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Abstract
This article proposes a control method for underactuated cartpole systems using semi-implicit cascaded
proportional-derivative (PD) controller. The proposed controller is composed of two conventional PD controllers,
which stabilizes the pole and the cart second-order dynamics respectively. The first PD controller is realized by trans-
forming the pole dynamics into a virtual PD controller, with the coupling term exploited as the internal tracking
target for the cart dynamics. Then, the second PD controller manipulates the cart dynamics to track that internal tar-
get. The solution to the internal tracking target relies on an equation set and features a semi-implicit process, which
exploits the internal dynamics of the system. Besides, the design of second PD controller relies on the param-
eters of the first PD controller in a cascaded manner. A stability analysis approach based on Jacobian matrix is
proposed and implemented for this fourth-order system. The proposed method is simple in design and intuitive
to comprehend. The simulation results illustrate the superiority of proposed method compared with conventional
double-loop PD controller in terms of convergence, with the theoretical conclusion of at least locally asymptotic
stability.

1. Introduction
Underactuated systems feature a class of systems whose state Degree-of-Freedom (DoF) is greater than
its number of control inputs. This kind of systems are easily witnessed in a wide range in practice,
for example, wheeled robots [1], underwater vehicles [2], flexible robot systems [3], etc. One critical
advantage of underactuated systems over fully and over-actuated systems is that they require less cost
and have less complexity due to lack of control inputs. Nonetheless, due to the exact same reasons, the
control problem of underactuated systems has been a heated research direction. Among all underactu-
ated systems, cartpole system has been a classic benchmark model that absorbs uncertainty, coupling,
nonlinearity, non-minimum phase, multivariable and instability, which encompasses a majority of other
underactuated systems. Therefore, the research into cartpole system has a fundamental significance to
gain insight into other system dynamics [4].

Over the decades, various methods have been constantly proposed for the stabilization of cart-
pole system. Some early work tried to linearize the nonlinear model of cartpole near the equilibrium
location and then implemented linear controllers. This simplification usually ensures stability near
the equilibrium. Well-known examples include Proportional-Integral-Derivative (PID) controller and
Linear-Quadratic-Regulator [5–7]. Nonetheless, the linearization procedure impairs the accuracy of the
dynamics and therefore cannot achieve large-scale stability [8]. Backstepping has been one of the most
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widely researched method for cartpole system control problem. Shao et al. adopted a state-feedback-
based backstepping controller for the tracking and switching control of cartpole systems [9]. Targeting
at underactuated systems, Jiang et al. proposed an underactuated backstepping method for a class of
underactuated systems [10]. Compared with conventional backstepping, this method has a systematic
solution to a class of systems. However, the tuning and selection of those control matrices still remain
an open question. Adaptive and robust control methods also received public attention. An adaptive opti-
mal fuzzy controller based on feedback linearization and sliding mode control was proposed in ref.
[11] for cartpole systems. Fuzzy logic system and gradient descent were combined to tune the param-
eters and a multi-object optimization algorithm was used to adjust sliding mode control gain. In ref.
[12], an adaptive output-feedback optimal control was combined with integral sliding mode control for
wheeled inverted pendulum under disturbance. The integral sliding mode controller was responsible
for finite-time convergence, and adaptive dynamic programming was to deal with coupled uncertain-
ties. In ref. [13], an adaptive control scheme is proposed based on Adaptive Ellipsoid Method (AEM)
to tune the gain matrices of the observer and controller. The experiments on an underactuated vertical
double pendulum with uncertainties illustrate the superiority over conventional AEM controller. There
are many other control methods implemented case-by-case to cartpole systems, including energy-based
[14], state-feedback controller [15], neuro network [16], and so on. Besides, more other methods were
targeting at other underactuated systems which could easily be extended to cartpole system, for example,
event-triggered dynamic surface control [17], fast terminal sliding mode control [18], etc. Nonetheless,
most of the above-mentioned methods are tedious in design, which hinders their application in
industry.

One big class of methods that are emergent recently is learning-based method. The common feature
of this class of approaches lies in using huge amount of data to train a specific controller and optimizes a
designed objective function. A milestone research in this direction was conducted by Google DeepMind,
which used deep Q-learning to complete the control task of cartpole [19]. A forward neural network
was implemented to approximate the Q-values of state-action pairs. Shi et al. combined type-1 Fuzzy
Logic System (FLS) with Reinforcement Learning to achieve robust cartpole control [20]. The FLS was
implemented as an encoder to cope with the uncertainty of the system, and RL was to find optimal policy
that minimizes the tracking error. Hiremath et al. applied a deep neural network-based gated-recurrent-
units (GRUs) method for the stabilization and tracking problem of constrained stochastic cartpole system
[21]. Nevertheless, this class of methods usually require too much data to train the model. Besides, the
black-box models trained make the inner dynamics intractable.

Therefore, borrowing ideas from conventional PID controller, this paper proposes a control method
for underactuated cartpole system. The advantages of conventional PID controller are simple to design
and intuitive to understand. Borrowing ideas from backstepping method, the work here extends the
conventional PID controller to a cascaded version, which helps establish internal control targets. This
manipulation increases the order of controller. In this way, the merits of PID controller can be main-
tained, while it can be implemented directly without linearization procedures. Contrary to widely
accepted backstepping approach, the proposed method does not suffer from exploding terms or complex
coordinate transformation technique. What is more, while most of the analysis of previous PID research
lies in using linearization and transfer function, this paper proposes to implement Jacobian matrix-based
stability analysis, which is applicable to any differentiable nonlinear system dynamics. The contributions
of this article are summarized as follows:

• Propose a unique cascaded PD controller, which transforms the pole dynamics into a virtual
PD controller and using the coupling term as the design variable for the second PD controller
design. This model-based method absorbs the simplicity and intuitiveness of a conventional PID
controller, but exploits the system dynamics in the meantime.

• Introduce a stability analysis method for the fourth-order cascaded PD controller using the
Jacobian matrix of the residual system, although it concludes only locally asymptotic stability.
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Figure 1. Conceptual structure of cartpole system.

This presents a novel way to approach stability analysis in this context, with the potential to be
used for parameter design.

• Achieve automation of complex derivations and design processes through symbolic calculations
on a PC, allowing for more efficient design and validation.

• This paper includes a comprehensive analysis on both the linearized and original nonlinear
models, providing a thorough examination of the proposed method’s applicability.

• Simulation results reveal the proposed method’s advantages in stabilizing both the cart and
the pole simultaneously, showing superior performance over widely used double-loop PD
controllers. The robustness against Coulomb friction and random noise is also demonstrated.

