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VISCOUS MOTION IN AN
OCEANIC CIRCULATION MODEL

A.F. BENNETT AND P.E. KLOEDEN

The barotropic motion of a viscous fluid in a laboratory

simulation of ocean circulation may be modelled by Beards ley's

vorticity equations. It is established here that these equations

have unique smooth solutions which depend continuously on initial

conditions. To avoid a boundary condition which involves an

integral operator, the vorticity equations are replaced by an

equivalent system of momentum equations. The system resembles

the two-dimensional incompressible Navier-Stokes equations in a

rotating reference frame. The existence of unique generalized

solutions of the system in a square domain is established by

modifying arguments used by Ladyzhenskaya for the Navier-Stokes

equations. Smoothness of the solutions is then established by

modifying Golovkin's arguments, again originally for the Navier-

Stokes equations. A numerical procedure for solving the

vorticity equations is discussed, as are the effects of reentrant

corners in the domain modelling islands and peninsulae.

1. Introduction

Laboratory experiments with rotating fluids have led to an improved

understanding of the physics of large scale ocean circulation. They also

provide ideal tests for numerical models of ocean circulation. These more

flexible numerical models can then be used to study the physical effects
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of, for example, density stratification and variable wind stress, neither

of which is easily simulated in the laboratory.

The first author has developed a sliced box laboratory experiment to

simulate large scale barotropic motion in the ocean. This motion can be

modelled with a system of partial differential equations due to Beards ley

[3, 4, 5], which is an informal asymptotic approximation to the

incompressible Navier-Stokes equations in a rotating reference frame.

These equations are presently being solved numerically by Hoi land with the

methods developed in his eddy-resolving general circulation model [S].

Although the asymptotic expansion used to derive the equations is not

uniformly valid, there is good agreement between the numerical calculations

and observations. These results will be presented elsewhere by Holland and

Bennett [9]. The purpose of this paper is to prove that Beardsley's

equations have solutions which are smooth enough to ensure the consistency

of the centred finite difference techniques used in these numerical

calculations (the convergence of the numerical procedure is not considered

here).

The laboratory experiment developed by the first1 author is described

briefly in Section 2, and Beardsley's equations are presented in Section 3.

These involve a parabolic partial differential equation for the (vertical

component of) vorticity, weakly coupled to a Poisson equation for the

streamfunction, together with appropriate initial conditions and boundary

conditions. The latter correspond to a no-slip boundary condition for the

depth-independent horizontal velocity. In Section h the numerical

procedure being used by Hoi land is briefly described, and the smoothness of

the vorticity and streamfunction sufficient to ensure its consistency is

determined. Then in Section 5 Beardsley's equations are replaced by an

equivalent system of momentum equations which closely resemble the two-

dimensional incompressible Navier-Stokes equations in a rotating reference

frame. This is done because the boundary condition for the parabolic

vorficity equation involves an integral operator and, as far as we are

aware, the theory of heat potentials has not yet been extended to such

boundary conditions. On the other hand, the existence of generalized

solutions for the equivalent system of momentum equations is readily

established by modifying Ladyzhenskaya's proof [JJ, Chapter 6] of the

existence of such generalized solutions for the two-dimensional
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incompressible Navier-Stokes equations. This is carried out in Section 6,

and then in Section 7 these generalized solutions are shown to in fact be

classical solutions with the appropriate smoothness required for the

consistency of the numerical scheme discussed in Section h. This is done

by modifying Golovkin's proof [6], for the Navier-Stokes equations on a

domain with a smooth boundary, to the momentum equations under

consideration on a square domain. In Section 8 the effect on the

smoothness of solutions is discussed when a barrier or reentrant corner,

modelling an island, is included in the region of motion.

2. The experimental apparatus

The experimental apparatus is a glass box, which is filled with water

and mounted on a turntable. The box has square horizontal cross-section

and a sloping top. It has width L , maximum depth H and top slope a

(with respect to the horizontal). The sides and top of the box are fixed

to the turntable, whereas the bottom of the box is a disc which can move

independently of the turntable. A water jacket surrounds the lower part of

the box to prevent water from escaping through the 0.1 mm gap separating

the disc from the sides of the box. See Figure 1, page 1*1*6.

