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1. Introduction
Let G be a group of order pn where j> is some prime. Denote by nr(G) the

number of subgroups of G of order pr. If H is the elementary abelian group
of order pn, then

This means that it is possible to construct a one-to-one mapping / of the
set of all subgroups of G into the set of all subgroups of H such that, for all
subgroups A Q G,

\fA\ = \A\.

This raises the problem of whether / can be constructed so as to preserve the
partial ordering of the subgroups of G, that is, such that fA Q fB whenever
AQB.

An embedding of the lattice L in a lattice M is defined to be a one-to-one
mapping / of L into M such that fX covers fY for all X,YeL such that
X covers Y. If G is a group, we denote the lattice of all subgroups of G by
L(G). If G and H are groups of the same prime power order, we define a
lattice embedding (which we abbreviate to /.-embedding) of G in H to be an
embedding of L(G) in L(H).

We say that the Z,-embeddings fx and /2 of a prime power group G in a
group H of the same order are similar if there exist automorphisms a, /? of
G, H respectively such that

/i = Pf» *.

where we do not distinguish in notation between an automorphism of a
group and the lattice automorphism it induces. By /9/2 a we mean the map-
ping formed by first applying the mapping a, then /2 and then /?. We say
jx and /2 are equivalent if for some /S it is possible to take a = 1, that is, if
there exists /? such that

fi = ttt-
• G. E. Wall [5].
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18 D. W. Barnes [2]

This paper is an investigation of the groups G and H for which there
exists an L-embedding of G in H. We find necessary and sufficient conditions
for an abelian ^>-group to have an /.-embedding in the elementary abelian
group of the same order.

NOTATION. Where possible, capital letters will be used for groups and
lattices, while small letters will be used for elements of groups and for
arbitrary integers. The group generated by xlt • • •, xr will be denoted by
{x1, • • •, xr}. We shall call a group G, a group of r generators if there exists
a set of r elements of G which generates G, and no set of fewer than r elements
of G generates G. The intersection of all the maximal subgroups of a group G
will be denoted by <£(G). If the group (or lattice) A is isomorphic to the
group (or lattice) B, we write A ~ B. We shall use the signs u, n for the
lattice operations of union and intersection. By A D B, we mean that A
contains B and A ^ B. The image of x under a mapping / will be denoted by
fx. Brackets will only be used when their omission would make the notation
ambiguous.

The elementary abelian group of order fin is the additive group of a vector
space of dimension n over the field GF(p) of p elements. Its lattice is iso-
morphic to the lattice of subspaces of a projective geometry of dimension
n — 1 over GF{p). We shall often use matrix and vector notations when
working with this group. In this paper, only finite groups are considered.
Whenever the word "group" is used, it is to be taken to mean "finite group".

G and H are always groups of the same prime power order.
THEOREM 1.1. Let f be an embedding of a lower semi-modular lattice L of

finite dimension in a lattice M. Then for all X, Y eL,
f(XnY) = (fX)n(fY).

PROOF, (a) Suppose Z 2 V . Consider the image of a connected chain from
X to Y. This is a connected chain from fX to fY, therefore fX 2 fY and the
result holds.

(b) Suppose Z u Y covers Y. We prove the result for this case by induc-
tion over d(X) + d(Y), where d(X) is the dimension of X in L, assuming
XKJY J±X.

There exists Z e L such that X KJ Y covers Z and Z~2X. By the lower
semi-modularity of L, Y and Z cover Y n Z. Hence

f(Y nZ) = {fY) n (fZ) and X u (Y n Z) = Z.
Hence f{X nY) = f(X n (Y n Z))

= (fX) n f(Y n Z) bv induction hypothesis
= (fX) n (fY) n (fZ)
= (fX) n (fY).

(c) We prove the theorem by induction over d(X) + d(Y). By (a) and
(b), we may assume X u Y ^ X or Y and X u Y does not cover Y.
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There exists Z e L such that I u Y covers Z and Z 2 Y. Then XnZ ^X.
f(XnY)=f((XnZ)nY)

= f(X n Z) n (/Y) by induction hypothesis
= (fX) n (/Z) n (/Y) by (b) since X u Z = X u Y covers Z
= (/*) n (/Y) since by (a), / Z 2 / 7 .

COROLLARY 1.2. If f is an L-embedding of a p-group G in a p-group H, then

f(X nY)= (fX) n (/Y)
for all X.YQ G.

PROOF. L{G) is lower semi-modular since G is a />-group.

COROLLARY 1.3. / / / is an L-embedding of G in H and L (G) is modular, then
f(L(G)) is a sublattice of L{H).

PROOF. Apply Theorem 1.1 to L(G) and to its dual.

2. Projectivities

Suppose Alt B±, A2, Bz are subgroups of a group G, and that B1 is a
normal subgroup of Alt Ax = A2 u B1 and B2 = Bx n A2. Then the cor-
respondence between the cosets of B1 in A1 and their intersections with A2

is an isomorphism A1jBxA- A2jB2. The correspondence 9>2 between the
cosets of B2 in A2 and their products with Bx is also an isomorphism

A2jB2 -> A1IB1, and 9?2 = ^J^"1. Such isomorphisms 9^, 9?2 are called projec-
tivities. The projectivities q>x, <p2 are called prime if A± covers A2. The inter-
val AJBj^ is called prime if Ax covers Bx.

