally free quotients [23, 24].

(5) Since the resolution P
(
Ext1(G ,OX)

)
→Xsg(G ) is usually IH-small, it is reasonable

to expect that one may replace CH
(
P
(
Ext1(G ,OX)

))
by the intersection Chow

group [10] of Xsg(G ).

(6) The projectivization formula of Chow groups should hold for Deligne–Mumford

stacks, with CH replaced by CHQ. It would also be interesting to study the ring

structure of CH(P(G )) in the case when X and P(G ) are smooth.
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