The rest of the paper is organized as follows. In Section 2, some background rationale is introduced.
Firstly, the dynamic model of the cartpole system is given, both linear and nonlinear. Secondly, conven-
tional PD controller is presented, which serves as the basis of the proposed method. Section 3 articulates
the design process of the proposed method. The overall framework and workflow are foremost described.
Then, the design process for linear and nonlinear dynamics is presented, followed with stability analysis
procedures. Section 4 illustrates the results in simulation. The system responses are depicted, and fur-
ther analysis is carried out using Jacobian matrix. Section 5 concludes the article and points out many
potent further research directions.

2. Preliminaries
2.1. Dynamic model description
This section introduces the structure as well as dynamics of the cartpole system to be investigated later
in this research. Both nonlinear and linear version of the dynamics will be presented, and the controller
design is to be carried out on both. The inclusion of linear version model is to present the method more
clearly, as the nonlinear model of cartpole system is so complicated that the readers may be distracted
from the mathematics instead of the workflow of the proposed control method.

Figure 1 illustrates the conceptual structure of the cartpole system. The system, as the name suggests,
is composed of a cart, to which a pole is connected on top of it. The goal of control in this regard is to
keep the pole upstraight for as long as possible. In the meantime, it is reasonably required to reduce the
movement of the cart during the process. The (nonlinear) dynamics of the system can be expressed as
follows [22]. In Eq. (1) and Fig. 1, u is the control force (N), x1, x2 are the angular position and angular
velocity of the pole (rad, rad/s), x3, x4 are the position and linear velocity of the cart (m, m/s). l is the
length of the pole (m), M1 is the mass of the cart (kg), J is the moment of inertia (kg m2), and M2 is the
mass of the pole (kg). Besides, F0, F1 are the friction factor of the cart and the pole respectively (N/m/s).
g is the gravity coefficient.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =

(
−F1(M1 + M2)x2 − M2

2 l2x2
2 sin (x1) cos (x1) + F0M2lx4 cos (x1)

+(M1 + M2)M2gl sin (x1) − M2l cos (x1)u

)

p2

ẋ3 = x4

ẋ4 =

(
F1M2lx2 cos (x1) + (J + M2l2)M2lx2

2 sin x1 − F0(J + M2l2)x4

−M2
2gl2 sin (x1) cos (x1) + (J + M2l2)u

)

p2

(1)

To simplify the controller design, the model is frequently linearized near the equilibrium location,
namely when x1 ≈ 0, x3 ≈ 0. Therefore, the following approximations hold:

sin (x1) ≈ x1 (2)
cos (x1) ≈ 1 (3)
x2

2 ≈ x2
4 ≈ 0 (4)

Integrating with Eq. (1), a linearized model of cartpole is derived:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = Ax1 + Bx2 + Cx4 + Du

ẋ3 = x4

ẋ4 = Ex1 + Fx2 + Gx4 + Hu

(5)

where

A = (M1 + M2)M2gl

J(M1 + M2) + M1M2l2
(6)

B = −F1(M1 + M2)

J(M1 + M2) + M1M2l2
(7)

C = F0M2l

J(M1 + M2) + M1M2l2
(8)

D = − M2l

J(M1 + M2) + M1M2l2
(9)

E = −M2
2gl2

J(M1 + M2) + M1M2l2
(10)

F = F1M2l

J(M1 + M2) + M1M2l2
(11)

G = −F0(J + M2l2)

J(M1 + M2) + M1M2l2
(12)

H = J + M2l2

J(M1 + M2) + M1M2l2
(13)

It is conceivable that the cartpole system is a highly nonlinear system. High order of trigonometric
functions appear both in the denominators and the numerators. Besides, the coupling effect is remark-
able. x1, x2, x4 and u pose influence on the dynamics of both the cart and the pole. Therefore, the control
problem of cartpole system is challenging and has some fundamental influence in control realm.

2.2. Conventional PD controller
Figure 2 is the conceptual structure of a conventional PD controller. R is the reference signal, e(t) is
the error in time t, U is the control signal and Y is the output. The core modules of PD controller are
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Figure 2. Conceptual structure of conventional PD controller.

proportional and derivative module, and the mathematical expression is [23]

U = Kpe(t) + kd

de(t)

dt
, (14)

where kp, kd are the proportional gain and derivative gain. PD controller is a simplified version of PID
controller, which is widely adopted in the industry [24].

3. Controller design and analysis
3.1. Controllability analysis around equilibrium point
In this section, the controllability of the system near the unstable equilibrium point is analysed, which
serves as the foundation for controller design. Consider system dynamics (5) and write down the system
matrices as follows:

Y =

⎡
⎢⎢⎢⎣

0 1 0 0

A B 0 C

0 0 0 1

E F 0 G

⎤
⎥⎥⎥⎦ (15)

Z = [0, D, 0, H]T (16)
According to controllability theorem, if matrix [Z, YZ, Y2Z, Y3Z] has full rank, then the system is con-

trollable in the equilibrium point. Integrating system parameters in Table II, the following controllability
matrix is verified to be full rank.⎡

⎢⎢⎢⎣
0 −4.55 0 1.82

−4.55 24.93 1.82 −2.40

24.93 −275.04 −2.40 23.92

−275.04 2246.79 23.92 −196.00

⎤
⎥⎥⎥⎦ (17)

3.2. Framework overview
Figure 3 is the conceptual framework of proposed semi-implicit cascaded PD controller design. The orig-
inal fourth-order system of cartpole is considered as two coupled second-order systems. This paper uses
“subplant1” to denote the pole dynamics, namely x1, x2, and “subplant2” to represent the cart dynamics,
which is x3, x4. One direct comprehension of the proposed method is to use one PD controller each for
two subplants, respectively. It is expected that if both subplants can be stabilized separately, the overall
system can be stable. Nonetheless, the coupling effect inside the model determines that a direct realiza-
tion of such idea will yield unsatisfying performance. Besides, while the reference signal for the first
PD controller, namely “PD1,” is given, the tracking target for the second PD controller, “PD2,” is not
available and should be determined in some way. The proposed method solves the above-mentioned
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Figure 3. Framework of semi-implicit cascaded PD controller design.

problems and makes cascaded PD controller feasible in this situation. It is achieved by (1) transform-
ing the subplant1 dynamics into an equivalent virtual PD controller, considering the coupling term of
subplant2 as a design variable, and then (2) the desired tracking target for subplant2 is derived in a semi-
implicit manner through the coupling term, as well as feedback linearization design of PD2. Finally, a
cascaded PD controller can be implemented with the coupling effect exploited and solved.