We call
c:A1IB1ZA2IB2X---^1AJBn

a chain of projectivities from AJBj^ to AJBn if all the mappings 9?,- are
projectivities. The chain is called closed if Ay = An and B± = .BB. Two inter-
vals ^4/S, ^4'/^' a r e s a id t o be projective if there exists a chain of projectivi-
ties from AjB to A'IB'. If

is a closed chain of projectivities, then 9>n9>n_i" ' • y'l^o defines an auto-
morphism of A/B. We call this automorphism, the automorphism induced
by c, and denote it by <x(c). If

c' : A\B - • ^ ; / B ; - • • A'JB'r - • 4 / B
is another closed chain of projectivities from A jB to AjB, we define cc' to be
the closed chain of projectivities
cc' : A\B -> AJB,, - • • • • -> ^n/f iB -
and
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AJBn -> • ^ / Z ^ -
Clearly

a(cc') = a(c')a(c), afc-1) = a(c)"1.

The automorphisms induced in A/B by closed chains of projectivities in G
form a group 21 (G, A/B). If ^4/B and A'IB' are projective, then

THEOREM 2.1. If G is a p-group with more than one subgroup of order p, then
all prime intervals of G are projective. *

PROOF. The theorem is trivial if G is elementary abelian. We suppose that
G is of order greater than p2 and that the theorem holds for all groups of
smaller order than G. Since G has at least two subgroups of order p, and
one of these may be taken to be in the centre, G has an elementary abelian
subgroup X of order p2. Let M be any maximal subgroup of G which con-
tains X. Then all prime intervals of M are projective. Since G/0 is elementary
abelian of order at least p2, and M D 0, all prime intervals of G/<P are pro-
jective to all prime intervals of M. It is sufficient to prove that any prime
interval, A/B of G is projective to an interval of G/M or of M. Take any
composition series from G to 1 through M. By Zassenhaus's Lemma, AIB is
projective to some factor of this composition series.

3. The First Canonicity Condition

Let / be an /.-embedding of a />-group G in a group H of the same order.
Let

c : AJBj^ -> AJB2 -+ > A1IB1

be a closed chain of projectivities in G with AJBt cyclic of order p. Then
fBf is normal in fAit fAJfBf is cyclic of order p, and

c : fA1lfBx -> fA2/fB2 > fA1/fB1

is a closed chain of projectivities in H. If x, x are any elements of AXIBX,
fAJfB1 respectively, then

*{c)x = xr(c), &(c)x = x?(«>

where r, f are integers mod p, (r, p) = (f, p) = 1 and r, f are independent of
x, x.

We say that the /.-embedding / is 1-canonical if, for all closed chains c
of projectivities on cycles of order p in G,

r(c) = f(c) (mod^>).

We shall often find it more convenient to consider individual projectivi-
ties than closed chains. So we construct a system which will enable us to

* I am indebted to Dr. O. Tamaschke for a simplification of my original proof.
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deduce from its satisfying a condition for each projectivity, that the L-
embedding under consideration is 1-canonical. For each prime interval
AJB( of G, we choose a generator at of AJB( and a generator d( of fAi\fBi.
We call the set {at, d{) a basis of /. The projectivity AJBf -*• A}IBf is called
a regular projectivity of the basis (aj( d{) if, in the isomorphisms ai -> a],
df-^d' defined by the projectivities AtIB{^>-At/Bit fAJfBi -> fAt\fBt

respectively, r ^ s (mod p).
Clearly, if Ax D A2 D A3 and any two of the projectivities AJBX -*• AJB2,

AJBj^ -+A3/Ba and A2/B2-+ A3/B3 are regular, then so is the third. We
shall refer to this as "the three intervals rule".

The basis (a,-, dt) of / is called canonical if every projectivity is regular.
To prove a basis canonical, by the three intervals rule, it is clearly sufficient
to prove that all prime projectivities are regular. If the Z-embedding / has
a canonical basis, then clearly/is 1-canonical. Conversely, if/is a 1-canonical
embedding, then there exists a canonical basis of /, although in general, not
all bases of / will be canonical.

The significance of the first canonicity condition may be seen from the
following theorem.

THEOREM 3.1. An L-embedding f of a p-group G in a group H of the same
order can be extended to an L-embedding FofGxCinHxC (FX = fX
for X QG) where C, C are cyclic of order p, if and only if f is 1-canonical.

PROOF. (1) Suppose F is an extension. Let

c : AljB1 -» A2\B2 - • • A1IB1

be any closed chain of projectivities in G on prime intervals. We have to
prove that r(c) = f(c) (modp).

Since if c' is the chain A2jB2^ A3jB3^- > A^B^^^ A2jB2,
r(c) = r(c') and f(c) = r(c'), we need only consider the case A2D At.
Further, we may assume that A2 covers Alt for if not, we can insert A'2IB'2
such that A2D A'2, A'2 covers A± and

c" : AJB, -> A'JB'2 -> A2\B2 -> y AJB1

is a chain of projectivities in G with r(c) = r(c") and f(c) = f(c").
Take generators a, b, c of AJBj^, B2\BX and Bx x C\BX respectively, and

choose generators d, B, c of FAJFB^ FB2IFBlt F(B1 X C)IFB1 such that
in the restriction of F to A2 x CjBlt

F{abc) = {dEc}.

