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Amplitude amplification and estimation

Quantum amplitude amplification and estimation provide means to boost or

extract the amplitude of a marked quantum state that is produced in superpo-

sition with orthogonal states by a unitary matrix. They are among the most

widely used quantum primitives, providing quadratic speedups over classical

algorithms in many settings.

The authors are grateful to Patrick Rall for reviewing this chapter.

14.1 Amplitude amplification

Rough overview (in words)

Given a quantum subroutine that succeeds with a probability less than one,

amplitude amplification can be used to boost the success probability to 1 by

making repeated calls to the subroutine and to a unitary that determines if the

subroutine has succeeded. Amplitude amplification can be viewed as a gen-

eralization of Grover’s search algorithm [464] and offers a quadratic speedup

compared to classical methods in many instances.

Rough overview (in math)

We are given an initial state |ψ0⟩, a target (“good”) state |ψg⟩ that we can mark

(i.e., the ability to reflect about the state), and a unitary U (and its inverse U†)

such that

U |ψ0⟩ = |ψ⟩ = a|ψg⟩ + b|ψb⟩ ,

where |ψb⟩ is a (“bad”) state orthogonal to the target state. In other words, |a|2
is the probability of success of applying U and measuring |ψg⟩. In addition,
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236 14. Amplitude amplification and estimation

we are given the ability to implement the reflection operator around the initial

state Rψ0
= I − 2|ψ0⟩⟨ψ0| and an operation that, when restricted to the subspace

spanned by {|ψg⟩, |ψb⟩}, acts as the reflection around the target state Rψg
=

I − 2|ψg⟩⟨ψg|.
Then, amplitude amplification allows us to boost the success probability to

1 through repeated calls to an operator W = −URψ0
U†Rψg

, from the initial

state U |ψ0⟩ = |ψ⟩. The standard analysis [186] proceeds by letting a = sin(θ)

and b = cos(θ), and showing that the 2D subspace spanned by |ψg⟩, |ψb⟩ is

invariant under W, which acts as a rotation operator such that |ψg⟩⟨ψg|Wm|ψ⟩ =
sin((2m + 1)θ)|ψg⟩.

The algorithm can also be viewed through the lens of quantum singular

value transformation (QSVT) whereby U provides a generalized block-

encoding (known as a projected unitary encoding) of the amplitude a. We can

see this from |ψg⟩⟨ψg|U |ψ0⟩⟨ψ0| = a|ψg⟩⟨ψ0|. We choose to apply a polynomial

f (·) satisfying the quantum signal processing conditions and f (a) = 1 to

the block-encoded amplitude [429, Theorem 27 & 28]. For example, the

textbook version of amplitude amplification is recovered by setting the

QSVT rotation angles to ± π/2.1 This QSVT circuit applies a degree 2m + 1

Chebyshev polynomial of the first kind T2m+1 to the amplitude a, such that

|ψg⟩⟨ψg|Wm|ψ⟩ = T2m+1(a)|ψg⟩ = (−1)m sin((2m + 1)θ)|ψg⟩ for a = sin(θ).

Dominant resource cost (gates/qubits)

The number of calls to W is

m =
π

4 arcsin(a)
− 1

2
= O

(
a−1

)

for small a. Each call to W requires a call to each of U,U†,Rψ0
,Rψg

. Often we

have |ψ0⟩ = |0n+k⟩, and U acts on n register qubits and k ancilla qubits such

that U |0n+k⟩ = a|ψg⟩n|0k⟩k + b|⊥⟩n,k, where |⊥⟩n,k denotes a state orthogonal to

|0k⟩ on the ancilla register. In this case the reflection operators are simple to

implement using multicontrolled Toffoli gates.

Caveats

The textbook version of amplitude amplification assumes that the success am-

plitude a exactly equals sin(π/(4m + 2)) for an integer m. If this is not the case

(e.g., when a = 1/
√

2), we can introduce a new qubit in |0⟩ and apply an

Ry(2ϕ) gate (i.e., a rotation about Y by angle 2ϕ) to reduce the success proba-

bility (now defined by measuring |ψg⟩|0⟩) to a cos(ϕ) = sin(π/(4m′ + 2)) for an

integer m′.

1 These rotation angles enable a gate compilation that removes the need for the QSVT ancilla
qubit.
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14.1 Amplitude amplification 237

In cases where we can only lower bound the success amplitude a ≥ a0, it

is common to use fixed-point amplitude amplification [1067]. This is best un-

derstood through QSVT [429, Theorem 27], where the reflection operators are

replaced by parameterized phase operators eiθ|ψg⟩⟨ψg | and eiϕ|ψ0⟩⟨ψ0 |.2 The QSVT

rotation angles are chosen to implement a polynomial that maps all ampli-

tudes taking value at least a0 to at least (1 − ϵ). The fixed-point amplitude

amplification circuit uses a QSVT circuit that makes O(a−1
0 log(ϵ−1)) calls to

U,U†, eiθ|ψg⟩⟨ψg |, and eiϕ|ψ0⟩⟨ψ0 |.

