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Abstract
The consequences of most economic decisions are uncertain; they are conditional 
on events with unknown probabilities that decision makers evaluate based on their 
beliefs. In addition to consequences and beliefs, the context that generates events—
the source of uncertainty—can also impact preferences, a pattern called source 
dependence. Despite its importance, there is currently no definition of source 
dependence that allows for comparisons across individuals and sources. This paper 
presents a tractable definition of source dependence by introducing a function that 
matches the subjective probabilities of events generated by two sources. It also pre-
sents methods for estimating such functions from a limited number of observations 
that are compatible with commonly-used choice-based approaches for separating 
attitudes from beliefs. As an illustration, we implement these methods on three data-
sets, including two original experiments, and show that they consistently capture 
clear, albeit heterogeneous, patterns of source dependence between natural sources. 
Our approach provides a framework for future research to explore how source 
dependence varies across individuals and situations.
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1 Introduction

Economic decisions often involve choosing between uncertain options,1 where the 
probability distributions of the outcomes are unknown and generated by different 
contexts. Examples include a recruiter selecting between candidates with differ-
ent profiles, a firm deciding which market to enter or which technology to adopt, 
a patient choosing between different treatments, or an investor considering several 
stocks. In such cases, in addition to beliefs about possible outcomes, the context 
itself, the “source of uncertainty”, may impact preferences. For instance, an inves-
tor may choose to bet on the rise of a domestic stock over the rise of a foreign 
stock. This choice can be explained by the belief that the domestic stock price is 
more likely to rise. However, the same investor may also prefer to bet on the fall of 
the domestic stock over the fall of the foreign stock. These two choices cannot be 
explained by beliefs alone (as the investor cannot believe that the domestic stock is 
more likely to rise and fall than the foreign stock), risk attitudes, or even ambiguity 
attitudes (preference for known over unknown probabilities). These choices reveal 
a preference for betting on one source of uncertainty (domestic stock) over another 
(foreign stock).

This example illustrates a pattern called source dependence, which refers to the 
fact that decisions depend not only on the decision maker’s beliefs about events, 
which can vary between sources, but also on their attitude toward the source of 
uncertainty.2 A growing body of literature shows that attitudes differ across sources 
depending on factors such as perceived expertise (de Lara Resende & Wu, 2010), 
emotions (Li et al., 2017), familiarity (Chew et al., 2012), or the distinction between 
epistemic and aleatory uncertainty (Fox & Ülkümen, 2011). Source-specific atti-
tudes have been observed in a variety of contexts, such as investment decisions 
(Kilka & Weber, 2001), strategic interactions (Bruttel et al., 2022; Li et al., 2020), 
and self-evaluation (Abdellaoui et al., 2023). The domain of uncertainty is rich (Li 
et al., 2017), and understanding how attitudes vary across situations and individu-
als is essential (Baillon et al., 2018). While several methods have been proposed to 
define and measure ambiguity attitudes toward a given source, there is currently no 
way to interpret differences in attitudes across sources in terms of source depend-
ence. This paper introduces a tractable definition of source dependence—the prefer-
ence between different sources with unknown probabilities—and proposes methods 
to measure it, enabling comparisons of attitudes across sources and individuals.

Prior studies have investigated source dependence by comparing ambiguity atti-
tudes across different sources of uncertainty (e.g., Baillon & Bleichrodt, 2015; de 
Lara Resende & Wu, 2010; Li et al., 2017). Converting ambiguity attitudes toward 
different sources into source dependence is not straightforward for two reasons. 
First, ambiguity attitudes are measured on scales that are not independent of risk 
preferences or are not directly interpretable, making it difficult to compare attitudes 

1 Following (Wakker, 2004), we refer to situations of uncertainty without (with) objective probabilities 
as ambiguous (risky).
2 We define a source of uncertainty as a family of events generated by a similar mechanism of uncer-
tainty (Tversky & Fox, 1995; Abdellaoui et al., 2011).
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across individuals. Methods using certainty equivalents (Fox & Tversky, 1995) or 
matching probabilities (Baillon et al., 2018; Dimmock et al., 2016b) measure ambi-
guity premia in terms of money and willingness to bet, which do not have the same 
values for individuals with different risk attitudes. Approaches that use weighting 
functions, like in Abdellaoui et al. (2011), define source dependence as differences 
in weights that are not easily interpretable. Therefore, these approaches preclude the 
direct comparison of source dependence across individuals or (pairs of) sources. 
Second, when attitudes are modeled using non-linear parametric specifications (e.g., 
Abdellaoui et  al., 2021; Li et  al., 2019), differences in parameters across sources 
are also hardly interpretable because of non-linearity. In Sect. 2.3, we present three 
detailed scenarios illustrating these difficulties quantitatively.

To overcome these difficulties, we introduce a function � that characterizes 
source preference between natural sources of uncertainty, independently of risk and 
ambiguity attitudes. The function � is a transformation function that maps beliefs 
about one source of uncertainty to beliefs about another source.3 Deviations from 
identity of the function � are directly interpreted as source premia and character-
ize source preferences. Our approach provides an easy way to quantify and interpret 
source dependence. It is expressed on the probability scale and allows for a direct 
comparison of source dependence between individuals without the confound of 
risk attitudes (utility or probability weighting). Unlike existing methods that com-
pare (the parameters of) ambiguity attitudes toward different sources, the function � 
directly captures the degree of relative preference and relative sensitivity (Tversky 
& Fox, 1995) between two sources. In subsequent work, Baillon et al. (2023) pre-
sent theoretical arguments on the relevance of our approach to using transformation 
functions to directly characterize source dependence, and refer to the transformation 
function we introduce in this paper as a p(robability)matcher.

Our definition and measurement of source dependence can be applied to a wide 
range of fields involving multiple sources of ambiguity, such as consumer behavior 
(Muthukrishnan et  al., 2009), technology adoption (Barham et  al., 2014), climate 
change (Millner et al., 2013), health (Berger et al., 2013; Hoy et al., 2014), finance 
(Dimmock et al., 2016a; Easley & O’Hara, 2009), and regulatory policies (Viscusi 
& Zeckhauser, 2015). Empirical evidence in this literature typically relies on meas-
uring ambiguity attitudes using Ellsberg urns (Anantanasuwong et  al., 2019; Bar-
ham et al., 2014; Dimmock et al., 2016a; Muthukrishnan et al., 2009), while more 
recent applied work has started incorporating attitudes toward natural sources of 
uncertainty (Attema et al., 2018; Li et al., 2019; Gaudecker et al., 2022). Studying 
natural sources requires disentangling beliefs from attitudes. This can be achieved 
by the exchangeable-events method (Abdellaoui et al., 2011; Baillon, 2008), which 
measures beliefs separately from attitudes, or the belief-hedging method (Baillon 
et al., 2018), which allows controlling for beliefs when measuring attitudes.4

3 Transformation functions have been used throughout decision theory to capture differences in utility 
functions (Kreps & Porteus, 1978; Klibanoff et al., 2005; DeJarnette et al., 2020).
4 The stimuli proposed by the belief-hedging method can be used to either neutralize the role of beliefs 
[e.g., (Baillon et al., 2018)] or to measure beliefs jointly with attitudes [e.g., (Gaudecker et al., 2022; Li 
et al., 2019)].
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In this paper, we show how these two approaches can be adapted in order to 
directly quantify source dependence. Our definition of source dependence is trac-
table, and the method we propose can be used by researchers who study attitudes 
toward several sources (using one of the previously mentioned methods) and want 
to compare them. For instance, Barham et al. (2014) found that ambiguity aversion 
(for an Ellsberg-urn task) plays an important role in technology adoption, but only 
for certain technologies. However, the authors argue that “the impact of ambigu-
ity aversion may have more to do with the underlying characteristics of the new 
technology,” which cannot be captured using Ellsberg urns and may vary across 
countries (p. 216). Our method can address this question by directly quantifying 
source dependence between different types of technologies and enabling cross-
country comparisons. We further discuss possible applications of the method in the 
discussion.

To demonstrate the tractability of our approach, we estimated our transforma-
tion function (pmatcher), on three datasets, including one existing dataset and two 
original experiments. We deliberately chose these datasets to represent the diversity 
of treatments of beliefs, which were either measured with the exchangeable-events 
method or neutralized with the belief-hedging method, as well as measurement 
methods, which were either certainty equivalents or matching probabilities. In all 
three datasets, we considered one local and one foreign source of uncertainty.

Rather than introducing a new method to differentiate attitudes from beliefs, our 
contribution is to introduce a tractable definition of source dependence and dem-
onstrate how existing approaches (exchangeable-events and belief-hedging) can be 
adapted to measure source dependence directly. Furthermore, we show that source 
dependence can be measured using either certainty equivalents or matching proba-
bilities. When using certainty equivalents, our method does not require the measure-
ment of utility or source (or probability-weighting) functions, which reduces error 
propagation and the number of required choices compared to indirect methods.

Our empirical analyses employ structural-equation econometrics, which allows 
us to account for stochastic choices (e.g., Gaudecker et  al., 2022). To account for 
heterogeneity in preferences, we estimated the sample distributions of parameters 
using a random-coefficient model (e.g., Abdellaoui et al., 2021). This demonstrates 
that the methods we propose for estimating pmatchers are compatible with mod-
ern econometric techniques (Train, 2009). In the discussion, we show that under the 
assumption of deterministic choices and neo-additive preferences, it is possible to 
compute the parameters of pmatchers without relying on econometrics.

Overall, we found evidence of source dependence in our experimental studies. 
We also observed that source dependence must be described by two dimensions that 
capture the relative preference and relative sensitivity between two sources. Finally, 
our analyses revealed very heterogeneous patterns of source dependence in our sam-
ples. On average, individuals in our datasets showed a preference for the “familiar” 
source. However, a substantial proportion of the subjects exhibited the opposite pat-
tern of preferences.
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2  Beliefs and ambiguity attitudes toward sources of uncertainty

In this section, we introduce the theoretical framework to define attitudes toward a 
given source. We then present the two common choice-based methods to separate 
ambiguity attitudes from beliefs, a necessary step to estimate attitudes toward natu-
ral sources. Using three scenarios, we illustrate the challenges of accurately measur-
ing source dependence through the comparison of attitudes toward multiple sources.

2.1  Source attitudes defined

Expected utility (EU) is the benchmark model of rational choice for decisions under 
uncertainty (Savage, 1954). Under this model, preferences are captured by two com-
ponents: a utility function U and a probability distribution � over events. The value 
assigned to a binary prospect (x, E, y), with x ≥ y ≥ 0 , the object of choice studied 
in this paper, that yields x if event E occurs and y otherwise, is

We assume non-negative monetary outcomes and strictly increasing utility through-
out. In the case of risk, objective probabilities are available, and the value of a 
(risky) prospect (x, p, y), which gives x with probability p and y otherwise, is

Despite its normative appeal, this model does not capture two major psychological 
aspects of decision-making under uncertainty: probability weighting and (non-neu-
tral) ambiguity attitudes. Probability weighting refers to the observation that deci-
sion makers do not treat probabilities linearly (Kahneman & Tversky, 1979). Under 
risk, this bias can be accommodated by a strictly increasing probability-weighting 
function w mapping [0, 1] to [0, 1] and by assuming that a prospect (x, p, y) is evalu-
ated by

Non-neutral ambiguity attitudes, the other well-documented deviation from EU, 
refers to the observation that decision makers may exhibit a preference between 
known and unknown probability distributions over events; in other words, they 
behave as if they treat known and unknown probabilities differently. In a famous 
illustration of this behavior, Ellsberg (1961) intuited that people would prefer to bet 
on an urn with known composition (i.e., risky) rather than on an urn with unknown 
composition (i.e., ambiguous), even if there were no reason to believe that one 
composition would be more favorable than the other. Under Eq. 3, such preference 
entails sub-additive probabilities, which violates probabilistic sophistication (the 
assumption that beliefs can be represented by a single probability distribution). It is 
possible to reconcile probabilistic sophistication (at least locally, i.e. within a given 
source) and ambiguity attitudes by the introduction of a specific weighting function 
wa and by assuming that an ambiguous prospect (x, E, y) is evaluated by

(1)�(E)U(x) + (1 − �(E))U(y).