Since L({A2 X C ) / ^ ) and L(F(A2 x C)IFB^) are plane projective geom-
etries over GF(p), mappings of L((A2 X C)/JBX) onto Z.(F(,42 X C)IFB1)
are linear and are determined by the images of the vertices of a triangle of
reference and the image of the unit point. Therefore
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F{axbvcz} = {dxEvcz}.

Consider the closed chain of projectivities

y:A1x C/B1 ->AZX CfB2 -> > Ax x C\BX.

This induces in Ax x C/B1 the automorphism <x.(y)axcl = aatr(e)c*.
y induces in F(AX x C)IFBX the automorphism a(y)dxc* = dxrle)cz. But
fa^jffl'c'} = Sft^F^c*}. Therefore {d^^c*} = {«•*<•» c'}. Therefore
r(c) = f(c) (mod^>).

(2) Suppose / is 1-canonical. Take a canonical basis of / and generators
c, c of C, C.

For all A Q G, define F.4 = fA, F(A u C) = FA u C. Suppose -X" is a
subgroup of G X C for which we have not yet defined FX. Then X u C
covers X covers X n G, X n G is normal i n l u C and (X u C)I(X n G)
is elementary abelian of order £a. (X \u C)/(X n G) is generated by the
.element a e (a<( dt) corresponding to ((X u C) n G)/(X n G) and the coset
c' = c(X n G). Similarly F(X u C)/F(X n G) is generated by the element
««(«(,«,.) corresponding to f d l u C J o G j / F f l n G ) and the coset
c' = £F(X n G). If a; is a generator of X/(X n G), then x = arc'*. Let
x = drc" and define FX by FX/F(X n G) = {£}.

To prove that F so defined is an Z,-embedding of G X C in .// x C, we
have only to prove that , if Y is a subgroup o f G x C , G $ 7 $ C and X
covers Y, then F X covers FY.

XXJC

(XnG)wC

(YAQ)UC

YnQ

Since ( I u C) n G, Y KJ C, X are maximal subgroups of X KJ C,
((X u C) n G) n (Y v C) n X = Y n G is normal in Z u C and
(̂ T u C)/(Y n G) is elementary abelian of order p3. Take generators «, w, t»
of ((Y u C) n G)/(Y n G), (X n G)/(Y n G), ( ( y n G ) u C ) / ( 7 n G )
respectively, M, V e (a^ af), te» = c(Y n G) and generators u, v, w of
F((YuC)n G)JF(Y n G), F{Xn G)IF{Y nG), F((Y n G) u C)/F(Y n G)
respectively, with u, v e (a,-, a4) and w = cF(Y n G).

In the isomorphism <p of (X uC)/(Y nG) onto F(X u C)IF(Y n G)
defined by <puiviwk = w'y'zl'*
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<pX = <p{arc'; v}
= q>{tfnTw', v} where n is given by a -> un in the projectivity

({X u C) n G)/{X nG)->((YvC)n G)I(Y n G)
= {unTw>, v}
= {drc",v} since ((XvC)n G)/(X n G) -* ((Y u C) n G)/(Y n G)

is a regular projectivity of (a^a,-)
= FX.

Trivially <pY = FY and therefore FX covers FY.
We call the extension constructed in the above manner, the standard

extension of /. We now show that, except in some trivial exceptional cases,
the standard extension is the only extension.

THEOREM 3.2. Let G be a p-group with more than one subgroup of order p,
and let f be an L-etnbedding of G in a group H of the same order. Let C, C be
cyclic groups of order p. If Ft and F2 are extensions of f to L-embeddings of
G X C in H x C such that F^C) = F2(C) = C, then F x = aF 2 where a is an
automorphism of H x C of the form «M = hcr for all A e H, c e C where r
is an integer independent of h, c with (r, p) = 1.

PROOF. (1) If for some X, G $ X $ C, FXX = F2X, then Fx and F2

coincide on (X u C)I(X n G). This is true because ((X u C) n G)j(X n G) is
projective in G to some other interval of G, and therefore there exist X', X"
such that X'2X2X" an<i (X' v C)/(X" n G) is elementary abelian of
order p3. A mapping of L((X' u C)/(X" n G)) onto

L(Fl(X' u Q/F^X" n G)) = L(F2(X' u C)/F2{X" n G))

must be linear and hence the mapping of L( (X u C)J(X n G)) is determined
by the images of th& three points X, (X u C) n G, (X n G) u C.

(2) If for some XQG x C, G $ Z $ C, Fx and F2 coincide on
(X u C)/(X n G), then Fx = F2. This is because, by Theorem 2.1, for any
YQGxC.G^Y^C, there exists a chain of projectivities

(X u C)I{X n G) ^ ( ^ u C)/(XX n G ) ^ > (Y u C)I(Y n G)

which determines uniquely the mapping of L((Y u C)/(Y n G)) from the
mapping of L((X u C)j(X nG)).

(3) Let g e G be an element of order p and let g be a generator of f{g}. Let
c, c be generators of C, C respectively. Then for some m, n, F^gc} = {gcm}
and F2{gc} = {£cB}. If a is the automorphism of H x C : ocAc* = Ac1* where
A is any element of H and r» = tn (mod />), then F^gc} = aF2{gc} and, by
(1) and (2), Ft = aF2.

