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Abstract. The excitation of electrostatic ion wakefields by electromagnetic pulses
in a very dense plasma is considered. For this purpose, a wave equation for the ion
wakefield in the presence of the ponderomotive force of the electromagnetic waves
is obtained. Choosing a typical profile for the electromagnetic pulse, the form of
the ion wakefields is deduced. The electromagnetic wave-generated ion wakefields
can trap protons and accelerate them to high energies in dense plasmas.

There are many proposals [1–5] for exciting high-phase speed intense electrostatic
wakefields by electron bunches and laser beams in an unmagnetized electron–ion
plasma [2, 4, 5]. Large-amplitude electron plasma waves are capable of accelerat-
ing electrons to extremely high energies, as demonstrated experimentally [6–14].
Possible applications of collective plasma accelerators lie in producing beams of
energetic electrons, protons, and gamma rays, as well as femtosecond pulses and
compact radiation sources for medicine. Plasma-based charged particle acceleration
schemes are also holding promises for extremely high-energy charged particles and
radiation sources from astrophysical plasmas as well.
However, in very dense plasmas, such as those in astrophysical environments

[15–18] and in the next-generation intense laser–solid density plasma experiments
[19–23], there might appear novel effects at the nanoscale owing to the presence of
the new electron pressure law and the quantum force involving the Bohm potential
[24–28]. This happens because in dense quantum plasmas the electrons degenerate
and they follow the Fermi–Thomas distribution.
In this letter, we consider the excitation of electrostatic ion wakefields by elec-

tromagnetic (EM) waves [29–32] in a very dense plasma. For this purpose, we use
the quantum fluid model for the degenerate electrons and derive the ion wakefield
equation in the presence of the ponderomotive force of the EM waves. The profile
of the ion wakefield is deduced by assuming a given EM pulse shape. The relevance
of our investigation is also mentioned.
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Let us consider a very dense unmagnetized electron–ion plasma in the presence
of the EM fields. At equilibrium, we have ne0 = Zini0, where nj0 is the unperturbed
number density of the particle species j (j = e for the electrons and i for the ions)
and Zi is the ion charge state. The EM fields are given by Ew = −(1/c)∂A/∂t and
Bw = ∇ ×A, where c is the speed of light in vacuum and A is the vector potential.
The frequency of the EM waves is

ω =
(
k2c2 + ω2

pe

)1/2
, (1)

where k is the wave vector, ωpe = (4πne0e
2/me)1/2 is the electron plasma frequency,

e is the magnitude of the electron charge, and me is the electron mass.
The electron quiver velocity in the EM field is

ue =
eA
mec

. (2)

The ponderomotive force associated with the EM waves reads

mene0〈ue · ∇ue〉 +
ene0

c
〈ue × Bw〉 ≡ ne0e

2

2mec2 ∇|A|2 , (3)

where the angular bracket denotes an ensemble average over the period 2π/ω. We
have used the gauge ∇ · A = 0.
The ponderomotive force pushes electrons locally and produce the space charge

electric field (−∇φ, where φ is the wake potential) and the density perturbation
(ne1) in our dense plasma. The equation of motion for the inertialess electrons is

ne0e
2

2mec2 ∇|A|2 = ene0∇φ − meV
2
e ∇ne1 +

�
2

4me
∇∇2ne1, (4)

where Ve = (2π�/
√

3me)(3ne0/8π)1/3 , and � is the Planck constant divided by 2π.
The second and third terms in the right-hand side of (4) are associated with the
pressure law [33] (e.g. pe = (4π2

�
2/5me)(3/8π)2/3n

5/3
e for non-relativistic degener-

ate electrons, where ne is the electron number density) and the Bohm potential [24],
respectively, in dense plasmas. The electrons are coupled with ions via the space
charge electric field. The ion density perturbation ni1 is determined from [34]

∂ni1
∂t

+ ni0∇ · ui = 0, (5)

where the ion fluid velocity ui is obtained from

∂ui
∂t

= −Zie

mi
∇φ. (6)