(2)pU(x) + (1 − p)U(y).

(3)w(p)U(x) + (1 − w(p))U(y).
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Local (or within-source) probabilistic sophistication assumes that probabilistic 
sophistication holds within source, i.e., for choices between prospects involving 
the same source.5 Ambiguity attitudes in this model are captured by the difference 
between the weighting functions wa , when probability distributions over events are 
unknown, and w, when probability distributions over events are known. This model 
allows us to account for ambiguity aversion while assuming the existence of a unique 
distribution of probabilities � . This probability is called a-neutral, as it corresponds 
to the willingness to bet that would be observed for an ambiguity-neutral decision 
maker. In this paper, unknown probabilities are considered a-neutral and are referred 
to as probabilities for the sake of simplicity.6 Abdellaoui et  al. (2011) developed 
an approach assuming that the weighting function can be different for each source, 
calling this function a source function. Using the source function wS , an ambiguous 
prospect (x, E, y) with event E generated by a source S is evaluated by

Comparing wS to w characterizes the ambiguity attitude toward a given source S. 
The difference between source functions wA and wB of two distinct sources A and B 
characterizes source dependence, i.e., the fact that ambiguity attitudes differ across 
sources.7

Most empirical studies on ambiguity attitudes have focused on the unknown 
“Ellsberg” urn as a source of uncertainty (for a review, see Trautmann & van de 
Kuilen, 2015). This source offers the advantage that probability distributions � can 
be inferred from symmetry arguments and consequently do not need to be meas-
ured. Fewer studies have measured attitudes toward one or several natural sources 
of uncertainty. Most of these studies compare attitudes toward a given source to atti-
tudes toward risk (i.e., wS vs. w), revealing ambiguity attitudes (van de Kuilen & 
Wakker, 2011). In the present paper, we compare behavior toward natural sources A 
and B and, hence, assess source dependence.

2.2  Separating attitudes from beliefs

Assessing source dependence requires measuring attitudes toward different 
sources of uncertainty, for which the decision maker can hold different beliefs. It 
is thus necessary to control for decision makers’ beliefs about each source. This 
paper does not introduce a new method to separate attitudes from beliefs. Instead, 

(4)wa(�(E))U(x) + (1 − wa(�(E)))U(y).

(5)wS(�(E))U(x) + (1 − wS(�(E)))U(y).

5 For example, Ellsberg’s two urns example can be accommodated by this model, assuming that proba-
bilistic sophistication holds within each urn.
6 Following Dimmock et  al. (2016b), we use the notation a-neutral probabilities instead of subjective 
probabilities. A-neutral probabilities “can be interpreted as the beliefs of the ambiguity neutral twin of 
the agent” (Baillon et al., 2021).
7 Several authors have proposed considering risk as a specific source of uncertainty. Under this conven-
tion, ambiguity aversion ( wa ≠ w ) is a specific case of source dependence: a preference for sources with 
known probabilities over sources with unknown probabilities.
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we propose a method to directly estimate source dependence using existing meth-
ods to measure attitudes toward natural sources of uncertainty.

Early studies on source dependence controlled for beliefs by directly asking 
subjects to state their beliefs about a series of events generated by a given source 
(e.g., Fox & Tversky, 1995). However, this approach has several limitations. For 
instance, these measures are often not choice-based or incentivized, and judged 
probabilities may be non-additive, which could reflect attitudes toward ambiguity 
(Wakker, 2004). Scoring rules are popular choice-based methods for measuring 
beliefs, but they generally rely on the assumptions of risk and ambiguity neutral-
ity, making them inconsistent for analyzing source preferences (for a discussion 
on biases introduced by scoring rules, see Armantier & Treich, 2013). To over-
come these limitations, two popular choice-based methods have been introduced 
to distinguish ambiguity attitudes from beliefs: the exchangeable-events method 
and the belief-hedging method. We briefly introduce these methods before show-
ing in Sect. 3 how they can be adapted to directly estimate source dependence.

2.2.1  Measuring beliefs separately from attitudes using the exchangeable‑events 
method

One method for measuring beliefs without making restrictive assumptions about 
risk or ambiguity attitudes is the exchangeable-events method proposed by Bail-
lon (2008). This choice-based method uses the concept of exchangeability of 
events to construct a series of events Ek with a known a-neutral probability �k . 
Two events E1 and E2 are exchangeable if (x,E1, y) ∼ (x,E2, y) , which implies that 
�(E1) = �(E2).

To apply the method, the researchers first split the universal event Ω into two 
exchangeable events, E1 and E2 , such that �(E1) = �(E2) = 1∕2 . They then proceed 
iteratively by splitting E1 and E2 into exchangeable events until a given level of pre-
cision in beliefs is attained. Abdellaoui et al. (2011) applied this method to several 
sources, and a non-chained version of the method was developed and implemented 
by Abdellaoui et al. (2021).

2.2.2  Measuring beliefs jointly with attitudes using the belief‑hedging method

Baillon et al. (2018) proposed a different approach to separate beliefs from attitudes 
under ambiguity. Their method, called the belief-hedging method, is based on bets 
on events and their complementary events. This enables the separate identification 
of beliefs and ambiguity attitudes toward a given source without the need to dedicate 
specific tasks to the measurement of beliefs (see also Baillon et  al., 2021  for the 
theoretical foundations).

The researcher first splits the universal event Ω into three mutually exclusive and 
exhaustive events, denoted as E1 , E2 , and E3 . For each event, the complementary 
event is defined as the union of the other two events, for example, Ec

1
= E2 ∪ E3 . The 

researchers then measure the matching probabilities of six events, namely, E1 , Ec
1
 , 
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E2 , Ec
2
 , E3 , and Ec

3
 . Baillon et al. (2018) showed that these six matching probabilities 

could be easily combined to compute two indexes that capture ambiguity aversion 
and a(mbiguity-generated)-insensitivity. Gaudecker et al. (2022) implemented struc-
tural econometric estimations on these six matching probabilities in order to jointly 
estimate beliefs and attitudes. Using certainty equivalents and additional tasks to 
measure the utility function, Baillon et al. (2017) structurally estimated beliefs and 
attitudes.

Overall, studying natural sources requires separating beliefs and attitudes. 
Beliefs can be controlled for using either the exchangeable-events or belief-hedging 
methods. Meanwhile, attitudes can be studied either through ambiguity functions, 
w−1
r
◦ws (Baillon & Bleichrodt, 2015; Baillon et al., 2018; Li, 2017; Li et al., 2017) 

or through source functions ws (Abdellaoui et  al., 2011; Abdellaoui et  al., 2021; 
Baillon et al., 2017). One advantage of ambiguity functions is that they can be esti-
mated using matching probabilities, which avoids the need to measure utility.

2.3  From ambiguity attitudes to source dependence

The previous section highlighted that methods exist for measuring attitudes toward a 
given source. Analysts can thus measure attitudes toward a series of sources with the 
objective of comparing them. This section provides detailed examples that illustrate 
the difficulties in interpreting differences in source attitudes as source dependence. 
The examples demonstrate that these difficulties apply to both the comparison of 
ambiguity functions and the comparison of source functions.

Consider two American investors, one with expertise in the telecommunica-
tions industry and the other in the food industry, who are considering investing in 
the stocks of AT&T and British Telecom. Each stock represents a source of uncer-
tainty. According to the home bias (Lau et al., 2010)—the tendency to favor domes-
tic stocks—both investors may prefer AT&T over British Telecom. However, it is 
unclear whether the preference for the domestic stock is weaker for the first investor 
due to their expertise in the telecommunications industry. Answering this question 
requires comparing the magnitude of source dependence between individuals.

Furthermore, the magnitude of source dependence may also vary between 
sources for the same individual. Suppose the investors are also considering invest-
ing in Coca-Cola and Danone. For the investor with expertise in telecommunica-
tions, would the home bias be stronger between AT&T and British Telecom or 
between Coca-Cola and Danone? In other words, does expertise mitigate or amplify 
the home bias? Answering this question requires comparing differences between 
sources within an individual.

Despite the availability of methods to measure attitudes for each source and 
investor separately, there is currently no method to accurately answer these ques-
tions. We propose three simple scenarios that illustrate that source dependence can-
not be derived from comparisons of ambiguity attitudes. We base our examples on 
the two-parameter Prelec specification for the probability weighting, ambiguity and 
source functions. One parameter governs the elevation of the function and captures 

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 13:14:18, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


387

1 3

Measuring natural source dependence  

pessimism, the other  parameter governs the curvature and captures sensitivity to 
changes in probabilities. This specification has convenient properties for the illustra-
tion, because the inverse of a Prelec function is a Prelec function, and the composi-
tion of two Prelec functions is also a Prelec function. For simplicity, we refer to the 
four stocks by their first letter: A (AT&T), B (British Telecom), C (Coca-Cola), and 
D (Danone).

2.3.1  Scenario 1: Differences in ambiguity functions between individuals

The scenario considers that two investors, I and II, have the same source functions 
for stock A ( wI

A
= wII

A
) and B ( wI

B
= wII

B
) , and both exhibit a preference for A over B. 

However, investor I does not distort objective probabilities, while investor II exhibits 
an inverse S-shaped probability weighting.

Suppose that a researcher estimates the ambiguity attitudes of investors I and II 
toward stocks A and B using matching probabilities. The values of the pessimism 
and sensitivity parameters of these functions are reported in Table  1. The higher 
pessimism for stock B than for stock A for both investors indicates a preference for 
A over B, which is consistent with the home bias. The analyst wants to understand if 
expertise mitigates or amplifies the home bias. To do so, one needs to compare the 
magnitude of source dependence for investor I to the magnitude of source depend-
ence for investor II.

The difference in the pessimism parameters of the ambiguity function between A 
and B is 0.2 for investor I and 0.33 for investor II. It might be tempting to conclude 
that investor II exhibits more source dependence than investor I, but this is not the 
case. The source functions for A and B are the same for the two investors. This case 
illustrates that differences in the parameters of ambiguity functions cannot be com-
pared across individuals with different probability weighting functions for risk. The 
reason is that ambiguity functions are measured on the scale of known probabilities 
(willingness to bet), and this scale is different for two individuals who weigh risk 
differently.