The turntable rotates about the laboratory vertical at a rate ft

relative to the laboratory, while the disc rotates about the laboratory

vertical at a rate u relative to the turntable (hence at a rate U + u

relative to the laboratory). The rotation of the disc produces motion in

the water relative to the rotating reference frame of the turntable. The

effect of the sloping top of the box is to stretch columns of water which

are parallel to the axis of rotation. This simulates the effect of the

latitudinal variation in the vertical component of the earth's rotation

rate, that is the g-effect [13]. See Figure 2, page 1*1*7.

The flow in the box is made visible by an opalescent paint suspension

in strong side lighting, and is observed through the sides and top of the

box.
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FIGURE 2

3. The vorticity equations

The motion of the water in the box can be modelled by an informal

approximation to the incompressible Navier-Stokes equations in the

parameter range a « 1 , Ro « 1 and E << 1 , where Ro = |u|/|ft| is

the Rossby number, E = v/|fi|w the Ekman number and v the kinematic

viscosity of water. The horizontal velocity here is independent of depth,

that is, it is barotropic [14].

Dimensionless variables are used, with t i O denoting time;
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X = (x, y) € S = (0, l) x (0, l) the horizontal cartesian coordinates

(with x increasing to the east and y to the north); U = {u, v) the

horizontal velocity; \f> the stream function;

(3 1) C = — ^~
(3-1] C 3x 3J/

the (vertical component of) vorticity; and

(3.2) d = d(y) = 1 - (l-i,)

the depth of the box, vhere X = H/L is the aspect ratio. The

corresponding dimensional variables here are respectively £/|u)|, LX,

|(o|Lu, |u|L ty, |u|c and Ed . Let a = sgn £2 , 6 = sgn u and let V

be the horizontal Laplacian operator. Then following Beardsley [3, 4, 5]

the vorticity equations are

_ 2E^ xfE 2
V dRo ? Ro V CdRo V dRo ? Ro V C dRo

(3-1*) V2i() =

and

The third term on the right hand side of equation (3.3) represents the

source of vorticity produced by the spinning disc. It should be noted that

equations (3.3)-(3.5) cannot be derived as a formal asymptotic expansion of

the Navier-Stokes equations which is uniformly valid for all X in S as

a, Ro and E -»• 0 . This is because the first term on the right side of

equation (3.3) dominates the second term near the shallow and deep ends of

the bix (that is, in the southern and northern boundary layers), while the

second dominates the first near the other ends of the box (that is, in the

western and eastern boundary layers).

The non-slip boundary condition (that is, U = 0 on 3S ) implies

that the streamfunction satisfies

(3.6) if; = 0 on 35 for all t > 0

which provides a Dirichlet boundary condition for the Poisson equation

(3.h). No-slip also implies that
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(3.7) |J (x, t) = JJ f£ (x, x'k(x\ t)dx' = 0

on 35 for all t > 0 , where (J(x, X') is the Green's function for the

Dirichlet problem (3.U) and (3.5). Equation (3.7) gives the boundary-

condition for equation (3.3), which being a parabolic equation also

requires an initial condition

(3.8) ?(x, 0) = Cx(x) for x € S at t = 0 .

4. The method of numerical solution

The numerical procedure being used by Holland to solve the equations

(3.3)-(3.8) is essentially that contained in his eddy-resolving general

circulation model [$]. This is most conveniently applied on a rectangular

domain, which is the main reason for using a box with square horizontal

cross-section in the experimental apparatus, rather than a circular

cylinder as used by, for example, Beardsley [3, 4, 5].