In (6) we have neglected the ion ponderomotive force, the ion quantum force, and
the ion pressure, since they are smaller by a factorme/mi in comparison with those
acting on the electrons. Here mi is the ion mass.
The Poisson equation is

∇2φ = 4πe(ne1 − Zini1). (7)

Combining (5)–(7) we obtain(
∂2

∂t2
+ ω2

pi

)
∇2φ = 4πe

∂2ne1
∂t2

, (8)

where ωpi = (4πZ2
i e2ni0/mi)1/2 is the ion plasma frequency.
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We can now eliminate ne1 from (8) by using (4), obtaining the driven (by the
ponderomotive force of the EM waves) ion wakefield equation

�
2

4m2
e

(
∂2

∂t2
+ ω2

pi

)
∇4φ − V 2

e

(
∂2

∂t2
+ ω2

pi

)
∇2φ + ω2

pe
∂2φ

∂t2
=

ω2
pee

2mec2

∂2 |A|2
∂t2

. (9)

In the limit |∂2φ/∂t2 | � ω2
piφ, (9) reduces to(

∂2

∂t2
− V 2

i ∇2 +
�

2

4memi
∇4

)
φ =

e

2mec2

∂2 |A|2
∂t2

. (10)

where Vi = (me/mi)1/2Ve.
In one space dimension, (10) in the moving frame ξ = x − Vgt can be written as(

∂2

∂ξ2 + K2
q

)
φ =

2emiV
2
g |A|2

�2c2 , (11)

where Vg = kxc2/ω0 is the group velocity of the EM pulse, ω0 = (k2
xc2 + ω2

pe)
1/2 ,

kx is the wave number along the x-axis in a Cartesian coordinate system, and
Ke = 4memi(V 2

g − V 2
i )/�

2 > 0.
The solution [35–37] of (11) is

φ =
2emiV

2
g

Kq�2c2

∫ 0

ξ

|A|2(ξ′) sin[Kq (ξ − ξ′)] dξ′, (12)

where the boundary conditions, φ = ∂φ/∂ξ = 0 at ξ = 0 have been used.
Let us suppose that the EM pulse is given by A = A0 sin(πξ/L0) for −L < ξ < 0,

and A = 0 otherwise [35–37]. Here L is the pulse length, which is shorter than
approximately 2πc/ωpe. Hence, (12) yields

φ = Cq
|A0 |2

4

{
1 − 1(

K2
q − 4π2/L2

)
[
K2

q cos(2πξ/L) − 4π2

L2 cos(Kqξ)
]}

, (13)

where we have used the notation Cq = 2emiV
2
g /�

2c2 .
For KqL � 1, (13) gives

φ �
CqK

2
q |A0 |2

8
g(ξ), (14)

where we have used the notation

g(ξ) = ξ2 − 2
(

L

2π

)2[
1 − cos

(
2πξ

L

)]
. (15)

The functional g(ξ) maximizes at ξ = L. Thus, the maximum value of the wake
potential, deduced from (14) is

φm � (Cq/8)(KqL|A0 |)2 . (16)

To summarize, we have considered the excitation of the ion wakefields by large-
amplitude EM waves in a very dense plasma with degenerate electrons. Specifically,
we have used the relevant momentum equation for the latter, as well as the ion
continuity and momentum equations together with the Poisson equation to derive
the governing equation for the ion wakefield in the presence of the ponderomotive
force of the EM waves. In a stationary moving frame, the profile of the ion wakefield
is determined provided that the shape of the high-frequency EM vector potential is
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prescribed. It is found that even weak short EM pulses are capable of exciting sizable
ion wakefields. The latter can be exploited for accelerating protons in dense plasmas,
such as those in compact astrophysical objects [15–18] (e.g. interior of white dwarfs),
in the next-generation laser–solid density plasma interaction experiments [20–23],
in free electron lasers [38], and in plasmonic devices [33].
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