Table 1  Scenario 1. Differences in ambiguity functions between individuals

Investor I Investor II

Risk Source fn Ambiguity fn Risk Source fn Ambiguity fn

A B A B A B A B

wI
R

wI
A

wI
B w

I(−1)

R
◦wI

A
w
I(−1)

R
◦wI

B
wII
R

wII
A

wII
B w

II(−1)

R
◦wII

A
w
II(−1)

R
◦wII

B

Pessimism 1 1.2 1.4 1.2 1.4 1.1 1.2 1.4 1.16 1.49
Sensitivity 1 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.83 0.83
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2.3.2  Scenario 2: Differences in source functions between sources 
for a given individual

In this scenario, we examine investor II, who is an expert in the food industry. The 
researcher has elicited the investor’s source functions, as shown in Table  2. The 
parameters for sources A and B are the same as in the previous scenario. For sources 
C and D, the investor also exhibits a home bias, with a preference for C over D, but 
exhibits more sensitivity toward these sources than toward A and B, possibly due to 
their expertise in the food industry. The analyst questions whether the magnitude of 
the home bias is the same between A and B as between C and D. The difference in 
the pessimism parameters is the same (0.2) between A and B as between C and D. 
The difference in the sensitivity parameters is also the same (0) between A and B as 
between C and D. Thus, looking at “differences of differences” leads to the conclu-
sion that the magnitude of the home bias is the same between A and B as between C 
and D.

However, investor II is willing to give up on more gain probabilities for betting 
on A rather than B than for betting on C rather than D (see Fig. 1 in Sect. 3.2). In 
other words, the source premium is larger between A and B than between C and 
D. This is because the investor is less sensitive to probability changes for A than 
for C, thus requiring a larger ambiguity premium to compensate for the same 
difference in weight. This example illustrates that differences in source function 
parameters cannot be compared across pairs of sources, even within an individ-
ual, since differences in source functions correspond to differences in “weight,” 
which have different values depending on the sensitivity toward the sources being 
considered.

2.3.3  Scenario 3: Comparing differences in parameters of non‑linear specifications

We now focus on investor I and consider sources A, B, and D (see Table 3). The 
analyst wants to compare the preference between A and B (local vs. foreign in the 
investor’s domain of expertise) to the difference between B and D (expertise vs. 
non-expertise for foreign sources). In this case, the differences in the pessimism 
parameters between A and B and between B and D are the same (0.2). Here again, 
one should not conclude that the source premium that investor II is willing to 
pay for betting on A rather than B is the same as the premium that the investor 
is willing to pay for betting on B rather than D. In fact, the premium is larger 
for the former than for the latter. The reason for this is the nonlinearity of the 

Table 2  Scenario 2. Differences 
in source functions within 
individual

Source functions

   A       B       C       D   

wII
A

wII
B

wII
C

wII
D

Pessimism 1.2 1.4 1.2 1.4
Insensitivity 0.5 0.5 0.7 0.7
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source functions. A difference in the pessimism parameters of 0.2 does not have 
the same effect between 1.2 and 1.4 as it does between 1.4 and 1.6. This scenario 
illustrates how difference-in-differences in parameters of non-linear specifica-
tions cannot be easily used to analyze differences in source dependence.

3  A function for measuring source dependence

In this section, we introduce a function � , referred to as a p(robability)matcher, 
which enables direct measurement of the source dependence of preferences 
between two natural sources. We then show that such functions can be estimated 
using either matching probabilities (MP), which assess attitudes toward a source 
on the scale of probabilities, or certainty equivalents (CE), which assess attitudes 
toward a source on the scale of outcomes.

3.1  A direct measure of source dependence

We introduce a function � that enables the quantification of source dependence 
and allows for comparisons between individuals and (pairs of) sources. We con-
sider two natural sources, A and B, and their functions wA and wB . The function 
�AB is defined such that wB = wA◦�AB (i.e., �AB = w−1

A
◦wB). It is strictly increas-

ing, satisfies �AB(0) = 0 and �AB(1) = 1 , and maps probabilities �B of events EB 
generated by the source B to probabilities �A of events EA generated by the source 
A as follows: for any event EB generated by source B with a subjective proba-
bility �B , all the events EA generated by source A with a subjective probability 
�A = �AB(�B) are such that the decision maker is indifferent between betting on 
EB and EA.

The comparison of �B and �A characterizes source preference between the two 
sources. Deviations of �AB from identity directly characterize source dependence: 
A is strictly preferred to B if 𝜙AB(𝜇) < 𝜇. In turn, � − �AB(�) represents the source 
premium of source A over source B, i.e., the decrease in likelihood the decision 
maker is willing to accept in order to bet on source A instead of source B. Because 
the source premium is measured on the scale of “a-neutral” probabilities, it is inde-
pendent of risk and ambiguity attitudes. Therefore, the transformation function 
�AB offers a direct measure of source preference for A over B that can be compared 

Table 3  Scenario 3. Differences 
in parameters of non-linear 
specifications

Source functions

   A       B       D   

wI
A

wI
B

wI
D

Pessimism 1.2 1.4 1.6
Insensitivity 0.5 0.5 0.5
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across individuals and (pairs of) sources. Inversely, the source preference for B over 
A is captured by �BA = �−1

AB
.

We now illustrate how the shape of the function � relates to choice patterns 
revealing source dependence. We call A-event an event generated by source A  
and B-event an event generated by source B. Suppose there exists a probability � 
such that 𝜙AB(𝜇) < 𝜇 and 𝜙AB(1 − 𝜇) < (1 − 𝜇) . Then, for all events EA with a sub-
jective probability �′ such that 𝜇 > 𝜇� > 𝜙AB(𝜇) , we will observe that xEA

y ≻ xEB
y . 

This is because 𝜇� > 𝜙AB(𝜇) implies that wA(𝜇
�) > wB(𝜇) . Moreover, we will  

also observe that xEc
A
y ≻ xEc

B
y , since 𝜙AB(1 − 𝜇) < 1 − 𝜇 < 1 − 𝜇� implies that 

wA(1 − 𝜇�) > wB(1 − 𝜇). In other words, it is possible to find A-events such that, for 
all B-events with probability � , the decision maker prefers to bet on A-events instead 
of B-events and also prefers to bet against A-events instead of against B-events.

Another key dimension of source preference is comparative sensitivity (Tversky 
& Fox, 1995), which can be illustrated by the following example. Suppose there are 
two disjoint events EA and E′

A
 generated by A, and two disjoint events EB and E′

B
 gen-

erated by B such that xEB
y ∼ xEA

y and xE�
B
y ∼ xE�

A
y for all x > y . If we also observe 

that xEB∪EB�
y ≺ xEA∪EA�

y , then the decision maker is less sensitive to probability 
changes for B than for A. We say the decision maker exhibits less relative sensitiv-
ity (or equivalently, more relative insensitivity) toward B than toward A. This pattern 
is captured by the curvature of the function � . Indeed, xEB

y ∼ xEA
y and xE�

B
y ∼ xE�

A
y 

imply that �A = �AB(�B) and ��
A
= �AB(�

�
B
) , respectively. Thus, xEB∪EB�

y ≺ xEA∪EA�
y 

implies that 𝜙AB(𝜇B) + 𝜙AB(𝜇
�
B
) > 𝜙AB(𝜇B + 𝜇�

B
) . The function exhibits subadditivity 

for some probabilities.
Overall, the two dimensions of the function � can be interpreted as follows: the 

elevation captures relative preference (“more or less preference for B than for A”), 
and the slope captures relative (in)sensitivity (“more or less insensitivity for B than 
for A”). For example, an inverse S-shaped �AB function can generate both a relative 
preference for A and a relative insensitivity toward B.

3.2  Comparing attitudes across sources and individuals using �

We illustrate the pmatcher � using the three scenarios described in Sect. 2.3.
In the first scenario, the two investors have the same source functions for stocks 

A and B, and both exhibit a preference for A over B. The pmatchers �AB of the two 
investors are shown on the left panel of Fig. 1. When 𝜇A < 𝜇B , the decision maker 
exhibits a preference for source A over source B and is willing to accept a reduc-
tion in the winning probability (�B − �A) to bet on the event generated by source A 
instead of the one generated by source B with probability �B.8 For both investors, 
𝜙AB(x) < x for all values of x, indicating a preference for source A over source B. 
Moreover, the magnitude of the source dependence between A and B, capturing the 
home bias, is the same for the two investors. The pmatcher enables a direct com-
parison between individuals. Although the two investors have different risk attitudes 

8 Similarly, this investor would require an increase in winning probability of (�B − �A) in order to bet on 
source B instead of on source A with a winning event of probability �A.
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(investor I does not distort objective probabilities, while investor II exhibits an 
inverse S-shaped probability weighting), the figure correctly reports that they have 
the same function �AB.

The second scenario, shown in the middle panel of Fig.  1, displays a stronger 
deviation from linearity for �AB than for �CD , indicating a stronger source depend-
ence for A over B than for C over D. The pmatcher captures this larger magnitude of 
source dependence, which was not detected by comparing the (differences in) source 
functions, as seen in Sect. 2.3.

In the third scenario, the deviation from linearity is stronger for �AB than for �BD , 
indicating a stronger source preference for A over B than for B over D. As we saw in 
Sect. 2.3, comparisons of (differences in) parameters between sources would fail to 
capture this effect due to the nonlinearity of the source function specification.

These scenarios illustrate how the pmatcher helps overcome the difficulties faced 
when comparing ambiguity attitudes toward different sources, allowing for compari-
son across individuals and sources.

3.3  Estimating � from matching probabilities

As introduced earlier, the method developed by Dimmock et  al. (2016b) consists 
of fixing an outcome x > 0 and measuring a series of matching probabilities MS 
such that (x,MS, 0) ∼ (x,ES, 0) , where ES are events generated by S for which the 
a-neutral probabilities �(ES) = �S are known. The analysis then consists of eliciting 
an ambiguity function mS that maps the probabilities �(ES) = �S onto the matching 
probabilities MS:

Under standard assumptions of monotonicity and continuity, the ambiguity function 
mS is strictly increasing and satisfies mS(0) = 0 and mS(1) = 1 . According to Eq. (5), 
mS = w−1

◦wS . The function �AB between two sources A and B, with ambiguity func-
tions mA and mB , can be obtained as follows:

hence,

The function �AB relies on a direct comparison of ambiguity functions mA and mB , 
with no need to measure the weighting function for risk w or the source functions wA 
and wB.

3.4  Estimating � from certainty equivalents

Suppose that we fix an outcome x > 0 and measure, for each source S, a series of 
certainty equivalents CES such that CES ∼ (x,ES, 0) , where ES are events generated 

(6)mS(�S) = MS.

mB = w−1
◦wB = w−1

◦wA◦�AB = mA◦�AB,

�AB = m−1
A
◦mB.
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by S, for which the a-neutral probabilities �(ES) = �S are known. The method then 
consists of estimating a function cS that maps these probabilities �(ES) = �S to the 
normalized certainty equivalents CES:

For parallelism with the ambiguity function, we refer to cS as an uncertainty func-
tion. Under standard assumptions of monotonicity and continuity, the uncertainty 
function cS is strictly increasing and satisfies cS(0) = 0 and cS(1) = 1 . According to 
Eq. (5), and after rescaling the utility such that U(0) = 0 and U(x) = 1 , cS =

U−1
◦wS

x
 . 

