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Abstract

In this paper, we give a sufficient condition (Theorem) in order that one domain D, bounded by a
C2 -smooth boundary can be enclosed in, or enclose, another domain Do bounded by the same kind of
boundary. A same kind of sufficient condition for convex bodies (Corollary) is also obtained.
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1. Introduction

Many mathematicians have been interested in getting sufficient conditions to insure
that a given domain Dt of surface area Fu bounded by a piece wise smooth boundary
3D1; of volume Vx may be moved 'inside' another domain Do of surface area Fo,
bounded by a piecewise smooth boundary 9D0, of volume Vo. The general principle
underlying this investigation can be briefly described as follows.

Let Do, D\ be two suitable domains in Euclidean space R", for example, two
convex bodies with interior points. Let G be the group of rigid motions of W and let
m be its (suitably normalized) invariant measure. Then

(1) m{geG:gD1 c Do or gDl D Do}

= m{g e G : Do n g£>, ^ 0} - m{g e G : dD0 n gdD{ ^ 0}.

(If Do, D, are not convex, one assumes that their boundaries are connected.) By
integral geometric methods it is possible to estimate the measure m {g e G : Do n
gD\ 7̂  0} from below and the measure m{g e G : 3D0 D g3D, ^ 0} from above in
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terms of geometric invariants of Do and D\. This results in an inequality of the form

(2) m{geG:gD, c D 0 o r g D , 3 D 0 ) > / « . . . , Ak
0; A\,... , A\),

where Aj is a geometric invariant of D, (i = 0, 1), for example, volume, surface area,
total mean curvature of the boundary 3D,, etcetera. One can then state the following
conclusion: If f(Al

0, . . . , Ak
0; A\,... , A\) > 0, then there is a rigid motion g such

that either gD, is contained in Do or gD{ contains Do.

In 1941 Hadwiger (see [9]) was the first to use the method of integral geometry
to obtain some sufficient conditions in the Euclidean plane R2. Delin Ren (see [8])
in 1986 obtained other sufficient conditions in R2. But there was no general result
or analogue of Hadwiger's theorem in Euclidian space R" (n > 3) until the works
[11, 12, 13, 14, 15] appeared, even if some very strong restrictions are put on the
domains involved. (For example, the domains are supposed to be convex bodies
and some topological conditions are put on their boundaries and intersection.) The
situation of n-dimensional space R" (n > 3) is much more complex and difficult than
that of the 2-dimensional plane R2. All the formulas and method in R2 cannot be
directly transferred. Moreover, the situations and techniques appropriate to R3 and
R2k (k > 2) are totally different due to different topological structures.

In this paper we try to obtain other analogues of Hadwiger's theorem in the space
R3. We follow the ideas in [15] and estimate the arc length of the intersection curve
3 Do fl gdD\ of the boundaries 3D0, 3D, of two domains Do, D\ in K3. By restricting
the Euler-Poincare characteristic x(D0 n gDx) of the intersection 3D0 n gdD{ to be
at most a finite integer No for each g, a rigid motion in R3, we obtain a sufficient
condition (Theorem) to insure that one domain Do with smooth boundary 3D0 can
contain, or be contained in, another domain D\ with the same kind of boundary
3D). This is a natural assumption: for example, when Do and Di are convex bodies,
x(Dor\gDi) < No = 1. As an easy consequence of our theorem we obtain a sufficient
condition (Corollary) for one convex body Dx with smooth boundary to be contained
in, or to contain, another convex body DQ with the same kind of boundary. As one
would expect, the conditions are inequalities involving volumes, surface areas and
curvature integrals of the boundaries. Finally, we give an application of our geometric
inequality.

2. Main results and the proof

For a C2-smooth surface E in Euclidean space R3, denote by K its Gaussian
curvature and by H the mean curvature. Let K, H and Hm, respectively, be the total
Gaussian curvature, the total mean curvature and the total square mean curvature,
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that is

(3) K = f Kda, H = f Hda, H{2) = f H2 da,
JT JT, JY.

where da is the volume element of E.
In this paper, we suppose that the domains D, (/' = 0, 1) in R3 are bounded by

C2-smooth surfaces 3D,. Denote by V, the volumes and by F, the surface areas,
respectively. Let AT,-, Ht and //,<2> be the total Gaussian curvature, the total mean
curvature and the total square mean curvature of 3D,, respectively. Denote by %(•)
the Euler-Poincare characteristic. We have the following conclusion:

THEOREM. Let D, (/ = 0, 1) be domains in IR3 with connected C2-smooth bound-
aries 3D, such that for all g e G, the group of rigid motions in R3, the Euler-
Poincare characteristic x(A) H gD\) of the intersection 8DQ D gdD\, satisfies
X{D$(~\gD\) < No, a finite integer. Then a sufficient condition for Dx to be contained
in, or to contain, DQ is

(4) 8TT(VOX(£»I) + VlX(D0))

-No • nR [3(F0^,<2) + F,^0
(2)) - In (F0A:(3£>i) + ^iXOA)))] > 0,

where R is the smaller radius of the circumscribed balls of Do and D]. Moreover,

(i) if V\ > Vo, then Do can be contained in D\;
(ii) if Vo > Vit then Do can contain D\.