Holland's procedure requires the three equations (3.3)-(3.5) to be

replaced by a single evolution equation involving the streamfunction ty ,

namely

* V I V W U^ I ~ — ^ —;r~~ y n/ -f- y i y U/ I ^ ~̂~ _

where J is the two-dimensional Jacobian defined by

/1 „ \ -rf i \ 3 G 32> 3(3 32?( 4 . 2 ) t / (a , fc) = -5— -5— - -5— -5— .3x 3i/ 3i/ ax

The time derivative -^ at (x, t) in (U.l) is then approximated by the

central difference

(U.3) OKx, t+Ai)-<|i(x, t-At))/2At ,

where At is the numerical time step, and the right side of equation (U.l)

is evaluated (except for the biharmonic term, which is evaluated at time

(t-At) ) at time t . This leads to a Poisson problem for IJJ(X, t+At)

with the Dirichlet boundary condition (3.6), which is discretized by means

of a five-point difference scheme for the Laplacian and a nine-point

Arakawa difference scheme for the Jacobian (the latter conserves discrete

analogues of vorticity, total enstrophy and total kinetic energy in
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unforced, nondissipative systems [2]). This discrete Poisson problem is

then solved by an exact direct method. See [8] for further details.

The above numerical procedure clearly requires the vorticity ? = V if)

to be continuously differentiable in t and twice continuously

differentiable in x and y . In the procedure the discretized Laplacian

and Jaeobian schemes need only be centred on interior grid points and not

on boundary points. However uniform bounds on the second order spatial

derivatives of ? are required at all interior points, to ensure the

consistency of the numerical procedure as the numerical step lengths Ax

and Ajy -»• 0 . For this it is sufficient that the vorticity C be in

C2{S) with •§§ in C°{S) , where 5 is the closure of S . The presence

of the four corner points on the boundary iS considerably complicates

matters here. In the actual experimental apparatus the corners are butted

glass joints rounded off with glue. The numerical procedure is however

defined on a perfect square domain, so the corner points cannot be

disregarded.

5. An equivalent system of momentum equations

When the streamfunction is known, the vorticity equation (3.3) is a

linear second order parabolic partial differential equation. Initial

boundary value problems for such equations can often be solved with the aid

of heat potentials [JO]. Here, however, the boundary condition (3.7)

involves an integral operator to which, as far as we are aware, the theory

of heat potentials has not yet been extended. To circumvent this

difficulty, the vorticity equations (3.3)-(3.8) will be replaced by the

following system of momentum equations:
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<»> S-f-o.
with initial condition

(5.6) U(X, 0) = UX(X) = (ux(x), ^(X)) for X (. S at t = 0 ,

and boundary conditions

(5.7) u(x, t) = 0 for X € 3S , t > 0

and

(5.8) U • n = 0 on 9S for t > 0

where U = ((/, F) and n is the normal to 35 .

Readers familiar with the quasigeostrophic approximation [74] will

recognize equations (5.1) and (5.2) as the 0(Ro) momentum equations with

U = (u, v) as the 0(l) horizontal velocity and U = (U, V) as the

irrotational part of the 0(Ro) velocity, the solenoidal part of which can

be represented by a streamfunction and hence absorbed into the pressure

gradient terms. Note that the non-uniqueness of the decomposition of the

0(Ro) velocity into irrotational and solenoidal parts permits the

imposition of the rigid boundary condition (5-8) on the irrotational part

(and also on the solenoidal part, although the latter is not needed here).

It is easily shown that if U = (u, v) is a solution of equations

(5-l)-(5.8) then its vorticity ? , defined by (3.1), is a solution of

equations (3.3)-(3.8) provided that initially

3D 3u

6. Existence of generalized solutions

The momentum equations (5.l)-(5.8) closely resemble the two-

dimensional incompressible Navier-Stokes equations. Indeed if a = sgn il

is set equal to zero in equations (5.1) and (5-2), then the initial

boundary value problem (5-l)-(5-3), (5-6) and (5-7) is almost precisely the

nonlinear nonstationary problem for the Navier-Stokes equations considered

by Ladyzhenskaya [/I], namely:
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(6.1)

(6.2)

(6.3)

and

(6.It)

||+ (u-V)u = - Vp + i - V2u + F ,

V • U = 0 ,

u(x, 0) = uJx) for X € S at i = 0

u(x, t) = 0 for X € 85 and t > 0 ,

where Re is the Reynolds number (equal to Ro/X E here) , F is a

specified body force, and V is the horizontal gradient operator.