The workflow of proposed controller is specified in the following. Firstly, the reference signal X1d

is input into PD1, where the desired virtual torque for subplant1 is computed. The coupling term from
subplant2 is transformed to a design variable. In this way, the coupling term represents the desired
position for subplant2 X4d, which helps the dynamics of subplant1 to approximate a PD controller to
stabilize subplant1. Up to now, the control u is not calculated, so the desired position for subplant2
cannot be calculated explicitly, and require further information from subplant2. Focusing on subplant2
only, a PD controller with feedback linearization can be easily designed. Combining the expression of the
controller for subplant2 and that from subplant1, an equation set should be solved, and the expressions
for u as well as X4d are derived. The X4d is then fed into PD2 to complete the control for subplant2.
Notice that using Gaussian elimination method [25], X4d appears on both sides of the equations, thus
representing a semi-implicit process, resembling that of semi-implicit Euler integration method [26].
Besides, PD1 is designed and utilized on top of PD2 during the control process, therefore forming a
cascaded relationship.

3.3. Semi-explicit cascaded PD controller design for linear approximated model
This section illustrates the design process of the proposed method using the linearized version of
dynamic model (5). The purpose of using a linearized simple model is to make the derivation pro-
cess tractable, thus enabling a clearer presentation of the idea and rationale. The design process based
on original nonlinear model (1) will be given in Section 3.5.

Based on Eq. (5), the dynamics for two subplants can be written explicitly as:

subplant1:

{
ẋ1 = x2

ẋ2 = Ax1 + Bx2 + Cx4 + Du
(18)

subplant2:

{
ẋ3 = x4

ẋ4 = Ex1 + Fx2 + Gx4 + Hu
(19)

In Eq. (18), the coupling term from subplant2 is Cx4, which will be used as design variable.
Borrowing ideas from a serial integrator under the control of a PD controller, if the following equation
always holds,

Ax1 + Bx2 + Cx4 + Du = kp1e1 + kd1e2, (20)

then there must exist certain parameters kp1, kd1 that makes subplant1 stable. Here, kp1, kd1 are the
proportional and derivative gains of PD1 controller, and e1 = −x1, e2 = −x2 are the angular and angular
velocity errors of subplant1. With this assumption satisfied, Eq. (18) becomes a normal second-order
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system controller by a PD controller as follows:

subplant1:

{
ẋ1 = x2

ẋ2 = kp1e1 + kd1e2

. (21)

Noticing the coupling term x4 can be controlled by a first-order system in Eq. (19), Eq. (20) is
rewritten as

Ax1 + Bx2 + Cx4d + Du = kp1e1 + kd1e2, (22)

and that

x4d = kp1e1 + kd1e2 − Ax1 − Bx2 − Du

C
, (23)

where x4d defines the desired tracking target for subplant2. With the tracking target calculated, the
attention shall be shifted to subplant2, where a PD2 controller with feedback linearization is designed as

u = 1

H
(−Ex1 − Fx2 − Gx4 + kp2e3 + kd2e4), (24)

where kp2, kd2 are the proportional and derivative gains of PD2 controller, and e3, e4 are the angular and
angular velocity errors of subplant2 delicately chosen as

e3 = x3d − x3 = (x3 + �t · x4d) − x3 + xr − x3 = �t · x4d + xr − x3 (25)

e4 = −x4 (26)

in which xr is user-defined constant target for the cart position. Notice that x4d is a velocity signal. In
order to implement PD controller, it should be converted to position signal, hence the manipulation
in Eq. (25), where �t represents sampling time. With that being done, the information of x4d is fully
reflected in e3, enabling the assignment of Eq. (26). Frankly speaking, x4d is used to construct discrete
position targets with reference velocity of the cart being 0. The subplant2 dynamics now becomes a
second-order system controlled by PD2 controller with a reference signal related to x1, x2:

subplant2:

{
ẋ3 = x4

ẋ4 = kp2(�t · x4d + xr − x3) − kd2x4

. (27)

Up to now, neither u nor x4d are explicitly expressed. Combining Eqs. (23) and (24) to eliminate u
arriving at the following

x4d = −kp1x1 − kd1x2 − Ax1 − Bx2 − D
H

(−Ex1 − Fx2 − Gx4 + kp2�t · x4d + kp2(xr − x3) − kd2x4)

C
. (28)

Consequently, the expression for x4d is derived:

x4d = −(kp1 − DE
H

+ A)x1 − (kd1 − DF
H

+ B)x2 − D
H

kp2(xr − x3) + D(G+kd2)
H

x4

C + D
H

kp2�t
. (29)

Similarly, the full expression for u is available by substituting Eq. (29) into Eq. (24).

Remark 1 (Joint stability): If subplant1 and subplant2 can be stabilized separately, the whole system
would be expected to be stable. Indeed, it can be proved that system (21) and (27) can be stabilized
separately [27] under natural assumptions. However, a joint analysis is still required to ensure stability
of the fourth-order system, which will be detailed in Sections 3.4 and 3.6.

Remark 2 (Cascaded PD controller): The cascaded PD controller in this paper is different from the
conventional one. Conventional cascaded PD controller works in adjacent order of the system, for exam-
ple, one PD controller to assign desired velocity and the other PD controller to control the acceleration
[28]. In contrast, the PD1 controller in this paper serves as the acceleration controller for subplant1,
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as well as the calculator of the reference signal for subplant2. And PD2 controller is the acceleration
controller for subplant2.

Remark 3 (Semi-implicitness): The proposed cascaded PD controller is semi-implicit in two levels. The
most shallow level is that in Eq. (29), x4d appears in both sides of the equations, which means using an
unknown term to calculate the result of the same unknown term. It is similar to the manipulation in semi-
implicit Euler method for numerical integration. Nonetheless, the source of this semi-implicitness is
generated from two sources of information utilized for the derivation of x4d. The first is from transforming
subplant1 into a virtual PD controller, and the second is from the PD controller design for subplant2.
Both separate design processes finally point to the same target, x4d.

Remark 4 (Transforming PI to PD): In Eq. (26), the authors transform velocity target for x4 to position
target for x3 using discrete approximation x4d�t, so as to implement PD controller for subplant2. More
frequently used controller for first-order system is Proportional-Integral (PI) controller. Nevertheless
in this paper, for the consistency and simplicity of stability analysis, such a handling is chosen. The
challenge for implementing PI controller instead is how to formulate a unified stability analysis together
with PD controller.

3.4. Stability analysis using Jacobian matrix for linear approximated model
Following the controller design procedure of Section 3.3, this section presents the stability analysis
method for the whole system. Although this is a linearized model, instead of using widely used transfer
function, a Jacobian matrix-based method is implemented for wider applicability. The error vectors
of the system are constructed, along with their dynamics. The Jacobian matrix is then calculated. By
analysing the eigenvalues and eigenvectors of the Jacobian matrix, the stability of the system can be
determined.