When G is a group with only one subgroup of order p, this subgroup is not
projective to any other prime interval of G, and consequently the mapping
of the lattice of its direct product with C need not be linear and can be con-
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structed independently of the construction of the mapping of the rest of the
lattice of G X C. This situation arises only when G is cyclic of odd prime
order as an /.-embedding of an elementary abelian group of order 4 is de-
termined by the images of two subgroups of order 2.

THEOREM 3.3. The standard extension F of a 1-canonical L-embedding f
of a p-growp G in a group H of the same order to an L-embedding of G X C in
H x C, where C, C are cyclic of order p, is l-canonical.

PROOF. We extend the canonical basis (a{, dt) of / used in the construction
of F to a canonical basis of F. Let c, c be the generators of C, C used in the
construction of F. For every AQG, take as the basis elements for (A u C)\A,
the cosets cA, cFA. If A covers B and a, a are the basis elements for A jB,
take a(B u C), dF(B u C) as the basis elements for {A u C)/(B u C). For
every X CG x C, G £ X £ C, take as basis elements for X/(X n G), xand
x as defined in the construction of FX. For (X u C)/X, take as basis ele-
ments cX, cFX. If X covers Y, Y $ G, then take vY, vFY as the basis ele-
ments for XjY, where v, v are elements of (ai,di) for (X n G)/(Y n G).

Clearly, all projectivities not involving a subgroup X, G $ X $ C
are regular. Since for every such X, there exists an isomorphism of
(XKJC)I(X nG) onto F(X v C)/F(X n G) which maps basis elements
onto corresponding basis elements, all projectivities within an interval
(X u C)I{X n G) are regular. If X covers Y, Y $ G, then there exists an
isomorphism (given in the proof of the existence of F) of (X u C)/(Y n G)
onto F(X u C)/F(Y n G) which maps basis elements onto corresponding
basis elements. Hence all projectivities within (X u C)/(Y n G) are regular.
The only remaining prime projectivities are of the form X/Y -> X'/Y',
where X' $C,Y' $ G. Suppose X covers X'. Then X u CD X'u CD X'and
(X u C)I(Y u C ) ^ (.Y' u C)l(Y' u C) and (X' u C)/(Y' u C) -> X'/Y' are
regular. Therefore, by the three intervals rule, (X u C)I(Y u C) -+X'/Y'
is regular. But X u C D X D X' and (X u C)/(Y uC)-s- X/Y is regular.
By the three intervals rule, XjY -> X'/Y' is regular. Hence all prime projec-
tivities are regular and F is therefore 1-canonical.

4. Two Generator Groups

LEMMA 4.1. Let (a,-, dt) be a basis of an L-embedding f of a p-group G in a
group H of the same order. Suppose that, for G\$ and for each maximal sub-
group of G, (a(, dt) gives a canonical basis for the corresponding restriction of
f. Then f is 1-canonical and (a,, dt) is a canonical basis of f.

PROOF. Consider a prime projectivity AX\BX -> AJB2 of a prime interval
A1IB1 of G. We may assume Ax covers A2. Either (1) there exists a maximal
subgroup M of G with MD_AX and the projectivity is regular since the
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basis is canonical for the restriction of / to M, or (2) Ax = G and A2, Bx are
maximal subgroups of G. Then B2 = A2 n B1 D 0 and the projectivity is
regular since the basis is canonical for the restriction of / to G/&. Therefore
all prime projectivities are regular and (a(, dt) is a canonical basis of /.

THEOREM 4.2. Let G be a p-group all of whose subgroups ate groups of at
most two generators, and let H be an elementary abelian group of the same order
as G. Let K and K be subgroups of the same order of G and H respectively, and
let f be a 1-canonical L-embedding of K in K. Then there exists a 1-canonical
extension F of f to an L-embedding of G in H.

PROOF. We may assume that K is a maximal subgroup of G. The theorem
is trivial if G is of order p2. We assume that, for groups of smaller order than
G, an L-embedding of a maximal subgroup with a given canonical basis can
be extended to an /.-embedding of the group such that the given basis can be
extended to a canonical basis of the extended L-embedding with prescribed
basis elements for the factor group of the maximal subgroup.

Since G/<P(G) is of order p2, we can define F on G/0(G) and the elements
of a canonical basis of F on Gj0(G) having as the basis elements for Kj0(G)
the elements of the given basis, and any arbitrarily assigned basis elements
for G\K. Since 0(G) is a maximal subgroup of each of the maximal subgroups
of G, and a subgroup of G not contained in 0(G) is contained in only one
maximal subgroup of G, we may apply the induction hypothesis to the
maximal subgroups of G, defining F and the' basis elements independently
for each maximal subgroup. By Lemma 4.1, the L-embedding so constructed
is 1-canonical and the basis constructed is canonical.

COROLLARY 4.3. If G is a p-group with at most one proper subgroup of more
than two generators, then G has a 1-canonical L-embedding in the elementary
abelian group of the same order.

PROOF. (1) Suppose G is a group of three generators, all of whose proper
subgroups are of at most two generators. Then a subgroup of G not contain-
ing and not contained in 0(G) is contained in exactly one subgroup of G of
index p2. Hence a 1-canonical L-embedding of a maximal subgroup M of G
can be extended to the elementary abelian group G/&(G) with elements of
canonical bases of the embeddings of M and Gj0(G) coinciding for the com-
mon intervals, and the procedure of the proof of theorem 4.1 may be applied
independently to the remaining subgroups of index p2.