Assuming that utility is source-independent (an assumption generally made in appli-
cations of the source model and empirically supported by Abdellaoui et al., 2011), 
differences in uncertainty functions cS across sources reveal differences in source 
functions. The function �AB between two sources A and B, with uncertainty func-
tions cA and cB , can be obtained as follows:

hence,

Therefore, it is possible to estimate �AB from certainty equivalents with no need 
to control for the utility function. In this paper, we do not interpret the uncertainty 
functions on their own. We instead use them as a measurement tool for assessing 
source dependence.

3.5  Comments on �

Overall, �AB can be estimated simply from either matching probabilities or certainty 
equivalents. It does not require measuring or controlling for the utility, the weighting 
function for risk, or even the source functions. Therefore, it can be estimated from 
a smaller number of choices and avoid error propagation due to the measurement of 
utility and source (or risk) weighting functions.

The characterization of source dependence is independent of risk attitudes 
(related to u and w ) and ambiguity attitudes (related to the difference between wA 
and u or between wB and u ). Instead, it relates to the differences in attitudes across 
sources. A linear � does not necessarily mean that decision makers are risk neutral 
or ambiguity neutral for the two sources, only that they exhibit the same attitude 
for the two sources. Conversely, there may be source dependence even if decision 
makers are risk neutral or ambiguity neutral for one of the two sources. Therefore, 
the introduction of source dependence, as measured by the function � , enlarges the 
scope of analysis of attitudes toward natural sources of uncertainty beyond the con-
cept of risk and ambiguity attitudes.

(7)cS(�S) =
CES

x
.

cB =
U−1

◦wB

x
=

U−1
◦wA◦�AB

x
= cA◦�AB,

�AB = c−1
A
◦cB.
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Eventually, when A is a risky source (R), wB = w◦�RB and �RB = w−1
◦wB . In this 

case, the transformation function �RB corresponds to the ambiguity function pro-
posed by Dimmock et al. (2016b) for capturing ambiguity attitudes. To summarize, 
the function � generalizes the approach of Dimmock et  al. (2016a) in two ways: 
it extends the approach for capturing source dependence between natural sources, 
and it allows measurement using not only matching probabilities but also certainty 
equivalents.

4  Empirical implementation

4.1  Data

We conducted three studies to empirically test our method, including one that used 
an existing dataset (Study A) and two original experiments (Studies B and C). To 
test the generality of our method, we selected experimental designs that employed 
various approaches to evaluating prospects (certainty equivalents vs. matching prob-
abilities) and identifying beliefs. As discussed in Sect. 2, studying attitudes toward 
natural sources requires accounting for beliefs that are not necessarily uniform. We 
demonstrate that our method can be applied with two commonly used choice-based 
methods to disentangle ambiguity attitudes and beliefs: the exchangeable-events 
method (Studies A and B) and the belief-hedging method (Study C).

The studies used different experimental procedures, with individual interviews 
and random incentives used in Studies A and B and an online experiment with hypo-
thetical choices used in Study C. In each study, one source was local and arguably 
more familiar to the subjects than the other. We used this local source as the refer-
ence source. We summarize the characteristics of each dataset in Table 4 and pro-
vide details for all three studies below. Instructions for experiments B and C are 
included in Online Appendix D.

4.1.1  Study A

For this study, we used data from Abdellaoui et al. (2011) on two natural sources 
S, the temperature in Paris ( S = A ) and the temperature in a foreign city ( S = B ). 
For each source, participants’ beliefs were measured prior to eliciting their attitudes 
toward ambiguity.

Measurement of beliefs: Participants’ beliefs about the sources were measured 
using the approach developed by Baillon (2008) based on exchangeable events 
(see Sect. 2). For each source S, a sequential process was used to build a series of 
five events Ek,S with probabilities �k ∈ (1∕8, 1∕4, 1∕2, 3∕4, 7∕8) . Abdellaoui et  al. 
(2011) provide more details about the procedure.

Evaluation of prospects: With these events (for which the researchers knew 
the a-neutral probability) at hand, the certainty equivalents CEk,S of five prospects 
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(1000,Ek,S, 0) were measured for each source. These CEs allowed us to assess the 
uncertainty function cS since cs(�k,S) =

CEk,S

1000
.9

Procedure: 62 participants participated in individual computer-based interviews. 
Random incentives were implemented for half of the participants (real-incentive treat-
ment), whereas the other half made hypothetical choices (hypothetical treatment). For 
the real-incentive treatment, one of the 31 participants was randomly selected at the 
end of the experiment, and one of their choices was randomly selected to determine 
their monetary gain. The payment was made three months after the experiment, once 
the uncertainty was resolved (Abdellaoui et al., 2011 provide more details).10

4.1.2  Study B

For this study, we followed a similar design to Study A, but with different sources 
and a distinct valuation approach of ambiguous prospects. In contrast to Study A, we 
evaluated ambiguous prospects using matching probabilities (MPs) instead of cer-
tainty equivalents (CEs). We used two sources S,   the approval ratings of French 
President Emmanuel Macron ( S = A ) and US President Donald Trump ( S = B).11 
Each of these variables ranged between 0 and 100 percent and was revealed one 
month after the experiment.12

Measurement of beliefs: We used the exchangeable-events method, as in Abdel-
laoui et al. (2011) and Study A, to elicit a series of events Ek,S = [0, vk,S] generated 
by sources S, with a-neutral probabilities �(Ek,S) ∈ (1∕8, 1∕4, 1∕2, 3∕4, 7∕8) . Values 
vk,S represented the percentages of approval ratings and were measured with a preci-
sion of one percentage point.

Table 4  Summary of the three datasets

EE stands for exchangeable events and BH for belief hedging

Study N Valuation 
method

Elicitation of 
beliefs

Sources

Study A 62 CE EE Temperature in Paris
Temperature in a foreign city

Study B 94 MP EE Approval rating of French president E. Macron
Approval rating of American president D. Trump

Study C 201 CE BH Temperature in Paris
Temperature in Belgrade

9 In the present paper, we focus on this relationship, even though Abdellaoui et al. (2011) employed a 
different approach. They used additional CEs to elicit the utility function and “correct” the function cs for 
the utility curvature in order to assess the source function wS.
10 As the data was from a published paper (Abdellaoui et al., 2011) we do not have access to the precise 
payment made to the winning participants.
11 We used the following two information sources for Donald Trump and Emmanuel Macron’s approval 
ratings: https:// elect ions. huffi ngton post. com and http:// www. tns- sofres. com.
12 In the experiment, we used two periods of time (one month and nine months after the experiment). 
In this paper, we report only the results obtained for the approval rating one month after the experiment.
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Evaluation of prospects: We measured ambiguity attitudes using matching prob-
abilities. For each source, we measured the matching probabilities mpk,S of prospects 
(100,Ek,S, 0) with a precision of 0.01. This allowed us to assess the ambiguity func-
tion mS because ms(�k,S) = mpk,S.

Both beliefs and attitudes rely on the measurement of indifference values, which 
we elicited using choice lists. We used a bisection procedure to complete these lists 
(see Abdellaoui et al., 2019). When a list was completed, the participants reviewed 
all the choices from the list and were able to make changes if desired. Participants 
then had to confirm the whole list for the software to move to the next choice list.

Procedure: We recruited 94 participants to take part in a 1-h individual com-
puter-based interview for a compensation of €10. Participants started by watching a 
10-min video describing the experiment. Then they completed a survey with com-
prehension questions to identify those who required additional clarifications from 
the research assistants. The experiment started with several practice questions to 
familiarize participants with the software. Participants then completed the belief 
task and the ambiguity task for one of the two sources before moving on to the sec-
ond source. For each source, the belief task always preceded the ambiguity task. The 
order of the questions in the ambiguity task was randomized.

Real incentives were used, and the procedure was explained in the instructions 
(see Online Appendix D). Each participant received an envelope and was informed 
that each envelope had a 10% chance of containing a winning ticket. At the end of 
the session, participants opened the envelopes to see if they had received the win-
ning ticket, which would allow one of their choices to be played for real. A computer 
program randomly selected one of the choices made by the selected participants. 
During the instructions, participants were informed that all of their choices could be 
selected and played for real. The selected participants could gain up to €100 extra. 
Eight participants were randomly selected for one of their choices to be played out 
for real. Three of them earned €100 extra, while the others did not earn an extra 
bonus. Overall, the average payment was €13.2 per hour.

4.1.3  Study C

In this study, we measured beliefs and attitudes jointly using certainty equivalents 
and the belief-hedging method (Baillon et al., 2017; Li et al., 2019).

Evaluation of prospects: We considered two sources S, the temperature, in celsius 
degrees, in a local city, Paris, France (source S = A ), and a foreign city, Belgrade, 
Serbia (source S = B ). For each source S, we created an exhaustive partition of mutu-
ally exclusive events E1,S,E2,S,E3,S and measured CEs for all prospects (20,Ek,S, 0) , 
where Ek,S ∈ {E1,S,E

c
1,S
,E2,S,E

c
2,S
,E3,S,E

c
3,S
) . The three events were E1,S = (−∞, 18] , 

E2,S =]18, 22] , and E3,S =]22,+∞) and their complementary events Ec
1,S

=]18,+∞), 
Ec
2,S

= (−∞, 18]∪]22,+∞) , and Ec
3,S

= (−∞, 22] . We elicited CEs using a bisection 
method with a precision of €1.

Procedure: We recruited a sample of 201 participants from the INSEAD 
Behavioral Lab subject pool and conducted the experiment online using 
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hypothetical choices. To improve the quality of the data despite the absence of 
incentives and online data collection, we used an application designed specifi-
cally for this purpose. The app detected the size of the user’s screen to prevent 
completion of the study on smartphones and froze the choice buttons for 2 s for 
each question to prevent rushing completion.

4.2  Estimation strategy

4.2.1  Errors specification and likelihood function

We used a unified statistical approach to measure source dependence between 
two sources s ⊂ {A,B} in the available datasets. In the three experiments, our 
measurement followed an equation of type

where yi,k,s is the valuation (either a MP or a CE) by subject i of a prospect k involv-
ing event Ei,k,s with probability �i,k,s , f is either an ambiguity or uncertainty function, 
and � is a pmatcher.

We assumed that subjects made decision errors, such that the measured 
indifference y⋆

i,k,s
 followed y⋆

i,k,s
= yi,k,s + 𝜖i,s where �i,s ∼ N(0, �2

i,s
 ). Hence, we 

accounted for heteroscedasticity across sources and individuals. Indifferences 
were measured with a precision � such that the likelihood of each observation 
followed

where �i is the vector of function parameters ai and bi (the parameters of fi for the 
domestic source, taken as the reference source), �i and �i (the parameters of the func-
tion �i ), and �i,k,s (the beliefs). The cumulative function of the normal distribution is 
denoted Ψ . In Studies A and B, beliefs were measured separately from (and before) 
attitudes. In contrast, Study C utilized belief hedging, where beliefs were estimated 
jointly with other parameters (see the details in Online Appendix B).

The likelihood for a given individual i is

This likelihood specification aims to elicit the parameters of the function f that cap-
tures attitudes toward one of the two sources (taken as the reference) and, more 

yi,k,s =fi(�i,k,s) if s=A

=fi◦�i(�i,k,s) if s = B

𝜋(yi,k,s|𝜃i,,𝜇i,k,s) =p(y
⋆

i,k,s
−

𝜂

2
< yi,k,s + 𝜖i,s < y⋆

i,k,s
+

𝜂

2
)

=p(y⋆
i,k,s

−
𝜂

2
− yi,k,s < 𝜖i,s < y⋆

i,k,s
+

𝜂

2
− yi,k,s)

=Ψ(
y⋆
i,k,s

− yi,k,s +
𝜂

2

𝜎i,s
) − Ψ(

y⋆
i,k,s

− yi,k,s −
𝜂

2

𝜎i,s
)

l(�i) =
∏

s

∏

k

�(yi,k,s, �i,,�i,k,s).
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importantly, the parameters of the transformation function � that captures source 
dependence.