The error vectors for linear approximated model (5) is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e1 = −x1

e2 = −x2

e3 = �t · x4d = �t · −(kp1 + DE
H

+ A)x1 − (kd1 + DF
H

+ B)x2 + D
H

kp2(xr − x3) − D(G+kd2)
H

x4

C + D
H

kp2�t
e4 = −x4

(30)

Differentiating (30) and replacing all state variables using ei, i = 1, 2, 3, 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = e2

ė2 = −ẋ2

= −Ax1 − Bx2 − Cx4 − Du

= (
A − DE

H

)
e1 + (

B − DF
H

)
e2 − Dkp2

H
e3 + (

C − DG
H

− Dkd2
H

)
e4

ė3 = �t · ẋ4d + e4

ė4 = −ẋ4

= −Ex1 − Fx2 − Gx4 − Hu

= −kp2e3 − kd2e4

(31)

In the following, the term ė3 is managed separately due to its complexity in calculation. Rewriting
Eq. (29) using ei, i = 1, 2, 3, 4:

x4d =
(
kp1 − DE

H
+ A

)
e1 + (

kd1 − DF
H

+ B
)
e2 − D

H
kp2e3 − D(G+kd2)

H
e4

C
(32)
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Differentiating x4d and substituting Eq. (31):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ4d = [(
kp1 − DE

H
+ A

)
e2 + (

kd1 − DF
H

+ B
)
ė2 − D(G+kd2)

H
ė4

]
/C

= [
a1e1 + a2e2 + a3e3 + a4e4

]
/
(
C + D

H
kp2�t

)
a1 = (

B − DF
H

+ kd1

)(
A − DE

H

)
a2 = (

B − DF
H

)(
B − DF

H
+ kd1

)+ A − DE
H

+ kp1

a3 = D(G+kd2)
H

kp2 + (
kd1 − DF

H
+ B

)(−Dkp2

H
+ C − DC

H
− Dkd2

H

)
a4 = Dkd2(G+kd2)

H
− D

H
kp2

(33)

Integrating back to Eq. (31) yields the final expression of ė3:

ė3 = �t
[
a1e1 + a2e2 + a3e3 + a4e4

]
/
(

C + D

H
kp2�t

)
(34)

Denote the vector field of Eq. (31) as Flinear(e1, e2, e3, e4), that is,

Flinear(e1, e2, e3, e4) =

⎡
⎢⎢⎢⎢⎣

e2(
A − DE

H

)
e1 + (

B − DF
H

)
e2 − Dkp2

H
e3 + (

C − DG
H

− Dkd2
H

)
e4

�t
[
a1e1 + a2e2 + a3e3 + a4e4

]
/
(
C + D

H
kp2�t

)+ e4

−kp2e3 − kd2e4

⎤
⎥⎥⎥⎥⎦ (35)

Then, the Jacobian matrix can be derived easily, denoting p = C + D
H

kp2�t:

DFlinear(e1, e2, e3, e4) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

A − DE
H

B − DF
H

−Dkp2

H
C − DG

H
− Dkd2

H

�ta1/p �ta2/p �ta3/p �ta4/p + 1

0 0 −kp2 −kd2

⎤
⎥⎥⎥⎥⎦ (36)

It is noticeable that [e1, e2, e3, e4] = [0, 0, 0, 0] is a fixed point of the system (46). Under most con-
ditions, the system is deemed locally asymptotic stable around the fixed point if all the eigenvalues of
Eq. (36) have negative real parts, which represents an exponentially decaying term in time domain, and
thus means stability. However, the explicit solution to the eigenvalues of Eq. (36) is too complex, and
therefore, it better serves as an examiner of the stability through numerical calculation.

3.5. Semi-explicit cascaded PD controller design for nonlinear model
Following the same design procedure in Section 3.3, the proposed method is implemented in nonlinear
model (1) in this section. The derivation for nonlinear model of cartpole system is far more complicated
than its linear counterpart. Therefore, only necessary derivation is completed by hand, for example, the
derivatives of error vectors, and then, the authors use SymPy [29] to complete the final symbolic as well
as numerical calculation.

Splitting Eq. (1) into two subplants as follows, denoting p2 = (M1 + M2)(J + M2l2) − M2
2 l2 cos2 (x1):

subplant1:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =

(
−F1(M1 + M2)x2 − M2

2 l2x2
2 sin (x1) cos (x1) + F0M2lx4 cos (x1)

+(M1 + M2)M2gl sin (x1) − M2l cos (x1)u

)

p2

(37)

subplant2:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ3 = x4

ẋ4 =

(
F1M2lx2 cos (x1) + (J + M2l2)M2lx2

2 sin x1 − F0(J + M2l2)x4

−M2
2gl2 sin (x1) cos (x1) + (J + M2l2)u

)

p2

(38)
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By transforming the dynamics of subplant1 into a virtual PD controller, and assigning the coupling
term x4 as the reference signal for subplant2, the following can be derived

kp1e1 + kd1e2 =

(−F1(M1 + M2)x2 − M2
2 l2x2

2 sin (x1) cos (x1) + F0M2lx4d cos (x1)
+(M1 + M2)M2gl sin (x1) − M2l cos (x1)u

)
p2

(39)

where kp1, kd1 are the proportional and derivative gains of PD1 controller, and e1 = −x1, e2 = −x2 are the
angular and angular velocity errors of the pole dynamics. If this equation holds, subplant1 is equivalent
to Eq. (21). Thus, the expression of x4d can be initially given:

x4d =

(
p2kp1e1 + p2kd1e2 + F1(M1 + M2)x2 + M2

2 l2x2
2 sin (x1) cos (x1)

−(M1 + M2)M2gl sin (x1) + M2l cos (x1)u

)
F0M2l cos (x1)

(40)

Turning focus to subplant2 and design a PD2 controller with feedback linearization

u =

(−F1M2lx2 cos (x1) − (J + M2l2)M2lx2
2 sin x1 + F0(J + M2l2)x4

+M2
2gl2 sin (x1) cos (x1) + p2(kp2e3 + kd2e4)

)
J + M2l2

, (41)

where e3, e4 are the position and velocity errors of the cart, defined as

e3 = x3d − x3 = (x3 + �t · x4d) − x3 + (xr − x3) = �t · x4d + (xr − x3) (42)

e4 = −x4 (43)

so that the original subplant2 becomes a second-order system manipulated by a PD controller as in Eq.
(27). Substituting Eq. (41) into Eq. (40) and solving the semi-implicit equation of x4d, the closed-form
expression becomes:

x4d =

(
p2kp1e1 + p2kd1e2 + F1(M1 + M2)x2 − (M1 + M2)M2gl sin (x1) + M2l cos (x1)

J+M2l2

[−F1M2lx2 cos (x1)
+F0(J + M2l2)x4 + M2

2gl2 sin (x1) cos (x1) + p2kd2e4 + p2kp2(xr − x3)
])

F0M2l cos (x1) − p2M2 l cos x1
J+M2 l2

kp2�t
(44)

The explicit expression for u can be herein obtained by substituting Eq. (44) with Eq. (42), Eq. (43)
back into Eq. (41).