(2) Suppose G has a proper subgroup K of three generators. We may
assume that this subgroup is a maximal subgroup. By (1) it has a 1-canonical
L-embedding. As before, we can extend this to Gj0(G) and apply the pro-
cedure used above to the subgroups which cover 0{G), since every A C G,
A $ K, A ^ 0(G) is contained in exactly one subgroup of G which covers
0(G).
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COROLLARY 4.4. / / G is an abelian p-group of two generators, then G has a
1-canonical L-embedding in the elementary abelian group.

5. The nth Canonicity Condition (n > 1)

Let / be an L-embedding of a />-group G in the elementary abelian group
6 of the same order. We say that / is n-canonical {n > 1) if, for all closed
chains c of projectivities in G on cyclic factors of order pn, a(c) = 1 if and
only if <5(c) = T where 1, 1 are the identity automorphisms of the correspond-
ing factors.

Throughout this section, G shall denote a p-group and 0 the elementary
abelian group of the same order. C shall denote a cyclic group of order pn

and Clt • • •, Cn cyclic groups of order p. If A is a group, we denote by AT the
group generated by the rth powers of the elements of A. We consider the
problem of extending an .L-embedding / of G in 0 to an L-embedding of

"n~\LEMMA 5.1. If G X CDX.G X C* $ X $ C"n~\ thenX n G is normal in
X u C and (X u C)j(X n G) is abelian of type (n, n).

The proof is obvious.

LEMMA 5.2. Suppose FX is defined for allX QG X C» and for all X 2 C""'1

such that F defines an L-embedding of G X Cv in G X Cx X • • • X Cn_x and
of (G X CyC"'1 in (& x C\ X • • • X Cn)lCx. Then F can be extended to an
L-embedding of G X C in 0 X Cx X • • • X Cn if and only if the following
condition holds:

for subgroups X such that G X Cp $ X ^ C"1 and for closed chains of
projectivities

y:(Xu C)I(X n G)-+ (Xx u C)I{X1 n G) -+ • (X u C)/(X n G),
y induces the identity lattice automorphism in [X u Cvt>1)j[X n (G X C*))
if and only if y induces the identity lattice automorphism in
F(X u C'^/FiX n(Gx &)).

PROOF. Let A(y), %(y) be the lattice automorphisms induced in
(X u C**~l)l(X n (G x C)) and F(X u CV"~1)IF{X n {G x C»)) by y and
y respectively. If FX for any one subgroup X , G x C ' $ Z $ C""~\ is chosen
arbitrarily from the subgroups of F(X u C'~l)jF(X n {G x C*)) not al-
ready images under F, the definition of F may be extended by projectivities.
F can be extended to an L-embedding of G X C if and only if this procedure
does not lead to contradictory definitions of F for any subgroup. Thus
F can be extended to an L-embedding of G X C if and only if the corre-
spondence X(y) <-» X(y) between the lattice automorphisms induced in
(X u C l ) / ( Z n(G x C»)) and F(X u CP""1)/F(X n (G x C»)) by closed
chains of projectivities y, y of the above form is one-to-one. The condition
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that the correspondence be one-to-one is that A(/) be the identity if and only
if X(y) is the identity.

LEMMA 5.3. In the notation of Lemma 5.2, y induces the identity lattice
automorphism in (X u C" 1)I(X n (G X Cv)) if and only if y induces the
identity automorphism in ((X u C) n G)j{X n G).

PROOF. Let ( ( Z u C ) n G)/{Xn G) = {a}, ({X . . G) u C)j{X n G) = {c}
and X/(X n G) = {x}. Then a and c generate (X u C)/(X n G) which is
abelian of type (n, n). The generator a; of X/(X n G) may be chosen such that
x = afcc, £ { £. Let

y : (X u C)/(Z n G ) ^ (Xx u C ) / ^ n G) ^ • (X u C)/(Z n G)

be any closed chain of projectivities on factors (.X,- u C)/(Xt n G) with
G x O $ X,. $ C r t mapping Z u C"'1 and Z n (G X Cp) onto them-
selves. Then a(y)c = c and a(y)a = «*, p -f s. «(y){a*c} = {a'kc}. Therefore
y maps X onto itself if and only if s = 1 (mod pn), which proves the lemma.

LEMMA 5.4. In the notation of Lemma 5.2, y induces the identity lattice
automorphism in F(X u Cv" 1)/F(X n (G X C")) if and only if y induces the
identity automorphism in F((X u C) n G)/F(X n G).

PROOF. Choose a basis et, • • -, e2n of F(X u C)/F(X n G) such that

and
F ( X ^ u (X n G)) = K + en+1, • • ; er + en+r}.

This may be done however FX is defined. For any y, a(y) is given by a
matrix of the form

0\i

where the submatrices are n X n, since <5(y") is the identity on
F((X n G) u C)/F(.X n G) and maps F ( ( Z u C) n G)/F(Z n G) onto it-
self.

Let Nr be the submatrix of N consisting of the elements in the first r rows
and columns of N. Clearly, if N = I, then y induces the identity lattice auto-
morphism in F(X u C" )IF(X n (G x Cv)). Suppose y induces the iden-
tity lattice automorphism in F(X u C'"~l)IF{X n (G X C")). We have to
prove that N = I.