Ladyzhenskaya has established the existence, uniqueness and continuity

in initial data of generalized solutions of the nonlinear non-stationary

problem (6.l)-(6.h) [/?, Chapter 6]. Her proof is based on two identities

L11, Chapter 6, Section 2, Equations 7 and 8], which follow from

(6.l)-(6.1t). These are

(6.5)

and

(6.6) h4r

h & Hull 3u
Re 1|| 3a:

+ (F, u)

32u'2

Re 1 8t 9a: 3*'
f f /in. ly. ly. i£ ju. 3u
JJ \3t 3x " 3t 3t 3i/ ' 3*

bdx

where the inner product is defined by

(6.7) (a, b) = ff
>'S

and the norm by

(6.8) ||a|| = (a, a ) % .

Identities analogous to (6.5) and (6.6) can be derived for the

momentum equations (5-l)-(5.8). The first of these is

& ' •>
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and the second, which is similar, is omitted. Here ip is the stream-

function corresponding to the horizontal velocity u and F = [F , F^\ is

an effective body force with components

(6.10) * , < * . * > - • 6 X E %

and

Note that the box depth d(y) , which is defined by (3.2), satisfies

(6.12) 0 < 1 - ̂ f^ = d(0) 5 d(y) < d(l) = 1 .

Hence the effective body force F is in C°(^)

Ladyzhenskaya used identities (6.5) and (6.6) to derive a priori

estimates of the form

(6.13)

The same estimates can also be derived here, because the integral term on

the right side of (6.9) is always the negative of a positive quantity.

This follows from (6.12) and Wirtinger's inequality [7, p. loU], which

yield

Consequently the extra terms in the momentum equations (5-l)-(5.8) serve

only to reinforce the a priori estimates in [//].

Ladyzhenskaya used these a priori estimates to prove the existence of

generalized solutions for equations (6.1)-(6.U). Her proof, which is based

on a Galerkin construction, carries over almost verbatim to the momentum
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equations (5.l)-(5-8). For the latter equations a generalized solution on

an arbitrary time interval [0, T] is a function U = (u, v) such that

(6.15) \\ [uk+V*)dK S Cf uniformly in t d [0, T] ,

(6.16) g ,£ . !^L2(5x[0, *]) ,

with

(6.17) V • U = 0 , U = 0 on 3S x [0 , J1] and 11 = 11- at t = 0 ,

and which s a t i s f i e s t he p a r t i a l d i f f e r en t i a l equations (5-1) and (5.8) in

the general ized sense t ha t the in tegra l

ia o i f f f i^U v 1 fa" 8* 3" 3X] 3X 3X c Y
( 6 . 1 8 ) •{•5T- * X + ^ = - h r— • TT— + TT— • TT— - " U • •-— - vu • -s— - F • X

Jo J J 5 l
8 t Re I 3 * 8a; 3^ 31/J 3a; 92/

dRoE*
u • X - ^ ^ f^^ (in

vanishes for all test functions X . These functions X satisfy

(6-19) X, ||, -g € L2(S x [o, r])

with

(6.20) 7 • X = 0 on S x [0, T] , X = 0 on 35 x [0, J1] ,

and correspond to a streamfunction $ , that is X = - -g—, -5— .

Following Ladyzhenskaya [//, page 31] let J 1(S) be the completion

of the space J(S) in the norm of the Sobolev space (/"' (S) , where J(S)
00

is the space of all C solenoidal vector functions with compact support

in S . Then the following existence theorem holds.

THEOREM 1. If the initial velocity M^. € fc^'2(S) n J As) , then

there exists a generalized solution for the momentim equations (5.l)-(5.8)

on an arbitrary finite time interval [0, T] .