Example use cases

• Combinatorial optimization.

• Convex optimization via “minimum finding” subroutine (see [48, Appendix

C]).

• Weakening cryptosystems.

• Tensor principal component analysis.

• Hamiltonian simulation using linear combinations of unitaries.

Further reading

• Both amplitude amplification and Grover search can be viewed through the

lens of quantum walks on suitably constructed graphs. The quantum walks

also take the form of a product of two reflections and more generally can

be understood as quantizing a Markov chain describing a classical random

walk [974]. We refer the interested reader to [276, 733, 52, 427].

• Oblivious amplitude amplification: Amplitude amplification can be ex-

tended to the case of oblivious amplitude amplification (OAA) [135]. The

original formulation considered a setting where one is given unitary U such

that for any state |ψ⟩, we have

U |0m⟩|ψ⟩ = a|0m⟩V |ψ⟩ + b|0m
⊥ϕ⟩

for a unitary operator V . The goal is to amplify the probability for the state

|0m⟩V |ψ⟩ to 1. This is achieved through O(a−1) applications of an operator

W = U(I − 2|0m⟩⟨0m|)U†(I − 2|0m⟩⟨0m|) applied to U |0m⟩|ψ⟩. We see that W

does not require reflections around the initial state |ψ⟩. We can recognize U

as an m-qubit block-encoding of the operator aV , which can be transformed

to a block-encoding of V using QSVT.3 The OAA subroutine is used in

2 It is shown in [687, Section 8.5] how these phase operators can be constructed using the
corresponding controlled reflection operator. If only the uncontrolled reflection is available, a
control can be added using, for example, [744, Fig. 5].

3 We note that in this interpretation, one may be concerned that the phase information of the
unitary V is lost by transforming the singular values. This turns out not to be problematic, as
the phase information of V can be considered stored in the basis transformation matrices

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.017
Downloaded from https://www.cambridge.org/core. IP address: 3.148.108.24, on 06 May 2025 at 10:12:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.017
https://www.cambridge.org/core


238 14. Amplitude amplification and estimation

the context of Hamiltonian simulation via Taylor series, where it would be

problematic to have to reflect around the initial state during amplification.4

It is also used in [297] (applied to isometries) for simulation of open quan-

tum systems. OAA requires the block-encoded operator being amplified to

preserve state norms (i.e., it must be an isometry), as this ensures that the

success probability of the operation is independent of the state to which it

is applied, which in turn enables amplification without reflection around the

initial state.

It is also possible to amplify a block-encoding of a non-isometric operator

A using QSVT; see [429, Theorem 30] and [715]. Assume ∥A∥ = 1; given

the ability to implement a block-encoding U of
√

pA, we can use oblivious

amplitude amplification to implement a block-encoding of A usingO(1/
√

p)

calls to U,U†. Note that for a general normalized state |ψ⟩, it holds that

∥A|ψ⟩∥ ≤ 1, with equality only achieved when |ψ⟩ is the singular vector

corresponding to the largest singular value of A. As a result, to boost the

success probability of outputting A|ψ⟩/∥A|ψ⟩∥ to unity for a general input

state requires using regular amplitude amplification, involving reflections

around the initial state.

• While we are unaware of a standard reference for the use of an additional an-

cilla qubit to account for cases where the success amplitude a , sin(π/(4m+

2)) for integer m, discussed above in §Caveats, it is explained more fully

in [754, Appendix B].

14.2 Amplitude estimation

Rough overview (in words)

Given a quantum subroutine that succeeds with unknown success probability,

amplitude estimation provides quadratic speedup over classical methods for

estimating the success probability. Because many quantities of interest can be

encoded in an amplitude or probability, amplitude estimation can be used as

a widely applicable tool for obtaining Monte Carlo estimates with complexity

O(1/ϵ), instead of the O(1/ϵ2) achieved by classical estimation.

present in the singular value decomposition, rather than in the diagonal singular values matrix.
This is taken care of automatically using QSVT. Phases are preserved when using an odd
polynomial.

4 More precisely, a robust version of OAA is used which is applicable to an operator that is ϵ
close to being unitary [137, 136].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.017
Downloaded from https://www.cambridge.org/core. IP address: 3.148.108.24, on 06 May 2025 at 10:12:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.017
https://www.cambridge.org/core


14.2 Amplitude estimation 239

Rough overview (in math)

We are given an initial state |ψ0⟩, a target (“good”) state |ψg⟩, and a unitary U

and its inverse U† such that

U |ψ0⟩ = |ψ⟩ = a|ψg⟩ + b|ψb⟩ ,

where |ψb⟩ is a (“bad”) state orthogonal to the target state. We assume that

we can mark the target state |ψg⟩ (i.e., the ability to reflect about the state).