Since M maps {ej, {en+1}, {e± + eB+1} onto themselves, it follows that
2Vj = / . We use induction over r. Suppose Nr = / .

Since {en+1, • • •, en+r} maps into itself,
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e
n+r+1

) = e
r+1

LO

en+1
-\ aT+1en+r+1

m ° d

Therefore A = 1, ax = a2 =
lemma.

= ar = 0 and ar+1 = 1 which proves the

LEMMA 5.5. Suppose FX is defined for allX QG x C* and for all X D C*"'1

such that F defines an L-embedding of G X C" in G X Cx x • • • X Cn_t and
of (G X QIC'"'1 in (G X Cx X • • • X Cn)lC1. Let f be the restriction of F to
G. Then F can be extended to an L-embedding of G x C in G x C1 X • • • X Cn

if and only if f is n-canonical, n ^ 1.
PROOF. The case n = 1 has been proved in Theorem 3.1. For n > 1, the

result follows from Lemmas 5.2, 5.3, and 5.4.

THEOREM 5.6. An L-embedding f of a p-group G in the elementary abelian
group G of the same order can be extended to an L-embedding F of G X C in
G X C1 X • • • X Cn, where C is cyclic of order pn and Ct are of order p, if and
only if f is 1-, 2-, • • •, n-canonical.

PROOF. If F exists, then by Lemma 5.5, / is 1-, 2-, • • •, «-canonical. Sup-
pose / is 1-, 2-, • • •, w-canonical. We have to prove that there exists an ex-
tension F.

Let <Pi be the isomorphism of G x Cp"~i+l onto (G x C"n~')IC'n~1 in
which the element gcat>ni+1 of G X C"nt+l maps onto the coset gcap"~' C'""'
where g is any element of G and c is some fixed generator of C. Clearly, the
restriction of <pi+x to G x Cp"~<+1 is <pt.

Let ,̂- be the isomorphism of 0 x Cx X • • • X C^ onto (G x Cx X • • • X Ci)}C1

in which the element gc^c^1 • • • c'L^ maps into the coset fc£»c£» • • • c"'-> Cx

where clt • • •, cn are a fixed set of generators of Clt • • -, Cn, and g is any
element of G. Clearly, the restriction of <pi+1 to G x Cx X • • • X Ci_1

is ?,..
By induction over n, we prove that there exist extensions Flt F2, • • •, Fn

of / = F o to G X C""1, G X C"'1, • • -, G X C respectively such that
(1) Ff is an extension of i * ^
(2) for all X such that G x C""' 2 * 2 C'n~\

By Theorem 3.1, this holds for n = 1 since condition (2) is trivially satisfied
by any F satisfying condition (1).

Suppose F1,---,Fn_1 exist satisfying these conditions. Define
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FnX = F^XioiailXQG X C p
This is consistent since f o r G x C 2 I 3 C"~\

X by (2)

By Lemma 5.5, FnX can be defined for G X C" £ X ^ C"""1 such that F n is
an embedding of G X C. Fn clearly satisfies condition (1). By the definition
of Fn for X 2 1

and condition (2) is satisfied. This completes the proof of the theorem.

6. Abelian Groups
If G is an abelian p-group, then G has cyclic subgroups C1, • • •, Cn such

that G = Cx X C2 X • • • X Cn. Let \Ct\ = pK<. Then the A, are uniquely
determined (up to order) by G. We may assume Xt Sj A2 ̂  • • • S: An. We say
that G is a group of type {Xt, A2, • • •, AB).

LEMMA 6.1. Let G be an abelian p-group of type (X1, A2, • • •, Xn) with A3 ̂  1.
Then G has an L-embedding in the elementary abelian group.

PROOF. G is the direct product of a group of type {Xx, A2) and of cycles of
order p. By Corollary 4.4, the group of type (klt A2) has a 1-canonical L-
embedding, which, by Theorems 3.1 and 3.3, can be extended to an L-
embedding of G.

LEMMA 6.2. Let G be an abelian p-group of type {Xx, X2, • • •, Xn) with
A2 ̂  2. Then G has an L-embedding in the elementary abelian group.

PROOF. By Theorem 5.6, it is sufficient to prove the existence for the case
Xx = X2 = • • • = xn = 2.

There exists an integer a (mod p2) such that a -> aa is an automorphism of
order p — 1 of the cyclic group {a} of order p2. Let 6 be an integer (mod p)
with a = 6 (mod p). We define the symbol * by a* = 0, 0* = 0. Then for
any x, there exist r, s with a" = aar+'p where r = *, 0, 1, •••,/> — 2 and
s = 0, 1, • • • , / > - 1.

We construct an L-embedding of G = {alt • • •, an) of type (2, 2, • • •, 2)
in the elementary abelian group (written additively) with basis
xi> Vi> X2> V%<' ' '' xn>yn- Every element g e G can be written in the form

g = f[ af+"*.

I ] for g =
- i »=i

f{gi. • • : g*} = f{gi} u • • • u f{gk}.
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We have to prove that / so defined is one-to-one and that

fA D fB if and only if A D B.

(a) f{g} Q f{gx, • • ; gk} if and only if g e {gt, • • •, gk).

PROOF. Put

S e {Si> ' ' '• Sk} if a n ( i o n ty if there exist uiy vt with
k

5 1 1 61 '
»=J

that is, if and only if there exist u{, v( with

[14]

= 2 (a"'ar« +
<=i

This is equivalent to

+ v^")) (mod p*) j = 1, 2, • • -, n.