In addition, for generalized solutions U and u' corresponding to

initial velocities U-. and u' the estimate
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(6.21) ||u-U'|l £ ||u7-u}||exp{Re
2(2||uJ||

2-3||F||2t2) - |^ (l - i ]

can be derived. This yields the following theorem.

THEOREM 2. The generalized solutions of the momentum equations

(5.l)-(5.8) are unique and depend continuously on the initial velocity.

A similar estimate to (6.21) can be derived for generalized solutions

corresponding to different body forces and implies the continuous

dependence of solutions on the body force. Also estimate (6.21) can be

replaced by the estimate

(6.22) ||U-U'|| < ||U|| + Hu'll

£ llujll + llufll + 2||F||t ,

which follows from (6.13) and the fact that the effective body force F

does not depend on t . This shows that the separation of generalized

solutions does not increase faster than linearly in time t , and not

exponentially as might be allowed from estimate (6.21).

The proofs of the preceding Theorems 1 and 2 differ only trivially

from the corresponding proofs in [I/], and so need not be given here.

Finally, note that the irrotational velocity U = (U, V) can be

represented by a velocity potential x with

(6.23) V-fx, V.%.

In view of the divergence equation (5-^) and the no-slip boundary condition

(5-8) this velocity potential x satisfies the Poisson "equation

(6.2U) v2x

with a homogeneous Neumann boundary condition. From this it follows that

the irrotational velocity U depends linearly on the solution U of

equations (5-l)-(5.8) and has the same degree of differentiability.

7. Smoothness of solutions

Ladyzhenskaya ['/, Chapter 6, Section U] has shown that the

generalized solutions of (6.1)—(6.4) are actually classical solutions.

That is, all the derivatives in (6.1) and (6.2) are continuous in
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o
S x (o, T) , while U is continuous in 5 x [0, T] . However her proof

requires that the domain has a smooth boundary, specifically 3S ( C ,

and so would appear to be inapplicable to the square domain considered

here.

A full examination of [II] shows that the smooth-boundary requirement

enters after the re-arrangement of (6.l)-(6.h) into the form of the

linearized stationary flow problem:

(7.1) ^ ^ U + Vp = G ,

(7.2) V • u = 0 ,

(7.3) u = 0 on 3S ,

where for the moment only the homogeneous boundary condition (7.3) is being

considered, and

G= F- (U.v)u--g .

Note that if U is the generalized solution of (6.l)-(6.U), then G as

defined by (l .h) is in TJAS) . Using the Leray hydrodynamic potentials

[12], Ladyzhenskaya has shown that for such G , the unique solution U of

(7.l)-(7.3) is in Jt̂ (S) . Since 5 is a strongly locally Lipschitz

domain, it may be concluded [I, Theorem 5.U] that U , which is also the

generalized solution of (6.l)-(6.1») , is in C*(S) , 0 < X < 1 .

It is the use of the Leray potentials which lead to the requirement

that ZS i Cr ; for example the values of the double potential on 35 are

not continuous at corners of 35 . On the other hand we may dispense with

the Leray potentials and the attendent smoothness requirement for 35 ,

since Friedrich's Theorem £14, p. 177] ensures that u f (OS) provided

that G I LA.S) and 5 is merely open. Note that for (7.l)-(7-3) the

test functions must be solenoidal, that is, in J(S) . Our generalized

solution of (5.l)-(5.8) is a solution of (7.l)-(8.3) with respect to a much

broader class of test functions (see (6.19), (6.20)) so Friedrich's

Theorem certainly applies here.
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With the above change, the Ladyzhenskaya proof of smoothness of