Thus, p = |a|2 is the success probability of applying U and measuring |ψg⟩.5
We are given the ability to implement the reflection operator around the ini-

tial state Rψ0
= I − 2|ψ0⟩⟨ψ0| and an operation that, when restricted to the

subspace spanned by {|ψg⟩, |ψb⟩}, acts as the reflection around the target state

Rψg
= I−2|ψg⟩⟨ψg|. We can then estimate the success probability by performing

quantum phase estimation on an operator W = −URψ0
U†Rψg

, from the initial

state U |ψ0⟩ = |ψ⟩. The standard analysis [186] proceeds by letting |a| = sin(θ)

and |b| = cos(θ) (thus, the phases of a and b are absorbed into |ψg⟩ and |ψb⟩ and

are not determined by the following procedure) and showing that the 2D sub-

space spanned by {|ψg⟩, |ψb⟩} is invariant under W, where it acts as a rotation

operator

W =

(
cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

)
.

This operator has eigenvalues e±2iθ, and we can estimate θ to additive error ϵ

through quantum phase estimation. The estimate for θ can be converted into

an estimate for |a|, or for the success probability p = |a|2, which is often the

quantity of interest.

Dominant resource cost (gates/qubits)

The classical approach for learning the probability p to precision ϵ has com-

plexity scaling as M = O(1/ϵ2), where the basic idea is to perform M in-

coherent repetitions of applying U and measuring in the |ψg⟩, |ψb⟩ basis, and

then tally the measurement outcomes and construct the frequentist (or max-

imum likelihood) estimate of p. Amplitude estimation provides a quadratic

speedup, learning the probability (and amplitude) with complexity scaling as

M = O(1/ϵ). The textbook variant has a constant success probability, which

can be boosted to 1 − δ with O(log(1/δ)) overhead through standard methods

(e.g., probability amplification by majority voting).

5 Note that the original paper introducing amplitude estimation [186] uses the variable a to
denote the success probability. While the algorithm is referred to as amplitude estimation, it is
often the success probability that we wish to compute, and the complexity of the algorithm is
often presented accordingly.
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240 14. Amplitude amplification and estimation

More precisely, following the analysis of [186] one can see that to learn |a|
to error ϵ it suffices to utilize M controlled applications of the walk operator W

where M satisfies6

ϵ ≥ π
√

1 − |a|2
M

+
|a|π2

2M2
. (14.1)

The algorithm succeeds with probability at least 8/π2. For |a| ≈ 1 − O(ϵ), a

further quadratic improvement is obtained (i.e., M = O(1/
√
ϵ) suffices).

To learn the success probability p = |a|2 to error ϵ it suffices to utilize M

controlled applications of the walk operator W where M satisfies [186]

ϵ ≥
2π

√
p(1 − p)

M
+
π2

M2
. (14.2)

The algorithm once again succeeds with probability at least 8/π2. Similar to

above, if p ≈ O(ϵ) or p ≈ 1 − O(ϵ), then it suffices to take M = O(1/
√
ϵ).7

The overall gate complexity of an application involving amplitude estima-

tion is given by M times the gate complexity of implementing a controlled

application of W.

A common setting is the case where |ψ0⟩ = |0n+k⟩, and U acts on n regis-

ter qubits and k ancilla qubits such that U |0n+k⟩ = a|ψg⟩|0k⟩k + b|ψb⟩|0k
⊥⟩k. In

this case, the reflection operators are simple to implement, and W can be con-

trolled by making these reflections controlled (adding another control qubit to a

multicontrolled Z gate). We require log(M) ancilla qubits for phase estimation

(which can be reduced using modern variants, see below and [855]).

Caveats

The textbook version of amplitude estimation described above produces biased

estimates of |a| and p. This is partly inherited from the biased nature of text-

book quantum phase estimation. However, even if unbiased variants of phase

estimation are used, the amplitude and probability estimates are not imme-

diately unbiased, as they are obtained by applying nonlinear functions to the

6 Specifically, Lemma 7 of [186] shows that if θ = arcsin(|a|) and θ̃ = arcsin(|ã|), then |θ − θ̃| ≤ η
implies |a2 − ã2 | ≤ 2η

√
a2(1 − a2) + η2. This is easily adapted to show that it also implies

|a − ã| ≤ η
√

1 − a2 + aη2/2. They show that with probability at least 8/π2, θ is learned up to
additive error at most η = π/M with M calls to W, which together with the above expressions
implies Eqs. (14.1) and (14.2).