B't = J 0"<0r"
1 = 1

*i = 2 (0"'s»

(mod p) j = 1, 2, • • -, n

/ = 1, 2, • • -, n.

This holds if and only if

«=1 i - l

This is the condition that f{g) Qf{gx, • • \ g j .
(b) From (a), it follows that f{g} is independent of the choice of the

generator g of {g}.
(c) From (a), it follows that for all A Q G,

fA = u {fX\X cyclic, X Q A).

Therefore / is one-to-one and fA D fB if and only if AD B.

THEOREM 6.3. Let G be an abelian p-group of type {Xlt Xit • • •, Xn) with
Xx — A2 = A3 = 2. Then G has a unique L-embedding in the elementary abelian
group.

PROOF. By Lemma 6.2, an L-embedding exists. Let fx and /2 be L-em-
beddings of G in the elementary abelian group H. We have to prove that fx
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and /2 are equivalent. By Theorem 3.2, it is sufficient to consider the case
Ax = A2 — — A.n — Z.

Let G = {alt • • •, «„}. Since n ^ 3, a basis a^, • • •, xn, ylt • • -, yn of H
can be chosen such that

and a" -> â  is an isomorphism of {aj\ •••,<**} onto {xlt • • •, xn} inducing fx

on {a*, • • •, a*}, a^a*, • • •, a $ ->• y4 + {xlt • • •, xn} is an isomorphism of
G/0(G) onto Hjf10{G) inducing /x on GI<P{G). Then / ^ a j j • • • an} =
{{xt + x2-\ H «„), (2̂ i + ya H + y» + «i Si H 1- aBa;n)} for
some a1( • • •, an. We can choose ylt • • -, yn such that ax = a2 = • • • = an = 0
since we can replace y, by yt + «<a;«-

Similarly, we can choose a basis a\, • • •, x'n, y'lt • • •, y'n such that

and a*-> x'f is an isomorphism inducing fz on {«", • • •, «S},
at{ai> " ' •> a«} ~* v'i + { Î ' " ' •> z'n} i s a n isomorphism inducing /2 on G/&(G).
Let /? be the automorphism of H: $x\ = a;̂ , Py\ = j / , . Then /3/2X = ftX
for all X = 0{G) and for X = {a,}, {axa2 • • • «„}. Let Z C G be any sub-
group such that Z $ <£(G), Z $ #(G). Then

$ (Z u 0{G)) = (Z u 0(G))» = Z» u (<P(G))» = Z ' C G ' = 0(G).

Therefore there exist X, Y such that X D *(G) D Y, X D Z D Y and X/Y
is elementary abelian. Thus /9/2 maps L(X/Y) onto /XZ.(X/Y) and there
exists Z' such that y?/2 Z = / t Z'. Therefore for all 4̂ Q G, there exists B QG
such that /S/2,4 = /jB.

Since /3/2L(G) = ^/.(G), we can form the mapping fe1^ of L(G) onto
itself. This is a lattice automorphism of G. But by a theorem of Baer ([1]
page 35 Theorem 2), there exists an automorphism oc of G inducing f^fifz.
Therefore /?/2 = /xa. But from the construction of ft,

a{«<} = W
a.{axa2 • • • an} = {axa2 • • • « „ } .

Hence a has the form ag = gr for all g e G, where r is independent of g.
Therefore «induces the identity lattice automorphism and therefore /?/2 = /x.

LEMMA 6.4. There exists no L-embedding of an abelian group of type (3, 3, 2)
in the elementary abelian group.

PROOF. Let G = {a, b), apt = bv* = 1 be an abelian group of type (3, 2).
Let / be any L-embedding of G in the elementary abelian group. It is suffi-

https://doi.org/10.1017/S1446788700026355 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026355


32 D. W. Barnes [16]

cient to prove that / is not 1- 2-, 3-canonical. Suppose / is 1- and 2-canonical.
Take a basis ex, e2, e3 of f{a} such that

Consider the chain of projectivities

c :{«}-> {a, b}l{b} - {ab} -> {a, b}l{a*b} -> {a}.

In this, a -H- a {6} -> ai -> a6{ap6} -> a1-". If 4̂ is the matrjx of a(c) then
from the first canonicity condition, A is of the form

r 1 x y

A = 0 1 z
.0 0 1

(a) Case p > 2. The automorphism a(c) is of order p2.

A" — I = (A — / ) " since the matrix is over the field of p
elements

= 0 since p ^ 3 and (A — I)3 — 0.

Put y = cv. Then <x(y) ^ 1 but <5(f) = 1 and / is not 3-canonical.
(b) Case p = 2. a(c)a = a-1.
Consider the restrictions c', c" of c to chains of projectivities on factors of

order 4, starting at {a2} and {a}/{a4}. Let A', A" be the matrices of S(c'),
a(c") respectively. Then

A' = I and ^4"

a(c')a2 = (a2)"1 and a(c') ^ 1. Therefore a; ^ 0 since / is 2-canonical.
a(c")a{a*} = a^a1} and a(c") ^ 1. Therefore z ^ 0. Therefore ^42 ^ / .
Put y = c2. Then a(y) = 1 but a(y) has matrix A% =£1 and/is not 3-canonical.