4.2.2  Parametric specifications

In our analyses, we used parametric specifications for the functions f and � . We 
considered two popular, non-linear, two-parameter specifications for the function f 
(see Table  5): the Goldstein Einhorn (1987, hereafter GE) and the Prelec (1998). 
Parametric specifications have been commonly used to model probability-weight-
ing functions (Bruhin et al., 2010), ambiguity functions (Li et al., 2017), and even 
uncertainty functions (l’Haridon & Vieider, 2019). In all these applications, the two 
parameters, relating respectively to elevation and curvature, have behavioral inter-
pretations. The parameter capturing the global elevation of the function (denoted 
� ) is interpreted in terms of optimism, and the one measuring the curvature of the 
function (denoted � ) is interpreted in terms of sensitivity toward changes in proba-
bilities. These non-linear specifications usually offer a better goodness of fit than the 
neo-additive specification (Li et  al., 2017). However, there are limitations to their 
use. First, the interpretation of the parameters is different for each specification. For 
example, Li et al. (2017, p. 10) have noted that “in Prelec’s family, the insensitivity 
parameter [�] overlaps partly with the aversion parameter [�] , also capturing some 
aversion.” Second, the interpretation of differences in parameters varies across spec-
ifications. For example, the parameter � decreases with increasing elevation in the 
case of the Prelec specification, but it increases with increasing elevation in the case 
of the GE specification. Third, the parameters of these specifications take non-nega-
tive values. When random coefficient estimation methods are used, these parameters 
are generally assumed to be log-normally distributed, which requires cumbersome 
transformations for reporting their estimates and inferences on their mean and vari-
ance in a sample.

Expressing these two specifications with parameters that have the same range and 
interpretation and can take both positive and negative values is therefore desirable. 
We propose such a reparametrization of the GE and the Prelec specifications using 
two parameters � = 1 − 2�(0.5) and � = 1 −

��

��
(0.5) . We use � to denote the global 

elevation parameter, which captures the overall elevation of the plot, and � to denote 
the global sensitivity parameter, which governs curvature (e.g., the inverse-S shape 
of the plot). Importantly, while simplifying the interpretation of the results, this 
reparametrization does not create any loss of generality.

Applying this reparametrization to pmatchers, the first parameter � captures the 
relative preference for source A over source B. As shown in Fig. 2, when 𝛽 > 0 (blue 
curves), the subject exhibits a preference for source A over source B, whereas when 
𝛽 < 0 (red curves), the subject exhibits a preference for source B over source A. In 
addition, the value �∕2 represents the source premium of source A over source B 
in the middle of the probability interval. It reflects the decrease in likelihood the 
decision maker is willing to accept to bet on source A instead of source B. When 
�(0.5) = 0.5 , �∕2 = 0 , which indicates no source premium. Regardless of the under-
lying reason for the preference, it can be interpreted as a higher level of optimism 
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toward one source compared to the other. We will use the terms relative optimism 
and relative preference interchangeably: when 𝛽 > 0 (resp. 𝛽 < 0 ), we say that there 
is a relative preference, or relative optimism, toward A (resp. B).13

The second parameter � relates to the slope (i.e., the derivative) of the function � 
at probability 0.5. It captures the rate of substitution between the probabilities gener-
ated by A and the probabilities generated by B. Starting from 0.5, an increase of � in 
probability generated by B has the same effect as an increase of (1 − �)� in probabil-
ity generated by A. Therefore, the parameter � can be interpreted in terms of relative 
in sensitivity. When 𝛼 > 0 , there is more insensitivity toward B than toward A, and 
we say that there is relative insensitivity toward B. When 𝛼 < 0 , there is more sensi-
tivity toward B than toward A, and we say that there is relative insensitivity toward 
A.

An interesting and convenient property is that these parameters can be directly 
computed from the original parameters of the two non-linear specifications consid-
ered in this paper (see Table 5 for the mapping between these parameters and the 
original ones). Importantly, while the parameters can be interpreted with reference 
to the value of the function or its derivative for probability 0.5, they are not esti-
mated from the behavior of the function in the middle of the probability interval 
alone. Instead, they depend on the behavior of the function over the whole inter-
val, like any other parametric specification. In this regard, the function estimated 
using our parameters is one-to-one related to the function estimated using the origi-
nal parameters. However, the re-parametrization allows for an easier interpretation 
of the function parameters and their heterogeneity. In particular, the parameters 
have the same interpretation (regarding the elevation and the slope of the function), 
regardless of the chosen specification.14

4.2.3  Accounting for preference heterogeneity

At the aggregate level, all the subjects are assumed to have the same preferences, 
i.e., �i did not depend on the index i. In particular, this means that the preferences of 
all the subjects are the same for the reference source and reveal the same pattern of 
source dependence. However, this assumption may be unrealistic, as individual-level 
parameters are likely to vary across subjects. Estimating individual-level parame-
ters requires a large amount of data and may not be of interest to researchers, who 
are usually interested in the distribution of parameters in the sample rather than the 
behavior of a specific individual. To measure the distribution of parameters in our 
samples, we use a random-coefficient model where source dependence (captured by 
parameters �i and �i ) is randomly distributed across subjects. We assume that the 

13 We note that the Prelec and the GE specifications measure the global elevation for different probabil-
ity levels ( p = 1∕e for the Prelec specification and p = 0.5 for the GE). We propose expressing the global 
elevation and sensitivity at probability 0.5, which is a natural benchmark for assessing the global shape 
characteristics.
14 We note that this reparametrization can also be employed for modeling other functions for which the 
Prelec or GE specifications are suitable. This is the case, for example, of probability-weighting functions, 
source functions, ambiguity functions, or even uncertainty functions.
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parameters of ambiguity or uncertainty functions for the reference source are ran-
domly distributed.

The mean (standard deviation) of the distributions of relative insensitivity and 
relative optimism parameters are denoted as �̄� and 𝛽  ( �� and �� ). The random coef-
ficient models are estimated using Hierarchical Bayes (HB) simulations, which 
have recently been shown to be suitable for estimating risk models (Murphy & ten 
Brincke, 2017; Baillon et al., 2020). To do so, we used the RSGHB R package, with 
priors corresponding to linear uncertainty or ambiguity functions with virtually no 
heterogeneity. Such priors correspond to rational representative agent models (ambi-
guity-neutral or uncertainty-neutral attitudes) with no between-subject heterogene-
ity and no source dependence. Our choice of priors based on rational-choice mod-
els reflects a conservative approach that plays “against” our results, which revealed 
non-linear and heterogeneous functions with heterogeneous patterns of source 
dependence.

5  Results

This section presents the results of the empirical implementation of our economet-
ric set-up for the three studies. For each study, we report the econometric estima-
tions of the means and standard deviations of the parameters of the function �AB 
(see Table 6). The descriptive statistics of studies B and C are provided in Online 
Appendix A.15 We focus on the results obtained with the Prelec specification, as it is 
compatible with the parametric approaches used for modeling both uncertainty and 
ambiguity functions.16 The results obtained with the Goldstein-Einhorn specifica-
tion were similar (see Online Appendix C). We report our results focusing on the 
two dimensions of the pmatcher � : elevation, which captures relative preference, 
and curvature, which captures relative sensitivity.

Table 5  Specifications and their re-parametrization

Expression Prelec (1998) Goldstein Einhorn (1987)
exp(−�(−log(p))� ) �p�

�p�+(1−p)�

Modified parameters � 1 − 2��exp(−�(−log(0.5))� )[−log(0.5)]�−1 1 −
��p�−1(1−p)�−1

(�p�+(1−p)� )2

� 1 − 2exp(−�(−log(0.5))� ) 1 − 2
�

�+1

Original parameters � log(0.5)(1−�)

(1−�)log(0.5(1−�))

1−�

(1+�)(1−�)

� −log[0.5(1−�)]

[−log(0.5)]�
1−�

1+�

15 For the descriptive statistics of Study A, see the original paper: Abdellaoui et al. (2011).
16 In the case of an uncertainty function cS = u−1◦wS , if u follows a power specification (i.e., u(x) = x� ) 
and the source function wS follows a Prelec specification with parameters �′ and � ′ then c also follows a 
Prelec with parameters � = ��∕� and � = � �. In the case of ambiguity function mS = w−1

◦wS , if w and wS 
both follow a Prelec, then mS also follows a Prelec.
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The pmatchers were estimated using a Hierarchical Bayes method that accounts 
for individual heterogeneity of parameters. For each study, we display both the 
modal patterns and the heterogeneity (see Figs. 3, 4, 5). The left-hand panel plots the 
median pmatcher and its interquartile range. The other two panels show the outputs 
of Bayesian estimations for each of the two parameters of the pmatcher. Specifically, 
we plot the cumulative distributions of individual parameters and their precision 
(credible intervals). Like in most studies, there is no particular interest in knowing 
the parameters of each specific individual. Instead, we are interested in the distri-
bution of individual parameters in the sample. We thus focus our analysis on the 
estimated mean and variance of the parameters in our subject samples (Table 6).17 
The distributions corresponding to the estimated means and variances are plotted in 
plain lines on the middle and right panels of Figs. 3, 4, 5.18

5.1  Study A

Study A compared attitudes toward temperature in a local city (Paris, France) and 
temperature in a foreign city, which differed for each subject. The left panel of Fig. 3 
displays the quartile behavior (median and interquartile range) of the estimated 
function �AB.

We found no average source dependence as the 95% credible interval (hereaf-
ter CI) of the two parameters of the function �AB ( ̄𝛼 and 𝛽  ) included 0. However, 
the middle and right panels of Fig. 3 show large heterogeneity across individuals. 
The standard deviation of the elevation parameter ( �� = 0.33 ) suggested that � was 
greater than 0.3, in absolute value, for one-third of the sample.19 In other words, 
one-third of the subjects behaved as if they inflated or deflated a 0.5 winning event 
probability by at least 0.15, depending on their source preference. We also found 
heterogeneity in the sensitivity dimension of source dependence, indicating that 

Table 6  Summary of HB estimations—Studies A, B, and C

95% credible intervals between brackets

Study A Study A (only real incen-
tives)

Study B Study C

�̄� 0.000 [− 0.054; 0.055] − 0.205 [− 0.286; − 0.096] 0.353 [0.251; 0.449] 0.051 [0.012; 0.091]
𝛽 0.028 [− 0.071; 0.129] 0.104 [0.030; 0.176] 0.277 [0.171; 0.377] 0.059 [0.032; 0.085]
�� 0.163 [0.125; 0.212] 0.181 [0.115; 0.279] 0.319 [0.255; 0.396] 0.229[0.200; 0.264]
�� 0.335 [0.268; 0.416] 0.137 [0.086; 0.198] 0.360 [0.294; 0.436] 0.125 [0.101; 0.164]
LL − 1817.354 − 982.404 − 3313.293 − 3449.682

17 Individual parameters and their standard error are taken respectively as the mean and the standard 
deviation of individual posterior distributions. The 90% credible interval is computed as the mean more 
or less 1.64 standard deviations.
18 In the Bayesian framework, the precision of the estimates is given by their posterior distribution. We 
thus plot the posterior distribution of the estimates of the mean parameters in the sample.
19 This is because the mean value 𝛽  was almost equal to 0.
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relative sensitivity to the sources was also heterogeneous in the sample. This illus-
trates the importance of addressing heterogeneity in parameters, as average results 
can mask pronounced individual effects that cancel out at the aggregate level.

