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A NOTE ON MINIMAL USCO MAPS 

ANDREI VERONA AND MARIA ELENA VERONA 

ABSTRACT. We prove that the composition of a minimal usco map, defined on a 
Baire space, with a lower semicontinuous function is single valued and usco at each 
point of a dense G$ subset of its domain. This extends earlier results of Kenderov and 
Fitzpatrick. As a first consequence, we prove that a Banach space, with the property 
that there exists a strictly convex, weak* lower semicontinuous function on its dual, is 
a weak Asplund space. As a second consequence, we present a short proof of the fact 
that a Banach space with separable dual is an Asplund space. 

Throughout this paper we shall consider only Hausdorff topological spaces. Let A 
and Z be two such spaces. Recall that a multivalued map F: A —> 2Z is called upper 
semicontinuous at a G A if for any open set U Ç Z such that F(a) Ç U, the set F - 1 (U) = 
{ x G A : F(x) Ç U} is a neighborhood of a in A; if in addition F(a) is nonempty and 
compact, then F is called usco at a. F is called usco onAo ÇA if it is usco at each a G Ao. 
The following lemma gives a useful necessary and sufficient condition for a multivalued 
map to be usco at a point of its domain. Its proof is straightforward and we omit it. 

LEMMA 1. Let F.A —• 2Z be a multivalued map and a G A. The following assertions 
are equivalent: 

(i) F is usco at a; 
(ii) If(aa ) is a net in A converging to a and (za ) is a net in Z such that za G F(aa )for 

every a, then the set consisting of all cluster points of the net (za) is nonempty 
and is contained in F(a). 

If Z is a topological vector space, the multivalued map F: A —>• 2Z is called convex if 
F(a) is a convex subset of Z for every a G A. 

Recall that the graph of a multivalued map F.A —> 2Z is the set 

Ç(F) = {(a,z) £ A x Z : z e F(a)}. 

A usco (resp. convex usco) map is called minimal if its graph does not properly contain 
the graph of any other usco (resp. convex usco) with the same domain and co-domain. 

We shall now recall some known, useful facts concerning usco maps. Details and 
proofs can be found in [3], [4], or [7]; some of them follow easily from the above lemma. 
Let F: A -> 2Z and H:A-> 2Z. 

(1) If F is usco, then its graph is a closed subset of A x Z. 
(2) If F is usco and Ç(H) is closed and contained in Q(F), then H is usco. 
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(3) Let Z be a topological vector space satisfying the following property: 

(*) the closed, convex hull of every compact, convex subset of Z is compact. 

Define co~F: A —> 2Z as follows: (côF)(a) is the closed convex hull of F{a). Then, if 
F is usco, œ F is a convex usco map, which is minimal convex if F is minimal ([4], 
Corollary 2.3 and Proposition 2.5; see also [7], Lemma 7.12). 

(4) Assume that F is usco (resp. convex usco and Z satisfies (*)) and let Ao be a 
dense subset of A. Let F\ A$: AQ —• 2Z be the restriction of F and F°: A —> 2Z be 
the multivalued map whose graph is the closure in A x Z of the graph of F\Ao. If 
Fis minimal (resp. minimal convex), then F° — F (resp. côf° = F) and F|Ao is 
a minimal (resp. minimal convex) usco map on A0 (see [3], Theorem 4.7). 

THEOREM 2. Assume that A is a Baire space and let F: A —> 2Z be a minimal (convex) 
usco map. Let also f: Z —> R be a (convex) lower semicontinuous function. Then there 
exists a dense G$ subset Ao of A such thatf o F: A —• 2R, (f o F)(a) = /(F(a)), is single 
valued and usco at each point ofAo. 

PROOF. Step I. Define i> : A —* R by 

ii(a) = min{f(z):zeF(a)}. 

The definition is correct since F(a) is compact and/ is lower semicontinuous. We shall 
prove that \j) is lower semicontinuous on A. To this end, let (aa) be a net in A converging 
to a. For every a choose za £ F(aa) such that il)(aa) — f(za)- Since F is usco, the 
set consisting of the cluster points of the net (za) is nonempty and contained in F(a); let 
z € F(a) be such a point. Since/ is lower semicontinuous, we have 

liminf xjj(aa) = liminf/(za) >f(z) > ^(a), 

which proves our assertion. 
Step II. Define a (convex) multivalued map Fo: A —-> 2Z by 

F0(a)={zeF(a):f(z) = ^(a)}. 

Clearly Fo is compact (and convex) valued. We shall prove next that Fo is upper semicon
tinuous at each point at which ijj is continuous. To this end, let a E A be such a point and 
consider a net (aa) in A converging to a and a net (za) in Z such that za € Fo(aa). Since 
Fo(aa) Ç F(aa) and F is usco, the set of all cluster points of the net (za) is nonempty 
and contained in F(a). Let z be such a point. Using the continuity of ip ai a and the lower 
semicontinuity of/, we have 

V>(a) = l im^(a a) = liminf/(za) >/(z) ^ ^(«)-

It follows that/(z) = ip(a) and therefore z G Fo(a). By Lemma 1, we can conclude that 
F0 is upper semicontinuous at a. 

https://doi.org/10.4153/CMB-1991-066-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1991-066-8


414 A. VERONA AND M. E. VERONA 

Step III. Since V> is defined on a Baire space and is lower semicontinuous, there exists 
a dense Gs subset Ao of A such that \j) is continuous at each point of A0. Thus F0 is usco 
at each point of A0. Since Ç(Fo\Ao) Q Q(F\AQ) and F\AQ is a minimal (convex) map 
(see (4) above), it follows that F\AQ — FQ\AO. This proves that/ o F is single valued at 
each point of Ao-