3.6. Stability analysis using Jacobian matrix for nonlinear model
This section provides the stability analysis for system and controller designed in Section 3.5. Compared
with the stability analysis of linear model in Section 3.3, the derivation in this section is intimidating
and even beyond the human ability within reasonable time period. For example, the calculation of ẋ4d

would require compound function derivative calculation with trigonometric function existing in both
the numerators and denominators. It is even more challenging to derive partial differentiation of ẋ4d w.r.t
the error vectors. Thus, we first derive all the necessary components required to calculate the final result
and input everything into the PC to complete the final symbolic and numerical evaluations.

The error vectors for nonlinear model (1) is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e1 = −x1

e2 = −x2

e3 = �t · x4d + (xr − x3)

e4 = −x4

(45)
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Differentiating Eq. (45) and replacing all state variables using ei, i = 1, 2, 3, 4:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = e2

ė2 = −ẋ2

=

(
F1(M1 + M2)e2 − M2

2 l2e2
2 sin (e1) cos (e1) + F0M2le4 cos (e1)

+(M1 + M2)M2gl sin (e1) + M2l cos (e1)u

)

p2

ė3 = �t · ẋ4d + x4

ė4 = −ẋ4

= −kp2e3 − kd2e4

(46)

In the following, the term ė3 is managed separately due to its complexity in calculation. Rewriting
Eq. (44) using ei, i = 1, 2, 3, 4. Hence,

x4d = A2

B2

, (47)

where A2 and B2 are the numerator and denominator, respectively, expressed as below:

A2 =p2kp1e1 + p2kd1e2 − F1(M1 + M2)e2 + (M1 + M2)M2gl sin (e1) + M2l cos (e1)

J + M2l2

[
F1M2le2 cos (e1)

− F0(J + M2l
2)e4 − M2

2gl2 sin (e1) cos (e1) + p2(kp2e3 + kd2e4)
]

(48)

B2 = F0M2l cos (x1) (49)

Firstly, the term p2 = (M1 + M2)(J + M2l2) − M2
2 l2 cos2 (x1) should be processed. Rewriting it using

error variables and taking the derivative of it based on Eq. (45).

p2 = (M1 + M2)(J + M2l2) − M2
2 l2 cos2 (e1) (50)

ṗ2 = 2M2
2 l2 cos (e1) sin (e1)e2 (51)

So the derivative of A2 is
Ȧ2 = ṗ2kp1e1 + p2kp1e2 + ṗ2kd1e2 + p2kd1ė2 − F1(M1 + M2)ė2 + (M1 + M2)M2gl cos (e1)e2

+ M2l

J + M2l2

[
F1M2l

(
ė2 cos2 (e1) − 2e2 cos (e1) sin (e1)e2

)− F0(J + M2l
2)
(
ė4 cos (e1) − e4 sin (e1)e2

)
− M2

2gl2
(− sin (e1)e2

sin (2e1)

2
+ cos (e1) cos (2e1)e2

)+ kd2

(
(ṗ2e4 + p2ė4) cos (e1) − p2e4 sin (e1)e2

)
kp2

(
(ṗ2e3 + p2(�tẋ4d + e4)) cos (e1) − p2e3 sin (e1)e2

)]
.

(52)

Noticeably, ẋ4d appears again in Ȧ2, which means one more implicit equation to solve in order to
calculate ẋ4d. Similarly, the derivative of B2 is

Ḃ2 = −F0M2l sin (e1)e2 (53)

At last, the derivative of x4d can be formulated based on fractional derivation rule

ẋ4d = Ȧ2B2 − Ḃ2A2

B2
2

. (54)

Solving the above implicit equation arrives at the final equation:

ẋ4d = (Ȧ2 − p3ẋ4d)B2 − Ḃ2A2

B2
2 − p3B2

(55)

p3 = M2l

J + M2l2
kp2p2�t cos (e1) (56)
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Table I. Influence of parameter selection.

Params x1 overshoot x1 oscillate x1 converge x3 overshoot x3 oscillate x3 converge
kp1 − − + − − −
kd1 − − + + − –
kp2 + + + + + −
kd2 + + + − + +

Denote the vector field of Eq. (46) as Fnonlinear(e1, e2, e3, e4)

Fnonlinear(e1, e2, e3, e4) =

⎡
⎢⎢⎢⎢⎢⎢⎣

e2(
F1(M1 + M2)e2 − M2

2 l2e2
2 sin (e1) cos (e1) + F0M2le4 cos (e1)

+(M1 + M2)M2gl sin (e1) + M2l cos (e1)u

)
p2

�tẋ4d + e4

−kp2e3 − kd2e4

⎤
⎥⎥⎥⎥⎥⎥⎦

(57)

Then, the Jacobian matrix can be derived easily:

DFnonlinear(e1, e2, e3, e4) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
∂ ė2

∂e1

∂ ė2

∂e2

∂ ė2

∂e3

∂ ė2

∂e4

∂ ė3

∂e1

∂ ė3

∂e2

∂ ė3

∂e3

∂ ė3

∂e4

0 0 −kp2 −kd2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(58)

In Eq. (58), ∂ ėi
∂ej

, i = 2, 3;j = 1, 2, 3, 4 are the partial derivatives of corresponding terms w.r.t the error
variables. Those are too complicated to be manually derived and are solved instead by the PC symboli-
cally. It is noticeable that [e1, e2, e3, e4] = [0, 0, 0, 0] is a fixed point of the system (46). If all eigenvalues
of Eq. (58) have negative real parts, then the system is sure to be locally asymptotic stable around the
fixed point.

Remark 5 (Parameters selection): In this paper, an analytical solution to the specific range of those
parameters that stabilizes the system is not provided, which is a potential research direction. However,
a critical advantage of the proposed controller lies in similarly intuitive tuning process as conventional
PID controller. With that being said, based on the derived Jacobian matrix, one can use whatever opti-
mization method to find an approximate range of parameters that stabilizes the system by examining
the eigenvalues of the resulting Jacobian matrix. In addition, to further understand the influence of each
parameter on the system performance, an ablation study is implemented (around the chosen parame-
ters) on both the baseline and proposed controller. The observation has been concluded in Table I. In
the table, “+” means increased overshoot, increased oscillation or increased convergence rate under the
increase of corresponding parameters accordingly, and vice versa for “−.” The results (see Appendix)
also show that the chosen parameters are Pareto optimal. That is, by perturbing the current parameters,
no further simultaneous improvement on the performance of x1 and x3. This is also important to ensure
that the baseline method has achieved its optimal performance.