Following the analyses performed in the original paper (Abdellaoui et al., 2011), 
we estimated the distributions of parameters focusing on the group with real incen-
tives. In this subsample, estimated means show evidence of source dependence. The 
parameter 𝛽  was positive (95% CI = [0.030; 0.176]), indicating that subjects exhib-
ited a preference for the local source over the foreign source on average. The re-par-
ametrization offers an easy interpretation of this parameter. The source premium in 
the middle of the likelihood interval was equal to 0.05 (i.e., 𝛽∕2 ). In other words, the 
average subject was willing to forego a 0.05 winning probability in order to bet on 
an event generated by the local source rather than an event generated by the foreign 
source with a probability of 0.5.

The average insensitivity parameter �̄� for the group with real incentives was nega-
tive (95% CI = [−0.286; − 0.096] ). This parameter can be interpreted in terms of 
relative (in)sensitivity. Participants in the real incentives group were more sensitive 
to the foreign source than to the local source. According to the mean insensitivity 
parameter �̄� = −0.2 , an increase in the probability of � from 0.5 in source B has 
the same impact as an increase of 1.2� points from 0.5 in source A.20 This finding 
is somewhat surprising, given that a greater degree of likelihood insensitivity is 
typically interpreted as indicating higher perceived ambiguity (Baillon et al., 2018). 
Notably, this observation is in contrast to the results presented in Studies B and C.

Overall, Study A confirmed the source dependence of preferences. In the real-
incentive subsample, subjects exhibited a preference for the local source over the 
foreign source. Furthermore, changes in probabilities did not have the same effect 
on the two sources; there was less insensitivity to changes in the foreign source 
than in the local one. This study also revealed considerable heterogeneity in source 
dependence and provided evidence of pronounced source dependence for a sizable 
part of the sample. Interestingly, despite considerable source dependence at the indi-
vidual level in the whole sample (i.e., when pooling incentivized and non-incentiv-
ized groups), the effects canceled out at the aggregate level, resulting in no average 
source dependence. Therefore, this study showed that an apparent absence of aver-
age source dependence might hide important effects, though in opposite directions, 
at the individual level.

5.2  Study B

In Study B, we measured attitudes toward the approval ratings of a local (French, the 
reference source) president and a foreign (US) president using matching probabili-
ties with beliefs measured independently using the exchangeable-events method.

20 A consequence of the relative sensitivity is that subjects’ preference for the local source is stronger 
for low and medium levels of likelihood. This is consistent with Abdellaoui et al. (2011), who found a 
preference for betting on the temperature in Paris over the temperature in a foreign city for p < 0.5 in the 
real-incentive subsample.
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Despite using a different method than Study A, which used certainty equivalents 
instead of matching probabilities, the parameters of �AB can be interpreted in the 
same way as in Study A. The results revealed an average source-dependence effect 
for the elevation parameter ( 𝛽 = 0.277 , 95% CI = [0.171; 0.377]), indicating a pref-
erence for the approval rating of the local president over that of the foreign presi-
dent. The source premium of source A over source B at probability 0.5 was conse-
quential: 0.14 (as 𝛽 = 0.277) . On average, subjects were willing to give up a 0.14 
winning probability in order to bet on the local source rather than on a 0.5-probabil-
ity event generated by the foreign source. In addition, we reported a positive average 
relative insensitivity parameter (�̄� = 0.353 , 95% CI = [0.251;  0.449]). Therefore, 
subjects exhibited more insensitivity toward the foreign source than the  local one. 
Once again, our parametrization of source dependence allows us to easily quantify 
this effect. An increase in probability of � from 0.5 in source B has the same impact 
as an increase of 1 − 0.35 = 0.65� from 0.5 in source A.

Regarding the heterogeneity in the sample, we observed large between-subject 
differences in the function �AB (see Fig.  4, left panel). Regarding the optimism 
parameter (Fig. 4, right panel), on average, subjects exhibited a preference for the 
local source, and this preference was very strong ( 𝛽 > 0.5) for approximately 25% 
of the sample. In contrast, around 20% of the sample exhibited a preference for the 
foreign source ( 𝛽 < 0) . There was also a high level of heterogeneity in terms of the 
insensitivity parameter � , as illustrated by the estimated distribution plotted in the 
middle panel of Fig. 4. For instance, the parameter � was greater than 0.5 for about 
30% of the sample, indicating a strong relative insensitivity toward source B.

5.3  Study C

Study C used certainty equivalents to jointly measure beliefs and attitudes toward 
local (Paris, France, the reference source) versus foreign (Belgrade, Serbia) 
temperatures.

Our estimations captured a significant mean effect for both the elevation 
and insensitivity parameters of the function �AB . The average subject exhib-
ited a preference for the local source over the foreign source ( 𝛽 = 0.059 , 95% CI 
= [0.032;0.085] ). On average, subjects were willing to give up a 𝛽

2
= 0.03 winning 

probability in order to bet on the local source rather than on a 0.5-probability event 
generated by the foreign source. The average insensitivity parameter indicated slight 
relative insensitivity ( ̄𝛼 = 0.05, 95% CI = [0.012;0.091] ). Subjects were slightly less 
sensitive to changes in probabilities for the foreign source than for the local one.

We also observed sizable heterogeneity in terms of source dependence for the 
parameter � (Fig. 5, right panel). For instance, while the average subject exhibited 
a preference for the local over the foreign source, approximately 30% of the sample 
exhibited the opposite pattern. Heterogeneity was even larger for the insensitivity 
parameter � (Fig. 5, middle panel). Around 40% of the sample exhibited a pattern 
opposite to the average behavior, i.e., these subjects were more sensitive to the for-
eign source than to the local one.
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Study C revealed patterns similar to study B, even though it used different 
sources, measurement methods (CE vs. MP), and experimental procedures (online 
with hypothetical choices vs. lab experiment with real incentives). The results 
showed a consistent preference for the local source, although this was not a univer-
sal pattern as some participants exhibited the opposite behavior. Another important 
finding was that, similar to Study B, the average subject was more insensitive to 
changes in probability for the foreign source than for the local source, indicating a 
difference in sensitivity to probability changes between sources.

Comparing the results of this study with those of Study A reinforces the impor-
tance of accounting for heterogeneity in attitudes. Although the average magnitude 
of source dependence was greater in Study C than in Study A, subjects were more 
likely to exhibit pronounced preferences for one source over the other in Study A. 
Unlike Study C, which used the same foreign source for all subjects, Study A used 
different foreign sources for different subjects. This difference in design may explain 
why we observed more heterogeneity in source dependence in Study A than in 
Study C.

The main objective of this empirical application is to demonstrate that source 
dependence and its heterogeneity can be estimated using standard experimental and 
econometric procedures. Heterogeneity is finely captured by the random-coefficient 
approach, which focuses on the distribution of parameters in the sample rather than 
aggregate-level or individual-level parameters. By using Bayesian estimations, we 
can estimate individual parameters and their precision, which are often overlooked 
in experimental studies, in addition to the distributions of parameters. We observe 
that individual-level parameters have large standard errors, which could lead to type 
II errors if used for inference. This highlights the advantage of random-coefficient 
estimations, as characteristics of parameter distributions in the sample (such as 
mean and variance) can be precisely estimated even when the number of observa-
tions per subject is too small to derive precise individual estimates. Furthermore, 
our results reveal a consistent pattern across the three studies: individual standard 
errors are larger for � than for � . This suggests that relative insensitivity is easier to 
detect at the individual level than relative optimism.

6  Discussion

6.1  A simple and general method to measure source dependence

Economic decisions often involve choosing between uncertain options with 
unknown probabilities. These decisions depend not only on the decision maker’s 
beliefs about uncertain events but also on their attitude toward different sources of 
uncertainty, a pattern called source dependence. To gain a deeper understanding of 
such economic decisions, it is crucial to measure source dependence across different 
situations and individuals.

While existing methods can capture attitudes toward specific sources, there is cur-
rently no sound way to convert differences in ambiguity attitudes across sources into 
source dependence. This paper addresses this limitation and introduces a function 
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� that characterizes source preference between natural sources of uncertainty, inde-
pendent of risk and ambiguity attitudes. The function maps beliefs about one source 
of uncertainty to beliefs about another, thereby providing a direct measure of the 
preference for one source over another. Therefore, it acts as a p(robability) matcher 
(Baillon et al., 2023).

We estimated pmatchers on three datasets and showed that source dependence 
could be efficiently revealed using a limited number of choice-based data using 
either matching probabilities or certainty equivalents. While using matching prob-
abilities is efficient as it avoids measuring the utility function (Dimmock et  al., 
2016b), it can be challenging for individuals who are not familiar with probabilities 
(Bouchouicha et al., 2017). On the other hand, using certainty equivalents is cogni-
tively easier for decision makers but generally requires measuring the utility func-
tion (Abdellaoui et al., 2011), which increases the number of choices to be collected. 
Our method provides a simple way to measure source dependence using certainty 
equivalents without the need to measure utility or weighting functions. As an illus-
tration, we applied our method to a subset of choice tasks from Abdellaoui et  al. 
(2011) and found results that were similar to the original findings in terms of source 
dependence. Notably, our method required fewer choices than the original study, as 
it did not rely on the five additional certainty equivalents needed to measure utility.

Our estimation of pmatchers builds on existing methods for separating attitudes 
from beliefs: the exchangeable-events method (Abdellaoui et  al., 2011; Baillon, 
2008) and the belief-hedging method (Baillon et  al., 2018). While the exchange-
able-events method requires a separate task to independently measure beliefs, the 
belief-hedging method structurally identifies and jointly estimates beliefs and pref-
erences. We extend the belief-hedging approach in three ways. First, our extension 
of the belief-hedging method provides a direct estimation of source dependence 
that avoids possible distortions due to the comparison of non-linear ambiguity (or 
source) functions. Second, it offers an efficient way to quantify source dependence 
using the belief-hedging method with certainty equivalents without the need to elicit 
the utility function (Baillon et al., 2017). This is well suited for field or online stud-
ies (as shown in Study C), as it does not use (matching) probabilities, which may be 
cognitively difficult for some individuals. However, this approach requires the use 
of more advanced econometric methods for the joint estimation of beliefs and other 
parameters. Finally, we use non-linear functions for the structural estimations based 
on belief-hedging data, whereas previous empirical applications have focused on the 
neo-additive specification.

6.2  Measuring source dependence beyond two sources

Our method enables the study of source dependence not only between two sources 
but also among multiple sources. While pmatchers compare attitudes toward two 
sources, indirect comparisons of source dependence can be made across any two 
pairs of sources, similar to the role of correlation coefficients when studying sev-
eral random variables. This is made possible because the source premium is meas-
ured on a cardinal scale, making the estimates of different pmatchers comparable. 
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Furthermore, the pmatcher � has properties that facilitate comparisons between 
more than two sources. The pmatchers between any three sources, A, B, and C, 
are mathematically related using the composition rule �AC = �AB◦�BC.21 Conse-
quently, for three sources, all six possible comparisons can be inferred from only 
two pmatchers (e.g., �AB and �AC).