Step IV. It remains to show that H — f o F is upper semicontinuous at each point of 
Ao. Let a G Ao, t = ^{a) and e > 0. Since i/> is continuous at a, there exists an open 
neighborhood U of a such that ^ (U) Q (t - e/ 2, t + e/ 2). Let C = / ^ ( ( - o o , f + e / 2]); 
it is a closed (convex) subset of Z. Clearly F(A0 Pi £/) Ç C and, by the minimality of 
F, it follows that F{U) Ç C (see e.g. [3], Proposition 4.5 and [4], Proposition 4.1). This 
implies that H(U) Ç (—oo,f + e). On the other hand, since F is usco and/ is lower 
semicontinuous, there exists an open neighborhood V of a such that H(V) Ç (r — e, oo). 
Clearly H(Un V) Ç. (t — e,t + e) and this proves that H is upper semicontinuous at a. 

REMARK 3. (i) The first assertion of the previous theorem can be reformulated as 
follows: F(a) is contained in a level set of/ for every a G Ao. In particular, if F: X —> 2X* 
is a (maximal) monotone operator (for example, the subdifferential map of a continuous 
convex function on X) and if/ is the norm on the dual X* of a Banach space X, we reobtain 
a well known result of Kenderov [6]. (Recall that in this situation F is automatically 
norm-to-weak* usco and the norm on X* is weak* lower semicontinuous.) The extensions 
of Kenderov's result proved in [9] and [10] are also particular cases of the previous 
theorem. 

(ii) The second assertion of the theorem can be reformulated as follows: if a G Ao, z G 
F(a), (aa) is a net in A converging to a, and (za) is a net in Z such that za G F(aa), then 
the net (/(z«)) converges to/(z). In the particular case when F is a (maximal) monotone 
operator on the Banach space X and/ is the dual norm on X*, we reobtain a result of 
Fitzpatrick [5]. 

(iii) It is obvious that a convex set contained in a level set of a strictly convex function 
must be a singleton. As a consequence of the above theorem (as reformulated in (i)) we 
obtain: 

COROLLARY 4. Let A be a Baire space and Z be a topological vector space (resp. 
a topological vector space satisfying (*)) such that there exists a strictly convex, lower 
semicontinuous function / : Z —• R. Let also F: A —+ 2Z be a minimal convex (resp. 
minimal) usco map. Then there exists a dense G& subset of A on which F is single valued. 

It is well known (see [1]) that a Banach space X, which can be equivalently renormed 
such that the dual norm is strictly convex, is a weak Asplund space (i.e., every continuous, 
convex function defined on an open, convex subset of X is Gâteaux differentiable at each 
point of some G& subset of its domain); more generally, such a space is in Stegall's class 
C (i.e., any minimal weak* usco map defined on a Baire space with values in 2X* is single 
valued on a dense G& subset of its domain; see [8] for properties of this class and [2] or 
[9] for a proof of this assertion). As an immediate consequence of Corollary 4 we have 
the following generalization of these results. 
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THEOREM 5. Let X be a Banach space and assume that there exists a weak* lower 
semicontinuous f strictly convex function f: X* —• R. Then X is is in StegalVs class C. In 
particular, it is a weak Asplund space. 

As a second application of Theorem 2, we shall give next a short proof for another 
result of Asplund [1]. Recall first that a Banach space X is called an Asplund space if 
every continuous, convex function defined on an open, convex subset of X is Fréchet 
differentiable on a dense Gs subset of its domain. 

THEOREM 6. Let X be a Banach space such that its dual X* is (norm) separable. 
Then X is an Asplund space. 

PROOF. Let C be an open, convex subset of X and (p : C —• R be a continuous, convex 
function. Then the subdifferential map dtp : C —• 2X* is a minimal convex weak* usco map 
(see [7], Theorem 3.25 and Theorem 7.9). Our assertion is now a direct consequence of 
the following lemma and Proposition 2.8 in [7]. 

LEMMA 7. Let A be a Baire space, X be a Banach space with separable dual and 
F: A —-> 2X* be a minimal (convex) weak* usco map. Then there exists a dense G$ subset 
D of A such that F is single valued and norm usco at each point ofD. 

PROOF. Let (x£) be a dense sequence inX*. For every k define/*: X* —• R by/*(**) = 
|| x* — x\ ||. Then/* is weak* lower semicontinuous and by Theorem 2 there exists a dense 
Gs subset A* of A such that/* o F: A —• 2R is single valued and usco at each point of A*. 
Let a e D — f]Ak and assume that x* and y* are different elements in F(a). Then there 
exists x*k such that ||JC* — x*k || ^ ||y* — x*k ||. Since this contradicts the fact that/* o F is 
single valued at a, it follows that F must be single valued at a. 

It remains to prove that F is norm usco at each a G D. To this end let (aa) be a net 
in A converging to a € D. Let y* G F(aa) and let F(a) = {y*}. Take any e > 0 and 
choose x*k such that/*(y*) = ||y* — x*k\\ < e/ 3. Since/* o F is usco at a, there exists ae 

such that 
fk(y*a)< fk(y*) + e/3 <2e/3if a >ae. 

Thus 

\y*a-y*\\ < \\y* ~4\\ + hi -4\\ =fk(y*)+fk(y*a) < ^ if « > a£9 

which proves that (y* ) norm converges to y*. Lemma 1 implies that F is norm usco at a. 
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