Remark 6 (Stability analysis using eigenvalues): In control theory, the Jacobian matrix of the closed
system can be used to ensure stability, by examining that all eigenvalues have strictly negative real parts.
Under this condition, the Jacobian matrix is called a stable matrix (or sometimes Hurwitz matrix) and
that the system is asymptotically stable around the equilibrium points [30].
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Table II. Parameter of dynamic model.

Parameters Description Values
g Gravity acceleration 9.8 m/s2

M Mass of the cart 0.5 kg
m Mass of the pole 0.2 kg
l Length of the pole 0.3 m
J Inertia of link 0.006 kg m2

�t Simulation timestep 0.01 s
F0 Friction factor of the pole 0.1 N/m/s
F1 Friction factor of the cart 0.1 N/m/s

Table III. Parameter of simulation environment.

Description Values
Simulation timestep 0.01 s
ODE solver Semi-implicit Euler
Control timestep 0.01 s
Episode 8 s
Env OpenAI Gym

4. Simulation
This section implements the proposed method to cartpole system and retrieve numerical simulation
results as well as stability analysis. Firstly, necessary parameters for the dynamic model, simulation
environment and cascaded PD controller are specified. Secondly, the simulation results are presented,
closely followed by stability analysis. The results on linear approximated model are foremost presented
and then comes the nonlinear model.

4.1. Parameters specification
Table II shows the parameters of the dynamic models (1) and (5). Table III lists the parameters of the
simulation environment setup. We are using OpenAI Gym [31] environment to carry out the simulation.
Gym is a popular simulation platform with both continuous and discrete environment setup written in
Python. Table IV are the parameters of the proposed method and the baseline. Similarly, The initial states
are set as [x1, x2, x3, x4] = [0.5, 0, 0, 0]. The reference signal for cartpole system is [x1d, x2d, xd, x4r] =
[0, 0, 0.5, 0], which represent the desired angle and angular velocity are all 0. Naturally, it is hoped that
the ending position of the cart is not too far away from its initial location, which means also that the
linear velocity of the cart should converge to 0 with passage of time. Under these considerations, the
cost of an episode is defined as

L = −
800∑

timestep = 0

e2
1 + 0.1e2

2 + e2
3, (59)

then many optimization algorithms can be used to find the optimal controller parameters for cascaded
PD controller. In this paper, Bayesian optimization is implemented as a baseline, plus manual fine-
tune to determine the final parameters. Bayesian optimization is chosen because of its data efficiency
in optimization process [32]. By constructing a surrogate probabilistic model, it can retrieve the next
location with high probability of getting better result. However, one disadvantage is that it may only
find a sub-optimal solution [33]. Thus, using Bayesian optimization as a baseline helps us get closer
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Table IV. Parameter of controllers.

Method kp1 kd1 kp2 kd2

Ours 240.00 34.10 60.00 79.18
Baseline 200.00 39.48 20.82 60.76

to the optimal parameters quickly, and then the parameters are fine tuned manually aiming for best
performance.

4.2. Double-loop PD controller as baseline
Double-loop PD controller is a well-established method for the control of the cartpole systems and is
also one of the most fundamental controller that inspires the invention of many other methods [34].
The intuitive idea of double-loop PD controller lies in using PD controller each for the stabilization of
the pole and the cart, respectively. The final control input is a direction summation of those two PD
controllers. The formula is represented as

udouble = k̄p1e1 + k̄d1e2 + k̄p2e3 + k̄d2e4, (60)

where e1, e2, e3, e4 are errors for x1, x2, x3, x4, respectively, and k̄p1, k̄d1, k̄p2, k̄d2 are the parameters.
Conceivably, although this controller has been proved effective in practice, its implementation is too
intuitive to exploit any information that the dynamical system has to provide.

4.3. Results and evaluation
4.3.1. Results of linear approximated model
The results of the linear approximated model are depicted in Figs. 4–8. Figure 4 is the output of the
angle of the pole. Compared with the baseline, the proposed method outputs slightly higher magnitude
and frequency oscillation, with shorter settling time. Figure 5 also coincides with Fig. 4 by showing cor-
responding oscillation in the velocity level. Figure 6 depicts the position of the cart, where the baseline
method presents a very slow asymptotic convergence. Figure 7 shows the outputs of x4. Lastly, Fig. 8
presents how the torque input changes alongside the episode. It also oscillates at first and gradually
converges to 0. A severe overshoot is observed for the baseline controller at the very beginning, but the
oscillation is alleviated afterwards.

Next, the Jacobian matrix of this linear system is to be investigated to understand some phenomena
that happened in the simulation results. Substituting the controller parameters into Eq. (36), the Jacobian
matrix can be calculated out:

DFlinear(e1, e2, e3, e4) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0

24.50 −4.17 200.00 212.95

−4.75 −0.62 71.26 75.58

0 0 −80.00 −85.18

⎤
⎥⎥⎥⎥⎦ (61)

and the eigenvalues with corresponding eigenvectors are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ1 = −3.60

λ2 = −4.05 + 11.24j

λ3 = −4.05 − 11.24j

λ4 = −1.24

(62)
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Figure 4. x1 output of linear model.

Figure 5. x2 output of linear model.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�v1 = [ − 0.10 − 0.14j, 0.36 + 0.49j, −0.37 − 0.50j, 0.30 + 0.40j]T

�v2 = [0.063 − 0.036j, 0.15 + 0.85j, 0.20 + 0.44j, −0.21 − 0.32j]T

�v3 = [ − 0.047 − 0.049j, −0.36 + 0.73j, −0.30 + 0.34j, 0.27 − 0.23j]T

�v4 = [0.080 + 0.029j, −0.099 − 0.036j, 0.94 + 0.34j, −0.73 − 0.26j]T

(63)

In Eqs. (62) and (63), j is the imaginary unit and T represents transpose of vectors. All the eigenvalues
have negative real part, which ensure local stability near the equilibrium point.

Remark 7 (Global stability): The system is at least locally asymptotic stability but not guaranteed
to be globally stable. The attempt to elevate the stability conclusion to global is intuitive and has its
background from Markus-Yamabe’s theorem [35]. However, Markus-Yamabe’s theorem only holds for
second-order system, and many counterexamples have been discovered for higher-order systems [36].
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Figure 6. x3 output of linear model.

Figure 7. x4 output of linear model.

Figure 8. u output of linear model.
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Figure 9. x1 output of nonlinear model.

Figure 10. x2 output of nonlinear model.