To illustrate, let’s consider the example from Sect.  2 of investors deciding 
whether to invest in stocks A (AT&T), B (British Telecom), and C (Coca-Cola). 
These investors are experts in either the telecommunications industry (sources A 
and B) or the food industry (source C). To study the home bias, one could measure 
the certainty equivalents of six events for sources A and B using the belief-hedging 
method to separate attitudes from beliefs. The parameters of the function �AB are 
directly comparable across individuals and are independent of elements such as risk 
attitudes, allowing researchers to study whether the home bias is affected by demo-
graphic characteristics.

Using the same method, one can measure an additional six certainty equiva-
lents for source C. With our method, it is easy to estimate the function �AC between 
AT&T and Coca-Cola, capturing a possible effect of expertise on attitudes. The 
coefficients of the function �AC are not only comparable across individuals but also 
comparable with those of the function �AB , enabling direct comparison of the effects 
of home bias and expertise on attitudes.22

6.3  Measuring source dependence without structural econometric estimations

In our empirical illustration of pmatchers, we used structural econometric estima-
tions, which allow accounting for non-deterministic choices (Gaudecker et  al., 
2022). We now show that, under additional assumptions, it is possible to estimate 
pmatchers without econometrics. Baillon et al. (2018) showed that ambiguity atti-
tudes toward a given source could be determined by two indexes, a and b,  that can 
be easily computed using the belief-hedging method without relying on economet-
rics.23 These indexes are general and can be interpreted under most models of ambi-
guity attitudes. Under the source model (Abdellaoui et al., 2011), the two indexes 
can be interpreted as the parameters of a neo-additive ambiguity function (e.g., Li 
et  al., 2019): f (�) = c + s� with s = 1 − a and c = a−b

2
 . Researchers interested in 

source dependence can thus easily estimate the parameters of neo-additive ambi-
guity functions toward each source using the matching probabilities of six belief-
hedging events for each source, without using econometrics. However, comparing 
the ambiguity functions of two different sources is not straightforward, as illustrated 
in Sect. 2.3, and estimation of the pmatcher remains necessary.

21 This example can be extended to other decompositions. For instance, the pmatcher between B and C 
can be expressed as �BC = �BA◦�AC.
22 We note that the pmatcher �BC between British Telecom and Coca-Cola can be computed without 
estimation using the composition of the two other pmatchers.
23 This comes at the cost that no standard error can be computed at the individual level, which prevents 
assessing the precision of individual-level parameters.
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The assumption of neo-additivity greatly simplifies the calculation of the 
pmatcher. Specifically, if aA, bA, aB, and bB are the ambiguity parameters of sources 
A and B,  then �AB is also neo-additive with an intercept of aB−bB−aA+bA

2(1−aA)
 and a slope of 

1−aB

1−aA
 . This means that the pmatcher can be easily derived using the indexes of ambi-

guity attitudes for the two sources. Furthermore, using the reparametrization that we 
proposed (see Sect. 4.2), we can easily obtain the two parameters of relative insensi-
tivity � and relative optimism � , such that

The two parameters of the pmatcher can be computed from the original indexes of 
the ambiguity functions without requiring any econometric estimations. Further-
more, Eq. 8 holds even if aA, bA, aB, and bB are indexes of neo-additive uncertainty 
functions, which is the case when certainty equivalents are used instead of matching 
probabilities to assess belief-hedging events. Therefore, our approach, when com-
bined with the assumption of neo-additivity, allows for the estimation of parameters 
of pmatchers using either matching probabilities or certainty equivalents without 
requiring any econometrics.

Finally, we note that Eq.  8 illustrates why differences in ambiguity-attitudes 
parameters may fail to capture source dependence or allow for comparison across 
sources and individuals. Indeed, the relative optimism parameter � corresponds to 
the difference in ambiguity aversion parameters between the two sources bB − bA 
adjusted by the sensitivity toward the “reference source” (role of 1 − aA ). This 
parameter aA , which can vary between individuals and sources, must be accounted 
for in quantifying source dependence.

6.4  Empirical results: source dependence and its heterogeneity

Our study analyzed pmatchers across three datasets that varied in their elicita-
tion methods and treatment of beliefs. We observed source dependence in all 
three experiments. In studies B and C, in which the local and foreign sources 
were identical for all participants, we observed a general preference for local 
sources over foreign ones, consistent with previous research (Chew et al., 2012; 
Fox & Tversky, 1995). Additionally, we found more relative insensitivity toward 
foreign sources. These findings parallel previous work on attitudes toward nat-
ural sources of uncertainty (Li et  al., 2017) and suggest that a two-parameter 
function is necessary to capture the complexity of source dependence.

Studies A and C both used local temperatures and temperatures in a foreign 
city as sources of uncertainty. However, in Study A, the local source was the 
same for all participants, while the foreign source differed across participants. 
In contrast, in Study C, both the local and foreign sources were the same for all 
participants. This difference in design could explain the difference in empirical 

(8)� =
aB − aA

1 − aA
and � =

bB − bA

1 − aA
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patterns between the two studies, particularly the higher heterogeneity in source 
dependence observed in Study A compared to Study C.

Taking heterogeneity into account refines our understanding of specific eco-
nomic mechanisms and can generate different predictions from the ones pro-
duced by a representative agent (Croitoru & Lu, 2014; Cutler et al., 2008). Influ-
ential empirical papers have revealed heterogeneity of risk preferences (Bruhin 
et  al., 2010; Falk et  al., 2018; Gaudecker et  al., 2011) and ambiguity attitudes 
within a source of uncertainty, using either Ellsberg urns (Dimmock et  al., 
2016a) or natural sources of uncertainty (Baillon et al., 2017; Abdellaoui et al., 
2021). Our paper contributes to this literature by showing evidence of heteroge-
neous patterns in terms of source dependence.

Accounting for heterogeneity in source dependence may be as important as 
accounting for heterogeneity in beliefs or risk attitudes. As Li et al. (2017, p. 1) 
note, “the domain of nonprobabilized uncertainties is rich just like the domain 
of non-monetary commodities, with many kinds of informational and emotional 
configurations.” Source dependence can be explained by different dimensions, 
including emotions (Li et  al., 2017), perceived expertise (de Lara Resende & 
Wu, 2010), or familiarity (Abdellaoui et  al., 2011; Chew et  al., 2012). These 
dimensions can vary widely from one individual to another, leading to high lev-
els of heterogeneity, as seen in Study A (Abdellaoui et  al., 2011), where for-
eign cities vary across subjects. Different cities may generate different valence, 
memories, levels of expertise, or forecast difficulties, for instance. Our method 
provides a framework for future research to explore how sources’ characteristics 
interact with individuals’ characteristics and how these interactions affect indi-
viduals’ attitudes.

6.5  Applications of source dependence: from individual decisions to strategic 
interactions

This paper aims to contribute to the growing body of literature in economics that 
explores the influence of attitudes toward uncertainty on behavior. Initially, this lit-
erature focused on the impact of attitudes on individual decision making in various 
contexts, such as sports events (Heath & Tversky, 1991; de Lara Resende & Wu, 
2010), elections (Fox & Weber, 2002), stock markets (Kilka & Weber, 2001; Bail-
lon & Bleichrodt, 2015), and insurance markets (Cabantous, 2007). In recent years, 
however, researchers have expanded their focus to study the role of uncertainty in 
strategic interactions.

As Bohnet and Zeckhauser (2004,  p. 474) note, “people care not only about 
the payoff outcome but also about how the outcome came to be.” Early studies 
focused on the role of ambiguity aversion in strategic interactions (Calford, 2020; 
Di Mauro & Finocchiaro Castro, 2011; Kelsey & Le Roux, 2015; Pulford & Col-
man, 2007) and showed that aversion to strategic ambiguity could explain incon-
sistencies between predictions and behavior in experimental games (Eichberger 
& Kelsey, 2011). Recent research has expanded to examine how attitudes toward 
different sources affect behavior in strategic interactions, i.e., the effect of source 
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dependence in strategic games. For instance, Li et al. (2020) showed that integrating 
source dependence led to a different interpretation of the role of betrayal aversion in 
the trust game. Other studies have shown that attitudes toward strategic uncertainty 
depend on the nature of the setting. For instance, Bruttel et al. (2022) observed that 
participants were more optimistic in games with strategic complementarity and 
more pessimistic in games with strategic substitutability. Chark and Chew (2015) 
found evidence of ambiguity aversion in competitive games and ambiguity seeking 
in coordination games. Attitudes in games may also depend on the nature of the 
opponent; Eichberger et al. (2008) found that ambiguity-averse behavior was more 
prevalent when the opponent was a novice, while Kelsey and Le Roux (2017) did 
not find a difference in ambiguity aversion depending on whether the opponent was 
a local or foreigner.

These findings highlight the importance of source dependence in the context of 
strategic uncertainty and illustrate that “a failure to incorporate source preference 
in modeling choice behavior in [strategic interaction settings] will not likely per-
form well from a descriptive perspective” (Chark & Chew, 2015, p. 222). Existing 
experimental research on source dependence has mainly relied on comparisons of 
willingness to bet on different games (Bruttel et al., 2022; Chark & Chew, 2015), the 
level of uncertainty of chosen actions (Eichberger et al., 2008), or comparisons of 
ambiguity attitude indexes (Li et al., 2020). In contrast, our method enables a direct 
comparison of attitudes toward uncertainty across individuals and games, allowing 
for a more comprehensive analysis of how attitudes toward different types of con-
texts, such as competitive versus cooperative, or varying conditions, such as indi-
vidualized versus unknown opponents, differ based on demographic characteristics 
like age, gender, or nationality. While previous studies have explored heterogeneity 
in aversion toward strategic ambiguity (Ivanov, 2011), investigating heterogeneity 
in source dependence across individuals and situations in strategic interactions is a 
promising area for further research.

7  Conclusion

This paper presents a tractable definition of source dependence by introducing a trans-
formation function, that allows for comparisons between individuals and between (pairs 
of) sources. It further shows how these functions can be estimated from a limited num-
ber of choices, adapting commonly used methods to separate attitudes from beliefs. Our 
empirical analyses of three experimental datasets reveal the presence of source depend-
ence and highlight its heterogeneity across individuals. They further show that source 
dependence should be studied using two dimensions: relative optimism and relative (in)
sensitivity. Our approach provides a framework for future research to examine the deter-
minants of source dependence across individuals and situations.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10683- 024- 09822-4.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 13:14:18, subject to the Cambridge Core terms of use.

https://doi.org/10.1007/s10683-024-09822-4
https://doi.org/10.1007/s10683-024-09822-4
https://www.cambridge.org/core


414 C. Gutierrez, E. Kemel 

1 3

References

Abdellaoui, M., Baillon, A., Placido, L., & Wakker, P. P. (2011). The rich domain of uncertainty: Source 
functions and their experimental implementation. American Economic Review, 101(2), 695–723.

Abdellaoui, M., Bleichrodt, H., & Gutierrez, C. (2023). Unpacking overconfident behavior when betting 
on oneself. Management Science. (Forthcoming).