7 We can compare to the classical approach of estimating p by flipping a p-biased coin M times.
Letting p̃ denote the estimate, which has mean p and variance p(1 − p)/M, Chebyshev’s
inequality implies that |p − p̃| ≤ ϵ with probability at least 8/π2 as long as M ≥ Cp(1 − p)/ϵ2

where C = 1/(1 − 8/π2). Thus, when p ≈ O(ϵ) or p ≈ 1 − O(ϵ), the classical approach
achieves M ∼ 1/ϵ, and the quantum speedup is never more than quadratic.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.017
Downloaded from https://www.cambridge.org/core. IP address: 3.148.108.24, on 06 May 2025 at 10:12:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.017
https://www.cambridge.org/core


14.2 Amplitude estimation 241

estimate of the phase. Unbiased variants of amplitude [855]8 and probability

estimation [49, 308] have been developed to address this.

The variant of amplitude estimation described above is also “destructive”

in the sense that the output state is collapsed into a state 1√
2
(|ψg⟩ ± i|ψb⟩) ,

|ψ0⟩, |ψ⟩. A nondestructive variant may be desired if the initial state is expen-

sive to prepare and we require coherent or incoherent repetitions of amplitude

estimation. Nondestructive variants have been developed in [499, 308, 855].

Example use cases

• Approximate counting of solutions marked by an oracle (e.g., topological

data analysis, combinatorial optimization).

• Amplitude estimation provides a quadratic speedup for Monte Carlo

estimation [773, 642] with uses in pricing financial assets. The gen-

eral idea is to prepare a state |ψ⟩ = ∑
x

√
p(x) f (x)|x⟩|0⟩ + |ϕ0⊥⟩ where

E[ f (x)] =
∑

x p(x) f (x) represents the expectation value we wish to evaluate

using Monte Carlo sampling and corresponds to the probability that we

measure the second register in state |0⟩. Hence, amplitude estimation

provides a quadratic speedup for estimating this quantity.

• A special case of amplitude estimation is overlap estimation [637], where

given two states |ψ⟩, |ψ0⟩ and a unitary such that |ψ⟩ = U |ψ0⟩, the goal is

to measure ⟨ψ0|U |ψ0⟩ = ⟨ψ0|ψ⟩. This can be viewed as an application of

amplitude amplification, where |ψg⟩ = |ψ0⟩. As a result, we only require the

ability to implement Rψ0
= I − 2|ψ0⟩⟨ψ0|, U,U† (or equivalently Rψ0

and

Rψ). Note that in overlap estimation, one additionally wants to determine

the phase of a, which can be obtained by applying amplitude estimation on

a controlled variant of U, as outlined in [637]. Overlap estimation can be

used for estimating observables, for example, in quantum chemistry.

• A generalization of amplitude estimation, via the quantum gradient algo-

rithm, forms a core subroutine in some approaches for quantum state to-

mography [49]. Pure state tomography can be thought of as a generalization

of amplitude estimation, in which we seek to learn all amplitudes individ-

ually, rather than only a single aggregate quantity. Closely related work on

multivariate amplitude estimation [310] has broad applicability, including in

convex optimization [51] and finance [361].

8 In order to achieve bias ≤ ϵη, the algorithm of [855] pays a multiplicative cost overhead ∼ 1
η

which, up to logarithmic factors, could also be achieved by merely improving the precision
to ϵη. The additive ∼ log( 1

ϵη
) cost overhead of [49, 308] is much more satisfactory.
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242 14. Amplitude amplification and estimation

Further reading

• Variants of amplitude estimation using fewer ancilla qubits (including

ancilla-free approaches), or with depth-repetition tradeoffs have been

proposed [460], including work to make these methods nonadaptive [1007].

For a summary of these approaches and their unification within the QSVT

framework, see [855].

• There has been some work on computing, optimizing, and comparing the

constant prefactor of the M = O(1/ϵ) relation using different approaches to

amplitude estimation, relevant for concrete resource estimates. For example,

building on the analysis of [460], the method from [855] was estimated to

scale roughly as M ≈ 4.7/ϵ based on numerical experiments on a range of

choices for ϵ and with fixed a = 0.5. This was observed to be about an order

of magnitude better than the textbook method from [186] described above.9

The method from [657] furthermore showed that a comparable total query

complexity could be obtained while parallelizing across multiple processors,

with maximum query depth roughly 0.4/ϵ.

9 Asymptotically speaking, the complexity of the methods from [855, 460] scales suboptimally,
as O(log log(1/ϵ)/ϵ), but the extra log log(1/ϵ) factor grows sufficiently slowly that for
practical values of ϵ it can be bounded by a small constant.
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