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1. Introduction

This paper is concerned with the problem of obtaining explicit expressions of
solutions of a system of coupled Lyapunov matrix differential equations of the type

Xt(t) = AM + BMX,{t) + *,(t)C,(t) + £ D,jit)Xjit)

(1.1)
Xi(b) = Fi, l£

where F,, At(t), B^t), C,(t) and Di}(t) are mxm complex matrices (members of CmXm), for
l^i , j^N, and t in the interval [_a,U]. When the coefficient matrices of (1.1) are time-
invariant, Dfj are scalar multiples of the identity matrix of the type DiJ = dijI, where </y
are real positive numbers, for 1 ^i,j^N C, is the transposed matrix of Bh and F, = 0, for
l^i^N, the Cauchy problem (1.1) arises in control theory of continuous-time jump
linear quadratic systems [9-11]. Algorithms for solving the above particular case can be
found in [12]. These methods yield approximations to the solution. Without knowing
the explicit expression of the solutions and in order to avoid the error accumulation it is
interesting to know an explicit expression for the exact solution. In Section 2, we obtain
an explicit expression of the solution of the Cauchy problem (1.1) and of two-point
boundary value problems related to the system arising in (1.1). Stability conditions for
the solutions of the system of (1.1) are given. Because of developed techniques this paper
can be regarded as a continuation of the sequence [3, 4, 5, 6].

2. Explicit solutions

Let /I be a mxn complex matrix, AeCmx„ and let B be a kxs complex matrix,
BeCkXs, then the tensor product of A and B written A ® B, is defined to be the
partitioned matrix

nB al2B ... alnB
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It must be assumed that the reader has some familiarity with this concept. An account
of the uses and applications of this operation can be found in [7, Chapter 8] and in [8].
If A e Cm x „, we denote

A = vec A =

a"J

If M, N and P are matrices with suitable dimensions, and PT denotes the transposed
matrix of P, then from the column lemma [1], one gets vec(M N P) = {PT ® M) vec AT,
and if F,, 1 ^ i ^ N, are matrices we denote

F = , vec F = F =

Given the problem (1.1) let M(i) = Mu{t), where t£[a,fc], 1 ^i,j^N, defined by

(2.1)

and let <S>(t,s) the transition state matrix of the linear system

(2.2)

such that ®(b,b) = I and <l>(t,s) = exp(j'sM(u)du), [2].
With the previous notation, the next result contains an explicit solution of the

Cauchy problem (1.1) in the general case.

Theorem 1. Let us consider the Cauchy problem (1.1) where the coefficients are
continuous matrix valued functions defined on the interval \_a,b~]. Then the only solution of
this problem is given by the expressions

(2.3)

(2.4)X(t) =
XN(t)

, A(s) =

where s, t belong to [a, 6].
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Proof. By application of the column lemma, [1], the Cauchy problem (1.1) is
equivalent to the following one

x((t) = At{t)+(i ® jj

(2.5)

If Ji denotes the set { l , . . . , i - l , i + 1 , . . . , / V } , for l ^ i ^ J V , Problem (2.5) can be
expressed by the form

i(t) = Mii(t)Xi(t) + £ M

(2.6)

where M,v(t) are given by (2.1) From (2.6) Problem (1.1) is equivalent to the extended
linear system

) = M(t)X(t) + A(t)
(2.7)

X(b) = F

where X and A are given by (2.4). From (2.7) and [2, p. 40], the only solution of
Problem (1.1) is given by (2.3).

For the time-invariant case, M = M{i) is a constant matrix and the transition state
matrix is <P(f, s) = exp((t — s)M). Thus for the time invariant case, the solution of Problem
(1.1) is obtained from (2.3), substituting O(r,s) by the exponential matrix exp((t-s)M).
Thinking of the application to the control theory of continuous-time jump linear
quadratic systems, we are interested in the explicit expression of the following particular
case.

Corollary 1. Let us consider Problem (1.1) where F, = 0, and Ct = Bf, DiJ = dijI, At = Q,
are time-invariant matrices for 1 ^ i, j ^ N, and dtj is a positive number for each i, j . In this
case the solution of Problem (1.1) is given by

4, A= : (2.8)

where M=(Mij),

Mu = (1 ® B,) + (B; ® /) + / ® (daI)
(2.9)
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Proof. It is a consequence of Theorem 1.

Corollary 2. With the hypothesis and the notation of Corollary 1, if M is an invertible
matrix, the solution of the Cauchy problem (1.1) is given by

X(t) — M~l(I—exp((fc—t)M))A. (2.10)

Proof. By integration in the expression (2.8) of Corollary 1, the result is established.

In order to obtain an effective computation of the solution of the Cauchy problem
(1.1) for the time-invariant case studied in Corollaries 1 and 2, we recall that in [14],
useful methods for computing the integral (2.8) are given. These procedures are
extremely easy to implement and yield an estimation of the approximation error. For
computing the expression (2.10), a numerically useful method is given in [13], where one
can compute the exponential exp(wM) avoiding the computation of the eigenvalues of
M.