With that being said, in the simulation, the system can be stabilized whatever the initial states, as long
as the pole is placed within the upper half plane.

4.3.2. Results of nonlinear model
The results of the original nonlinear model are depicted in Figs. 9–20, which are similar to the linear
case. Figure 9 is the output of the angle of the pole. Tt converges to 0 soon after some oscillation
of decaying magnitude. Figure 10 shows the profile of the angular velocity of the pole, which shares
similar pattern with Fig. 9. In comparison, the oscillation magnitude of baseline controller is similar
to the proposed method, but with a smaller frequency and therefore slower convergence rate. Figure 11
depicts the position of the cart. The proposed method converges much faster than baseline controller
without comprising the convergence performance of x1, while the baseline controller shows a very slow
asymptotic convergence of x3. Figure 12 shows the outputs of x4. Lastly, Fig. 13 presents how the torque
input changes alongside the episode. It also oscillates at first and gradually converge to 0. A big overshoot
is rendered by the baseline controller.

Next, the Jacobian matrix of this nonlinear system is to be investigated for local stability anal-
ysis. Substituting the controller parameters into Eq. (58), the Jacobian matrix near the fixed point

https://doi.org/10.1017/S0263574723001352 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001352


104 Changyi Lei et al.

Figure 11. x3 output of nonlinear model.

Figure 12. x4 output of nonlinear model.

Figure 13. u output of nonlinear model.
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Figure 14. Friction force analysis.

Figure 15. x1 output of nonlinear model.

Figure 16. x2 output of nonlinear model.
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Figure 17. x3 output of nonlinear model.

Figure 18. x4 output of nonlinear model.

Figure 19. u output of nonlinear model.
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Table V. Performance indices overview.

Method t1/s t2/s MAE1/rad MAE2/m Energy
Ours/Linear 2.00 4.00 0.02654 0.5212 11,940.29
Baseline/Linear 2.50 8.00 0.03234 0.5366 10,847.11
Ours/Nonlinear 1.50 3.00 0.02326 0.5034 17,521.81
Baseline/Nonlinear 3.00 7.00 0.03762 0.5277 15,224.77

Figure 20. Coulomb friction of nonlinear model.

[e1, e2, e3, e4] = [0, 0, 0, 0] can be calculated. The results are exactly the same with Eqs. (36)–(63). This
also verifies the derivation process, since in the equilibrium point, the linear model should be equivalent
to the nonlinear model.

4.3.3. Performance indices overview
To conclude the results showcase section, a performance overview of both linear and nonlinear models
with two controllers respectively is shown in Table V. t1, t2 are the convergence time for the pole and
the cart, respectively. MAE1, MAE2 are the mean absolute error of the pole and the cart respectively.
“energy” means the mean square sum of control input, which represents the energy consumption of
the controller. We can safely conclude that the proposed method is outstanding compared with double-
loop PD controller in terms of convergence rates and tracking errors of x1, x3. However, the ensued
cost of superiority lies in increased control efforts and slightly severer oscillation. The advantages of
proposed controller originate from the exploitation of the internal dynamics of the model through a
semi-implicit process, thus a system-level consistent intermediate target is derived. However, for double-
loop PD controller, the control efforts required by the cart and the pole are competing, resulting in a
compromise between performance of those two and limiting the overall performance.

4.3.4. Robust performance
To illustrate the robustness of the proposed controller, this subsection presents the results of simulation
under both Coulomb friction and random noise. Coulomb friction is an approximation of dry friction in
practice, including both the static friction and kinetic friction, with different coefficients. According to
the Coulomb’s law of friction, the magnitude of the friction between two dry sliding surface is indepen-
dent of the magnitude of the relative velocity. However, the direction of the friction is opposed to the
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relative velocity. Therefore, Coulomb friction is a highly nonlinear type of disturbance [37]. Accordingly,
the cartpole system dynamics with disturbance is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 =

(
−F1(M1 + M2)x2 − M2

2 l2x2
2 sin (x1) cos (x1) + F0M2lx4 cos (x1)

+(M1 + M2)M2gl sin (x1) − M2l cos (x1)(u − fcart)

)

p2

+ fpoleRjoint
J

+ d1

ẋ3 = x4

ẋ4 =

(
F1M2lx2 cos (x1) + (J + M2l2)M2lx2

2 sin x1 − F0(J + M2l2)x4

−M2
2gl2 sin (x1) cos (x1) + (J + M2l2)(u − fcart)

)

p2

+ d2

(64)

where fcart is the friction acting on the cart because of rolling. This force will counteract the control
input u directly, and therefore u is directly deducted by fcart. fpole is the friction acting on the revolute joint
that connects the cart and the pole. To convert it into angular acceleration, it is multiplied by the radius
of the joint Rjoint = 0.01 m and then divided by the inertia J. −1 ≤ d1, d2 ≤ 1 are bounded random total
disturbance added to the acceleration. The force analysis figure is plotted in Fig. 14.

According to the Coulomb friction theory, the friction is proportional to the normal force, and cannot
revert the relative motions between two surfaces. Firstly, fcart is considered. The sliding surfaces are the
wheels and the ground. This is a rolling motion, and the friction coefficient is chosen slightly smaller
than sliding friction. The static friction coefficient ccart_static = 0.2, and the kinetic friction coefficient
ccart_kine = 0.05. The normal force is affected by both the mass gravity and the lifting force generated by
the centrifugal force of the pole, but cannot be negative. Accordingly, the normal force of the cart is:

fcart_nor = max
[
0, (M1 + M2)g −

∫ l

r=0

M2

l
ẋ2

2rdr
]

(65)

On the other hand, fcart cannot revert the influence of u, which means if u − fcart has different sign with
u, then fcart = u. Therefore, the total expression of fcart is:

fcart =

⎧⎪⎨
⎪⎩

ccart_static × fcart_nor, if static and [(u × (u − fcart)] ≥ 0

ccart_kine × fcart_nor, if kinetic and [(u × (u − fcart)] ≥ 0

0, if [(u × (u − fcart)] < 0

(66)

The fpole is modelled as follows. The normal force of the pole is a vector summation of the centrifugal
force and the force generated by the cart acceleration. Therefore, the normal force should be expressed
as:

fpole_nor =
∥∥∥∥
[∫ l

r=0

M2

l
ẋ2

2rdr cos (x1), M2ẋ4 −
∫ l

r=0

M2

l
ẋ2

2rdr sin (x1)

]∥∥∥∥
2

(67)