THEOREM 6.5. T/tere &mte a« L-embedding of the abelian p-group G in the
elementary abelian group if and only if G has no subgroup of type (3, 3, 2).

PROOF. If an /.-embedding of G in the elementary abelian group exists,
then G has no subgroup of type (3, 3, 2) by Lemma 6.4.

Suppose G has no subgroup of type (3, 3, 2). Let G be of type (A1( • • •, Ar).
Either A3 ^ 1 and G has an /.-embedding in the elementary abelian group by
Lemma 6.1, or A2 5S 2 and by Lemma 6.2 G has an /.-embedding in the
elementary abelian group.

For abelian. />-groups with a subgroup of type (3,3,2), we have the
stronger result:

THEOREM 6.6. Let G and H be abelian groups of the same prime power order.
Suppose G has a subgroup of type (3, 3, 2) and that f is an L-embedding of G in
H. Then G ~ H.
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PROOF. The result holds for G of type (3, 3, 2) since it cannot have an
i-embedding in a group which is L-embeddable in the elementary abelian
group.

Take a direct decomposition G = X1 x X2 X • • • X Xn of G with X{

cyclic. It is sufficient to prove that fXt is cyclic.
If Xf is of order p, then trivially fXt is cyclic. If X{ is of order p2 or p3,

then there exist subgroups AQXjt BQXk {i,j,k distinct) such that
Xf X A X B is of type (3, 3, 2) and therefore fXt is cyclic.

Suppose Xf is of order pr, r > 3. We use induction over r. There exist
A Q Xjt B Q Xk (i, j , k distinct) such that Xt X A x B is of type (r, 3, 2).
We assume that the theorem holds for groups of type (r— 1,3,2), r > 3 .
.X? X A X B and (Xt X A X B)/Xfr"1 are of type (r — 1, 3, 2) and there-
fore f(X*) and fXJfiXf1) are cyclic. But

Therefore fXJ0(fXi) is cyclic. Hence /Xt- is cyclic.

7. Non-Abelian Groups
Clearly, if a ^>-group G is lattice isomorphic to an abelian p-group A, then

G has an L-embedding in the elementary abelian group if and only if A has.
We use this to extend the result of Theorem 6.5 to ^-groups with modular
lattices of subgroups.

Iwasawa ([1], p. 15) in determining the structure of non-Hamiltonian
modular p-groups, shows that such a group G has a basis a1, • • •, ak. If ai

has order pXi, Kx 5: X2 5: • • • ;> Xk, we say G is of type (Xlt • • •, Xk). By a
theorem of Jones ([2], p. 554, Theorem 3.13), G is lattice isomorphic to an
abelian p-group of the same type.

THEOREM 7.1. (a) Let G be a non-Hamiltonian modular p-group. Then G
has an L-embedding in the elementary abelian group of the same order if and
only if G contains no subgroup of type (3,3,2).

(b) Let G be a Hamiltonian p-group. Then G has an L-embedding in the
elementary abelian group of the same order.

PROOF, (a) has already been proved. Suppose G is a Hamiltonian p-groxxp.
Then G is the direct product of a quaternion group of order 8 with an ele-
mentary abelian 2-group. By Theorems 4.2, 3.1, G has an L-embedding in
the elementary abelian group of the same order.

Lazard ([3], p. 176, Theorem 4.6) has given a construction based on the
Baker-Hausdorff formula which defines, for any ^-group G such that all
subgroups generated by three (not necessarily distinct) elements have class
strictly less than p, an addition and Lie multiplication on the elements of
G making G a Lie-ring JSf (G) with respect to this addition and Lie multiplica-
tion. In this construction, subgroups correspond to subrings, the element
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1 € G corresponds to 0 e ^C(G) and x"T = 1 in G if and only if prx = 0 in
^C{G). We denote by A(G) the additive group of ^C(G). Since G is regular,
we can define the type invariants as done by P. Hall ([4], p. 79—81).
When G is modular, these invariants coincide with those used above. Let
Qa(G) = {x\xeG, x»* = 1}. Then A(Qa(G)) = Qa{A{G)). Hence G and
A(G) have the same invariants. If XQG, then A(X)QA(G). Thus the
mapping / defined by fX = A(X) is an .L-embedding of G in A(G).*
Hence we have

THEOREM 7.2. Suppose G is a p-group of class less than p. Then G has an
L-embedding in the abelian group with the same invariants.

THEOREM 7.3. Suppose G is a p-group of class less than p and with in-
variants {Xlt • • •, Xk), Ax ^ X% S; • • • 2^ Xk satisfying either X2 ̂  2 or Xz 5S 1.
Then G has an L-embedding in the elementary abelian group of the same order.

Using these results, we can generalize Theorem 6.6.

THEOREM 7.4. Let G be a modular p-group of order pn, p ^ n, and suppose
that G has a subgroup of type (3, 3, 2). Suppose G has an L-embedding in the
group H of the same order. Then L(G) s L(H).

PROOF. G, H have class at most n — 1 < p. Thus A (G), A (H) exist and
G has an L-embedding in A (H). But L(G) =r L(A (G)). Therefore A (G) has
an L-embedding in A (H). By Theorem 6.6, A(G) s A(H). Therefore A (H)
has an L-embedding in H. Therefore L(H) = L(A(H)) ~ L(G).
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