For the time varying case, in general a computable expression of the transition state
matrix <&(t,s) is not available, though there exist several classes of systems such that this
matrix is computable in the same manner as the linear invariant systems. In accordance
with Definition 2 given by Wu in [15], a set of m x m constant matrices {Mi}pi=l is said
to be mutually commutative if and only if, MiMj = MjMi, for all i,j, such that

Let us consider the time-varying Problem (1.1) and let us suppose that the matrix
M(t) given by (2.1) can be written as

(2.11)

where M,'s are constant matrices and c;(t)'s are linearly independent sets of scalar time
functions extracted from elements of M(t), such that {Mi}f=l is mutually commutative,
then the transition state matrix <t(t, s) of the linear system (2.7) can be computed by

(D(t,b)=nexp(MA(£,fc)) (2.12)

where

bi(t,b)=\ci(s)ds (2.13)
b

and M,-'s and c,(s)'s are defined by (2.11).
The following corollary is a consequence of Theorem 1 and Theorems 1 and 2 of

[15].

Corollary 3. Let us consider Problem (1.1) defined on the real line, and let us assume
that the matrix M(t) given by (2.7) can be expressed by (2.11) and {M,}f=1 is mutually
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commutative. Then it follows that.

(i) The Cauchy problem (1.1) has only one solution given by (2.3) where O(t,s) is given
by (2A2H2A3).

(ii) The system (1.1) is stable if |i>,(t,£>)|<oo, for all t and b and for l ^ i ^ p .

(iii) The system (1.1) is asymptotically stable if for all i=l,2,...,p, b,(f,b)>0 for all t
and b and bj(t,b)->co as f-»oo and

ReA<(M,)<0,

where At(M,) is the kth eigenvalue of the matrix M{.

Example. Let us consider the coupled Lyapunov system

(2.14)

where At and A2 are continuous matrix functions defined on the real line, and

cost ol , ri o "I r - i o
0 J ; c 2 w [ J B w [

L° s i n tJ
and

/ v f -cos t 0 1
D22(t)=\ •

[_ — sinr - 1 J

It is easy to show that in this case the matrix M(t) of the corresponding system (2.2)
associated to (2.14) is given by

M(t)=costM, + sin tM2,Ml = / 8 x 8 ,

M,=
- 1

0

04

0

- 1

*2

* 4

I
| 02>

1 - 1

1 0

<2

0

- 1

1

0 —

0

0

l -

04

1

1 °2
• 1

1 I

1 0

x 4

x2

—

1
(2.15)

It is clear that 2 = M2Mi, and following the notation of (2.11)—(2.13), one gets

b 1 (f, b) = sin t — sin b; b2(t, b) = cos b—cos t,
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b)=exp ((sin t — sin b)/)exp ((cos b - cos t) M2),

where M2 is given by (2.15). From Corollary 3, the system (2.14) is stable. For a
concrete initial condition and for given matrices At{t), i = 1,2, the explicit expression of
the solution of the correspondient Cauchy problem (1.1), is given by Expression (2.3).

The following result is concerned with a two-point boundary value problem of the
type

X,(t) = A,(t) + B

Xi(b)-Xi(a) = Ei;
(2.16)

Theorem 2. Let us consider Problem (2.16) and let us suppose that the transition state
matrix <&(t,s) of the linear system (2.7) satisfies the property.

For all eigenvalue X of O(a, b), /> =/= 1.

Then there is only one solution o/(2.1) given by the Expression (2.3) taking

(2.17)

(2.18)

where

V

and te[_a,b~\.

Proof. From Theorem 1, the only solution of a Cauchy problem for the differential
equation of (1.1) is given by (2.3), where F = X(b). Imposing on the solution the
boundary value condition (2.16), it follows that X(b) satisfies the equation

(2.19)

From the hypothesis (2.17), the matrix /—<t>(a, b) is invertible and from (2.19), X(b) is
given by (2.18). Thus the only solution of (2.14) is given by (2.3) taking F from (2.18).

An analogous result to Theorem 2 can be obtained for the time-invariant case, taking
into account that in this case O(t, s) = exp(((— s)M). In fact, for the time-invariant case,
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Condition (2.17) is equivalent to the following one.

For all eigenvalue X of M, X£2kni/{b-a), k integer. (2.20)

Under this hypothesis, the only solution of the correspondent problem (2.16) is given
by (2.3), with F given by (2.18) and <D(t,s)=exp((t-s)M).

Corollary 4. Let us consider the coupled system (1.1) and let us assume that the
coefficient matrix valued functions are continuous T-periodic in the real line, where T is a
positive real number. Under the hypothesis

For all eigenvalue X o/Q(T,0), X± 1 (2.21)

the only T-periodic solution of the coupled system (1.1) is given by (2.3), where a=T, b = 0,
and £ = 0.

Proof. Let us consider the boundary value problem (2.1), with a=T, b = 0 and £, = 0
for l^i^N. The necessary and sufficient condition in order for the solution of a
Cauchy problem for the system (1.1) to be Aperiodic, is x(T) = x(0). This condition is
the boundary value condition of (2.16), with £, = 0, a = T, and b = 0. The result is a
consequence of Theorem 2, because given the solution of (1.1) with X(T) = X(Q),
extending T-periodically to the real line, one gets a T-periodic solution on the real line.
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