solutions of (6.l)-(6.U) is valid for our square domain. It is trivial to

modify the proof so that it applies also to the momentum equations

(5.l)-(5.8). The degree of smoothness established thus far is inadequate

for our purposes; for example we require u £ C (S) . Golovkin has shown,

using the Leray potentials, that U € CT{S) provided again that 8S S, Cr

and also that S is convex. The Golovkin proof carries over to the

momentum equations (5.l)-(5-8) on a convex domain with a smooth boundary,

with trivial modifications involving the irrotational velocity U (which,

as been noted above, is linearly related to U and has the same degree of

smoothness). The proof can also be modified to hold for our square

domains 5 . First, let S be the convex domain with a smooth boundary

which is obtained from S by rounding off the four corners with inscribed

circular arcs of radius e , where 0 < e < % . The generalized solutions

of the momentum equations (5.l)-(5.8) on the domain S are also

generalized solutions on the subdomain S , but with inhomogeneous

boundary values. By virtue of the Ladyzhenskaya smoothness theorem these

boundary values are smooth, they may be smoothly extended [77, Chapter 1,

Section 2.1] into S , and so the boundary conditions may be homogenized

[7J, Chapter 6, Section W], The Golovkin argument can then be used to show

the generalized solutions are actually classical solutions in S ,

belonging to Cr (s) . Since this applies on the subdomain S for

0 < e < % , it also holds on their union US , which is just

S\{h corners} . It remains to consider the behaviour of the solutions at

the corner points. From the no-slip condition (5-7), by the triangle

inequality and the continuity of the derivatives of the solution up to the

boundary of any subdomain S , it is easily shown that the one-sided

derivatives exist at each corner point, where in fact they all vanish.

Golovkin notes [6, Theorem VIII] that his method can be extended to

show the smoothness of higher order generalized derivatives of the solution

of the Navier-Stokes equations (6.l)-(6.U), provided the initial velocity

and the forcing term are sufficiently smooth. The existence of such higher

order derivatives follows as in Section 6 using a yrvovi, estimates derived
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from the appropriate evolution equations for them, which are obtained from

the Navier-Stokes equations by differentiating the appropriate number of

times. Again, the boundary conditions must be homogenized.

A similar situation applies for the momentum equations (5.l)-(5.8),

provided the corner points are handled in the way discussed above. As the

effective forcing term F , with components defined in (6.10) and (6.11),

is a C (S) function, the resulting degree of smoothness will depend on

that of the initial velocity U-. . For the numerical procedure discussed

o
in Section h, the vorticity £ is required to be in at least C (S) with

-£ in C (S) . This will certainly be the case if the initial velocity
dt

Uj is in C (5) and satisfies the obvious compatibility conditions,

because then the solution U will be in C^(S) n C (S) with 77

correspondingly smooth (the highest order derivatives need not be

continuous up to the boundary). Actually in his numerical computations,

Holland uses the initial velocity u_ = 0 , which is a C (S) function.

As the effective forcing term is also in C (S) , it follows by induction

that the solution U is in C (S) . See Golovkin [6, Theorem VIII].

8. Coastal geometry

The square domain of the ocean circulation model is extremely simple.

Several important physical effects are thereby excluded, such as flow

separation from the coast due to a bend or peninsula, and evolution of the

nett circulation around an island. For both experimental and numerical

reasons it is highly convenient to construct such bends, peninsulae and

islands from rectangular shapes. However the numerical procedure discussed

in Section It may be inadequate for the more complex geometries. For

example, suppose that the ocean model includes a square island. Each

corner of the island is a concave or reentrant corner with respect to the

flow domain. The proof of existence of generalized solutions is unaffected

by such corners. The Ladyzhenskaya smoothness theorem, amended as above,

is also unaffected by such corners. However it only ensures U t C(S) ,

and the sharper Golovkin theorem is no longer valid. The concave corner

could be rounded (into the flow domain) to make a smooth concave bend, and
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Golovkin has noted that convexity of the flow domain does not "appear"

essential for the existence of classical solutions provided the boundary is

smooth (in this regard see also [II, Chapter 6, Section !+]). Nevertheless,

we have been unable to adapt the method described in 7 above, to establish

smoothness at a concave corner. On the other hand there are simple steady

cellular velocity fields defined by truncated double Fourier series, and

thus in C°°(R ) , which are exact steady solutions of (6.l)-(6.U) for

suitably chosen steady force fields, and which meet homogeneous boundary

conditions on boundaries with concave corners at cell vertices.
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