Similarly, the full expression of fpole is:

fpole =
{

cpole_static × fpole_nor, if static
cpole_kine × fpole_nor, if kinetic

(68)

where the static friction coefficient cpole_static = 0.5, and the kinetic one cpole_kine = 0.3.
Figures 15–20 are the comparative results of the proposed controller and double-loop PD controller

under added disturbance. In comparison with previous sections without disturbance, the results here are
similar, only with some oscillation and chattering near the equilibrium point. This is due to the existence
of friction and random noise, which slightly impairs the control performance. Nonetheless, the system
is still stable under both controllers. Besides, Fig. 20 illustrates the Coulomb friction profile, which
features abrupt change, nonlinearity and clipping as the theory suggests.
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5. Conclusion
A control method for underactuated cartpole systems based on cascaded PD controller is proposed in
this article. The gist is to transform the pole dynamics into a virtual PD controller, with the coupling
term exploited as the design variable. The desired value of the coupling term x4d is then fed into the
cart dynamics for the realization of a second PD controller. The expressions of the control input as
well as x4d are derived by solving a semi-implicit equation. This method absorbs all the blessings that
conventional PID controller has to offer (i.e., very simple in design and relatively intuitive to understand)
and can be carried out on the original state-space equations without coordinate transformation, along
with all the assumptions ensue. Besides, contrary to many other PID controller research, a stability
analysis method for the fourth-order cascaded PD controller is proposed using Jacobian matrix of the
residual system, although it only concludes locally asymptotic stability in this system and bears with
it some drawbacks. The simulation results illustrate the advantages of proposed method in terms of
stabilizing the cart and the pole simultaneously compared with widely used double-loop PD controller.
In addition, the robustness against Coulomb friction and random noise is verified through simulation.
The superiority is derived from the exploitation of internal dynamical structure of the system through
solving a semi-implicit equation.

Considering that this is a preliminary research of a control method for underactuated cartpole systems
using cascaded PD controller, there are many efforts in urgent need to solve the following problems.
Firstly, a stability analysis approach is required that can reach the conclusion of global stability. For
example, Lyapunov-based stability theorem may be a good alternative to Jacobian matrix-based method
in this article. With that being said, in the numerical simulation, the cartpole system can be stabi-
lized with a wide range of values of the initial states of the system. Noticeably, for some systems, the
Jacobian matrix-based analysis can actually conclude global stability using relevant theorem proposed
by Markus and Yamabe [38] for high-dimension systems. Moving one step forward, how to ensure that
all eigenvalues of a high dimensional (>2) Jacobian matrix are negative everywhere is an open ques-
tion. A closed-form calculation is obviously infeasible for complicated matrix like in Eq. (58). Secondly,
although this paper is targeted on cartpole system only, the authors envision that the proposed method
should be able to be implemented to other kinds of underactuated systems and be expanded to a class of
underactuated systems. Last but not least, a systematic and theoretic way of parameter selection should
be investigated. The method of tuning in this article is still a combination of Bayesian optimization
and trials. To achieve this, a more capable method for stability proof should be employed, for example,
Lyapunov stability theorem.
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Appendix A: Ablation study of semi-implicit cascaded PD controller
This appendix illustrates the ablation study of the proposed method, where the parameters of the con-
trollers are perturbed one by one and illustrate the outputs of x1, x3 in order to see the influence of each
parameter. The presented results not only feature the process of manual tuning but also prove that the
chosen parameters in the paper are the OPTIMAL ones, by showing that the perturbation of parameters
can only render Pareto optimum w.r.t x1, x3 convergence. Of all the pictures, the green line most approx-
imates the actual performance, which lies in the middle of the perturbation bounds. By showing that the
increase of performance on x1/x3 means the decrease of the other, the authors make sure that the chosen
parameters are nearly Pareto Optimal.

Figures 21 and 22 show the x1, x3 outputs respectively under the perturbation of kp1. When kp1

increases, the convergence of x1 is accelerated, and its oscillation is suppressed. However, the con-
vergence rate of x3 is decreased. Figures 23 and 24 show the x1, x3 outputs respectively under the
perturbation of kp2, which shares the same discussion with kp1.

Figures 25 and 26 show the x1, x3 outputs respectively under the perturbation of kd1. When kd1

increases, the convergence of x1 is decelerated, with smaller oscillation. In the meantime, the conver-
gence of x3 is also deteriorated. Note that too high-frequency oscillation is unfavourable, and the chosen
parameter actually strikes a balance by leaning to the convergence performance. Figures 27 and 28 show
the x1, x3 outputs respectively under the perturbation of kd2, whose discussion is similar to kd1.

Figure 21. x1 outputs perturbing kp1 of proposed method.

Figure 22. x3 outputs perturbing kp1 of proposed method.
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Figure 23. x1 outputs perturbing kp2 of proposed method.

Figure 24. x3 outputs perturbing kp2 of proposed method.

Figure 25. x1 outputs perturbing kd1 of proposed method.
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Figure 26. x3 outputs perturbing kd1 of proposed method.

Figure 27. x1 outputs perturbing kd2 of proposed method.

Figure 28. x3 outputs perturbing kd2 of proposed method.
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Appendix B: Ablation study of double-loop PD controller
This appendix illustrates the ablation study of baseline method, where the parameters of the controllers
are perturbed one by one and illustrate the outputs of x1, x3 in order to see the influence of each param-
eter. The presented results not only feature the process of manual tuning but also prove that the chosen
parameters in the paper are nearly the OPTIMAL ones, by showing that the perturbation of parameters
can only render Pareto optimum w.r.t x1, x3 convergence.

Figures 29 and 30 show the x1, x3 outputs respectively under the perturbation of kp1. When kp1

increases, the convergence of x1 is accelerated, and its oscillation is suppressed. However, the conver-
gence rate of x3 is slightly decreased. Figures 31 and 32 show the x1, x3 outputs respectively under the
perturbation of kp2, which shares the opposite discussion with kp1. When kp2 increases, the performance
of x1 is worse at the cost of better x3 convergence.

Figures 33 and 34 show the x1, x3 outputs respectively under the perturbation of kd1. The decrease of
kd1 leads to more precise tracking of x1. However, it takes longer for x3 to reach the reference location.
Figures 35 and 36 show the x1, x3 outputs respectively under the perturbation of kd2, which illustrates a
trade-off between overshoot and settling time for x1 and x3. The selected parameters achieve a middle
performance.

Figure 29. x1 outputs perturbing kp1 of baseline method.

Figure 30. x3 outputs perturbing kp1 of baseline method.
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Figure 31. x1 outputs perturbing kp2 of baseline method.

Figure 32. x3 outputs perturbing kp2 of baseline method.

Figure 33. x1 outputs perturbing kd1 of baseline method.
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Figure 34. x3 outputs perturbing kd1 of baseline method.

Figure 35. x1 outputs perturbing kd2 of baseline method.
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Figure 36. x3 outputs perturbing kd2 of baseline method.
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