Consider two domains D, (/ = 0, 1) with connected C2-smooth boundaries 3D, in
R3, one fixed and the other moving under the group G of rigid motions in RL3. Let the
fixed one be Do and the moving one be gDt for g e G, and let dg be the kinematic
density so normalized that the measure of all position about a point is 8n2. Then we
have C-S. Chen's kinematic formula first proved (see [3]) in 1972 and then reproved
(see [15]) by this author in 1991 by a different method:

(5) f ( f K2
C ds)dg = 2;r3(3//0

(2) - K0)Fi + 2TT3(3W,(2) - £,)F0,
Jig-.dDoDgdD^V)} KJCg " I

where KCg is the curvature of the intersection curve Cg = 3D0 D #3D] and ds
is the arc element. Generically, the intersection curve Cg is composed of several
components, that is, several simple closed curves. For every rigid motion g e G, let
Cg = 3D0 fl gSDj = (J,- ' Ci, where Ng is finite for almost all g.

For a C2-smooth simple closed curve C in IR3, we have the inequality (see [1])

(6) L<Rcf KCds,
Jc
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where L is the length of curve C, ds is the arc element, KC the curvature of C and Rc

the radius of the circumscribed ball of C.
The kinematic fundamental formula of Blaschke (see [9, 4]) reads

J\g-
(V)

PROOF OF THEOREM. By Holder's inequality and (6) we have

R,

where RCi is the radius of the circumscribed ball of C,, and Rg — max{ RCl, • • • , RcN }•
Fenchel's theorem reads

r
(9) / KCds > 2n,

where C is a simple closed curve, with equality holding if and only if C is a plane
convex curve. Using this in (8) gives

(10) < KCgds < Rg I K2
cds < R / K2

C ds,
Jcg Jcg * Jcx

 g

where R is the smaller radius of the circumscribed balls of Do and D\. For a fixed
g € G, equality in

(11) 2n < / KCgds < Rg K2 ds
Jcg Jcg "

holds if and only if Cg is a circle. If for almost all g e G the equality in

(12) 2n < [ Kr ds

holds, then all Cg must be plane convex curves (Fenchel). This will force Do and Dx

to be two balls — a result due to Goodey, see [6, 5].
If we integrate the inequality 2n < R fc K2

C ds over {g : dD0 n gdD\ / 0}, then
by (5) we obtain
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(13)

(2)= n2R[(3H0
(2) - - K{)F0].

dg.

From (7), (13) and (14) we have the kinematic measure of one domain moving to
another under the group G of rigid motions in R3, that is,

By our supposition on Do and D, we have

(14) / x(DongD,)dg<No f
J 0 } J{g

(15)

-i
-L

L>o or ^

dg
(«:«£>] CD0 or f>D0CD,]

dg- f
01 J{f,

dg

-n2R

-n2R [3(Fo//,<2)

) +2n(F0Hi

- In FlX(dD0))].

The last equality comes from the Gauss-Bonnet formula K( = 2n • x(3 A) (' = 0 , 1).
This proves the theorem.

If Do and D, are convex bodies in K3, we have x(Do) — x(D\) = No = 1. Denote
by W2 the quermassintegrals [9] of the convex bodies D,-. Then we have the following
consequence.

COROLLARY. Let D, (i —0, I) be two convex bodies in K3 with C2-smooth bound-
aries 3D,, and denote by ///2> the total square of the mean curvatures o/9D,. Then
a sufficient condition for a convex body Do to contain, or to be contained in, another
convex body D\, is

(16)

Moreover,

(0 ifV\ > Vo>tnen Do can be contained in Dx;
(ii) ifVo > Vi, then Do can contain D\.
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3. Remarks

REMARK 1. Let D\ be a convex body with diameter 2R, and let Do be a ball of
radius R. Since we have neither Do c D\ nor D, c Do, the condition (16) cannot
hold. Thus we have

V,) + 6(F0W} + Fx W°)

(17) - ^ [HFoH? + F,//0
(2)) - 4TT(F0 + F,)] < 0,

that is,

(18) H\

Formula (18) is an application of our formula (16), that is:

Let E be a convex surface in R3 and 2R its diameter. Denote by da, F, V, W
and H the volume element, surface area, the volume bounded, the quermassintegral
of the convex body bounded by E, and mean curvature, respectively. Then we have
the inequality

( 1 9 ) • - - • • - - 2[ H2
* + , +

Note that the right-hand side of inequality (19) is well-defined for any convex body
D, whereas the definition of H and the integral fgD H2 do makes sense only if 3D
is of class C2. But by inequality (19), for a convex body with piecewise C2-smooth
boundary 3D, we can estimate the integral fgD H2 da.

B.-Y. Chen [2] and others give the following estimate:

(20) f H2da > 4TT.

One would see that (19) can give the estimates which are much bigger than 4n for
some convex surfaces.

REMARK 2. It would be interesting to remove the 'smoothness' restriction on the
convex bodies involved in the corollary. All the notions except H{2) here are well-
defined for non-smooth convex bodies. If we could find a substitute for H2, the
consequences in this paper could be interpreted for arbitrary convex bodies. This is
definitely worth further investigation.

REMARK 3. Of course, these conditions are not necessary.
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