Abdellaoui, M., Bleichrodt, H., Kemel, E., & L’Haridon, O. (2021). Measuring beliefs under ambiguity. 
Operations Research, 69(2), 599–612.

Abdellaoui, M., Kemel, E., Panin, A., & Vieider, F. M. (2019). Measuring time and risk preferences in an 
integrated framework. Games and Economic Behavior, 115, 459–469.

Anantanasuwong, K., Kouwenberg, R., Mitchell, O. S., & Peijnenberg, K. (2019). Ambiguity attitudes 
about investments: Evidence from the field. Working paper. National Bureau of Economic Research, 
Available at SSRN: https:// ssrn. com/ abstr act= 33365 13

Armantier, O., & Treich, N. (2013). Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging. 
European Economic Review, 62, 17–40.

Attema, A. E., Bleichrodt, H., & L’Haridon, O. (2018). Ambiguity preferences for health. Health Eco-
nomics, 27(11), 1699–1716.

Baillon, A. (2008). Eliciting subjective probabilities through exchangeable events: An advantage and a 
limitation. Decision Analysis, 5(2), 76–87.

Baillon, A., & Bleichrodt, H. (2015). Testing ambiguity models through the measurement of probabilities for 
gains and losses. American Economic Journal: Microeconomics, 7(2), 77–100.

Baillon, A., Bleichrodt, H., Keskin, U., L’Haridon, O., & Li, C. (2017). The effect of learning on ambigu-
ity attitudes. Management Science, 64(5), 2181–2198.

Baillon, A., Bleichrodt, H., Li, C., & Wakker, P. P. (2021). Belief hedges: Measuring ambiguity for all events 
and all models. Journal of Economic Theory, 198, 105353.

Baillon, A., Bleichrodt, H., Li, C., & Wakker, P. P. (2023). Source theory: A tractable and positive ambi-
guity theory. Working Paper.

Baillon, A., Bleichrodt, H., & Spinu, V. (2020). Searching for the reference point. Management Science, 
66(1), 93–112.

Baillon, A., Huang, Z., Selim, A., & Wakker, P. P. (2018). Measuring ambiguity attitudes for all (natural) 
events. Econometrica, 86(5), 1839–1858.

Barham, B. L., Chavas, J.-P., Fitz, D., Salas, V. R., & Schechter, L. (2014). The roles of risk and ambigu-
ity in technology adoption. Journal of Economic Behavior & Organization, 97, 204–218.

Berger, L., Bleichrodt, H., & Eeckhoudt, L. (2013). Treatment decisions under ambiguity. Journal of 
Health Economics, 32(3), 559–569.

Bohnet, I., & Zeckhauser, R. (2004). Trust, risk and betrayal. Journal of Economic Behavior & Organiza-
tion, 55(4), 467–484.

Bouchouicha, R., Martinsson, P., Medhin, H., & Vieider, F. M. (2017). Stake effects on ambiguity atti-
tudes for gains and losses. Theory and Decision, 83(1), 19–35.

Bruhin, A., Fehr-Duda, H., & Epper, T. (2010). Risk and rationality: Uncovering heterogeneity in prob-
ability distortion. Econometrica, 78(4), 1375–1412.

Bruttel, L., Bulutay, M., Cornand, C., Heinemann, F., & Zylbersztejn, A. (2022). Measuring strategic-
uncertainty attitudes. Experimental Economics, 26, 1–28.

Cabantous, L. (2007). Ambiguity aversion in the field of insurance: Insurers’ attitude to imprecise and 
conflicting probability estimates. Theory and Decision, 62(3), 219–240.

Calford, E. M. (2020). Uncertainty aversion in game theory: Experimental evidence. Journal of Eco-
nomic Behavior & Organization, 176, 720–734.

Chark, R., & Chew, S. H. (2015). A neuroimaging study of preference for strategic uncertainty. Journal 
of Risk and Uncertainty, 50, 209–227.

Chew, S. H., Ebstein, R. P., & Zhong, S. (2012). Ambiguity aversion and familiarity bias: Evidence from 
behavioral and gene association studies. Journal of Risk and Uncertainty, 44(1), 1–18.

Croitoru, B., & Lu, L. (2014). Asset pricing in a monetary economy with heterogeneous beliefs. Manage-
ment Science, 61(9), 2203–2219.

Cutler, D. M., Finkelstein, A., & McGarry, K. (2008). Preference heterogeneity and insurance markets: 
Explaining a puzzle of insurance. American Economic Review, 98(2), 157–62.

de Lara Resende, J. G., & Wu, G. (2010). Competence effects for choices involving gains and losses. 
Journal of Risk and Uncertainty, 40(2), 109–132.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 13:14:18, subject to the Cambridge Core terms of use.

https://ssrn.com/abstract=3336513
https://www.cambridge.org/core


415

1 3

Measuring natural source dependence  

DeJarnette, P., Dillenberger, D., Gottlieb, D., & Ortoleva, P. (2020). Time lotteries and stochastic impa-
tience. Econometrica, 88(2), 619–656.

Di Mauro, C., & Finocchiaro Castro, M. (2011). Kindness, confusion, or... ambiguity? Experimental Eco-
nomics, 14, 611–633.

Dimmock, S. G., Kouwenberg, R., Mitchell, O. S., & Peijnenburg, K. (2016). Ambiguity aversion and 
household portfolio choice puzzles: Empirical evidence. Journal of Financial Economics, 119(3), 
559–577.

Dimmock, S. G., Kouwenberg, R., & Wakker, P. P. (2016). Ambiguity attitudes in a large representative 
sample. Management Science, 62(5), 1363–1380.

Easley, D., & O’Hara, M. (2009). Ambiguity and nonparticipation: The role of regulation. The Review of 
Financial Studies, 22(5), 1817–1843.

Eichberger, J., & Kelsey, D. (2011). Are the treasures of game theory ambiguous? Economic Theory, 
48(2–3), 313–339.

Eichberger, J., Kelsey, D., & Schipper, B. C. (2008). Granny versus game theorist: Ambiguity in experi-
mental games. Theory and Decision, 64(2–3), 333.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 
643–669.

Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., & Sunde, U. (2018). Global evidence on eco-
nomic preferences. The Quarterly Journal of Economics, 133(4), 1645–1692.

Fox, C. R., & Tversky, A. (1995). Ambiguity aversion and comparative ignorance. The Quarterly Journal 
of Economics, 110(3), 585–603.

Fox, C.  R. & Ülkümen, G. (2011). Distinguishing two dimensions of uncertainty. In Brun, G. Keren, 
G. Kirkebøen,& H. Montgomery (Eds.), Perspectives on Thinking, Judging, and Decision Making. 
21–35. Oslo, Norway:Universitetsforlaget.

Fox, C. R., & Weber, M. (2002). Ambiguity aversion, comparative ignorance, and decision context. 
Organizational Behavior and Human Decision Processes, 88(1), 476–498.

Gaudecker, H.-M., Van Soest, A., & Wengstrom, E. (2011). Heterogeneity in risky choice behavior in a 
broad population. American Economic Review, 101(2), 664–94.

Gaudecker, H.-M., Wogrolly, A., & Zimpelmann, C. (2022). The distribution of ambiguity attitudes. 
Working Paper.

Goldstein, W. M., & Einhorn, H. J. (1987). Expression theory and the preference reversal phenomena. 
Psychological Review, 94(2), 236.

Heath, C., & Tversky, A. (1991). Preference and belief: Ambiguity and competence in choice under uncer-
tainty. Journal of Risk and Uncertainty, 4(1), 5–28.

Hoy, M., Peter, R., & Richter, A. (2014). Take-up for genetic tests and ambiguity. Journal of Risk and 
Uncertainty, 48, 111–133.

Ivanov, A. (2011). Attitudes to ambiguity in one-shot normal-form games: An experimental study. Games 
and Economic Behavior, 71(2), 366–394.

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 
47(2), 263–291.

Kelsey, D., & Le Roux, S. (2015). An experimental study on the effect of ambiguity in a coordination 
game. Theory and Decision, 79, 667–688.

Kelsey, D., & Le Roux, S. (2017). Dragon slaying with ambiguity: Theory and experiments. Journal of Pub-
lic Economic Theory, 19(1), 178–197.

Kilka, M., & Weber, M. (2001). What determines the shape of the probability weighting function under 
uncertainty? Management Science, 47(12), 1712–1726.

Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. 
Econometrica, 73(6), 1849–1892.

Kreps, D. M., & Porteus, E. L. (1978). Temporal resolution of uncertainty and dynamic choice theory. 
Econometrica, 46(1), 185–200.

Lau, S. T., Ng, L., & Zhang, B. (2010). The world price of home bias. Journal of Financial Economics, 
97(2), 191–217.

L’Haridon, O., & Vieider, F. M. (2019). All over the map: A worldwide comparison of risk preferences. 
Quantitative Economics, 10(1), 185–215.

Li, C. (2017). Are the poor worse at dealing with ambiguity? Journal of Risk and Uncertainty, 54(3), 
239–268.

Li, C., Turmunkh, U., & Wakker, P. P. (2019). Trust as a decision under ambiguity. Experimental Eco-
nomics, 22(1), 51–75.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 13:14:18, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


416 C. Gutierrez, E. Kemel 

1 3

Li, C., Turmunkh, U., & Wakker, P. P. (2020). Social and strategic ambiguity versus betrayal aversion. 
Games and Economic Behavior, 123, 272–287.

Li, Z., Müller, J., Wakker, P. P., & Wang, T. V. (2017). The rich domain of ambiguity explored. Management 
Science, 64(7), 3227–3240.

Millner, A., Dietz, S., & Heal, G. (2013). Scientific ambiguity and climate policy. Environmental & 
Resource Economics, 55(1), 21.

Murphy, R. O., & ten Brincke, R. H. (2017). Hierarchical maximum likelihood parameter estimation for 
cumulative prospect theory: Improving the reliability of individual risk parameter estimates. Manage-
ment Science, 64(1), 308–326.

Muthukrishnan, A., Wathieu, L., & Xu, A. J. (2009). Ambiguity aversion and the preference for estab-
lished brands. Management Science, 55(12), 1933–1941.

Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527.
Pulford, B. D., & Colman, A. M. (2007). Ambiguous games: Evidence for strategic ambiguity aversion. 

Quarterly Journal of Experimental Psychology, 60(8), 1083–1100.
Savage, L. J. (1954). The foundations of statistics. DoverPress.
Train, K. E. (2009). Discrete choice methods with simulation. Cambridge University Press.
Trautmann, S. T., & van de Kuilen, G. (2015). Ambiguity attitudes. The Wiley Blackwell handbook of 

judgment and decision making, 1, 89–116.
Tversky, A., & Fox, C. R. (1995). Weighing risk and uncertainty. Psychological Review, 102(2), 269.
van de Kuilen, G., & Wakker, P. P. (2011). The midweight method to measure attitudes toward risk and ambi-

guity. Management Science, 57(3), 582–598.
Viscusi, W. K., & Zeckhauser, R. J. (2015). Regulating ambiguous risks: The less than rational regulation 

of pharmaceuticals. The Journal of Legal Studies, 44(S2), S387–S422.
Wakker, P. P. (2004). On the composition of risk preference and belief. Psychological Review, 111(1), 

236.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Downloaded from https://www.cambridge.org/core. 17 Mar 2025 at 13:14:18, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core



