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Twinning Rates in Isolates
Johan Fellman
Hanken School of Economics, Helsinki, Finland

The aim of this study was to investigate the twinning rates (TWRs) in isolates relative to the TWRs in the
surrounding populations. It is not uncommon that the TWR shows extreme values (high or low rates) within
isolated subpopulations. Starting from the isolated populations of the Åland Islands in Finland (high rates),
we enlarged our studies to other isolated subpopulations in other countries: the island of Gotland (high
rates), the county of Älvsborg located in the southwestern part of Sweden (low rates), and mountain vil-
lages in Norway. In our statistical analyses, we paid special attention to the robustness of the variance
formula of the TWR and to alternative confidence intervals for the TWR. Particularly, we show how to
obtain the most precise confidence intervals for the twinning rates. These statistical methods are crucial
when the extreme TWRs within subpopulations are compared with the TWRs within the general popula-
tion. One must decide whether the differences are real or caused by random fluctuations within the small
isolates.
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This study aimed to investigate the twinning rates (TWRs)
in isolates compared with the rates in the surrounding ma-
jority populations. The TWR often shows extreme values
(high or low rates) within isolated subpopulations. In this
study, we consider isolates in Finland (Åland Islands), Swe-
den (island of Gotland and county of Älvsborg), and Nor-
way (mountain villages). The Finnish study is based on
Eriksson (1973), the Swedish study on Fellman and Eriks-
son (2003, 2005b, 2009), and the Norwegian study on Bon-
nevie and Sverdrup (1926). In our statistical analyses, we
paid special attention to: (a) the robustness of the variance
formula of the TWR, and (b) the most precise confidence
intervals for the TWRs.

Fellman and Eriksson (2004, 2006) and Fellman (2013)
have considered these aspects of the statistical analyses of
the TWRs more thoroughly. These statistical methods are
crucial when the extreme TWRs within often small sub-
populations are compared with the TWRs within the gen-
eral population. One must decide whether the differences
are real or caused by random fluctuations within the small
isolates.

Methods
Variance of Observed Proportions

In population studies of the relative frequency of twin ma-
ternities, the accepted variance formula for the observed

rates is

Var( p̂) = p(1 − p)
n

, (1)

where p is the theoretical probability of success.
Consider n repeated Bernoulli trials, that is, trials where

the probability of success in a specific trial is independent
of earlier outcomes. Let S be the total number of successes
(e.g., twin maternities) and let p̂ = S

n be the observed pro-
portion of successes. For a large n, both S and p̂ are asymp-
totically normal. If the assumption holds that (a) the repe-
titions are independent and (b) the probability of success,
p, is constant during the repetitions, then the variance for-
mula (1) for the observed proportion p̂ holds.

Usually there is no discussion about the premises, and so
we can use formula (1). In some situations, however, such a
discussion may be necessary. Let us consider the outcome
of the maternities of a certain group of mothers. The ma-
ternities (the mothers) are the repetitions, and success is
the birth of a twin set. If we consider different mothers,
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then we can assume independent repetitions. However, the
constancy of the binomial proportion is more difficult to
accept. We know that the probability of a twin maternity
varies greatly, depending on several factors, particularly
the individual factors of maternal age, parity and ethnic-
ity. Hence, the variance formula (1) for the total TWR can-
not hold exactly. Does it hold approximately and with what
accuracy? Cramér (1951, p. 206) has studied the effect of
defects in assumption (b) on the accuracy of the variance
formula.

In order to generate classes that are as homogeneous as
possible, assume that the mothers are grouped in classes
according to presumptive influential factors. The statistical
analysis performed is based on the crucial assumption that
the grouping is chosen before the outcome is known. Let the
number of mothers in group number r be nr (r = 1, ..., R)
and the total number of mothers be n, that is, n = ∑

r nr .
Furthermore, let Sr (r = 1, ..., R) be the observed number,
and p̂r = Sr

nr
be the observed TWR within group number

r and let S = ∑
r Sr. Assuming constant probability within

the groups, the theoretical probability of twin maternities
in the total population is p = 1

n
∑

r nr pr, where pr is the
group-specific probability. The total observed relative fre-
quency of successes is

p̂ = 1
n

∑
r

nr p̂r = 1
n

∑
r

Sr = S
n
. (2)

The expectation is E( p̂) = 1
n
∑

r nrE( p̂r ) = 1
n
∑

r
nr pr = p, and p̂ is an unbiased estimator of p. Note that
the estimator p̂ in (2) is the same, irrespective of whether
we consider grouping or not. If we assume a constant
probability within the classes but not between them, we
obtain (Cramér, 1951: Fellman & Eriksson, 2004)

Var( p̂) = 1
n2

∑
r

n2
r Var( p̂r ) = 1

n2

∑
r

n2
r

pr(1 − pr )
nr

= p(1 − p)
n

− 1
n2

∑
r

nr(pr − p)2. (3)

This fundamental result can also be written

p(1 − p)
n

= 1
n2

∑
r

nr pr(1 − pr ) + 1
n2

∑
r

nr(pr − p)2.

(4)
The left-hand-side in (4) is the total variation, giving the

variance when one ignores any grouping. The first part on
the right-hand side is the variation within the groups and,
according to (3), it is Var( p̂) when the grouping is consid-
ered. The second part is the variation between the groups.
If, and only if, the rate is the same within all the groups,
that is, pr = p for all r = 1, ..., R, the second term is equal

to zero and all the variation is intra-group variation. In
this case, the grouping factors have no influence on the in-
cidence of twinning and the standard formula (1) for the
variance holds. The first term on the right-hand side of (4)
is zero if, and only if, pr = 1 or pr = 0. This means that the
set of mothers is divided into groups consisting entirely of
mothers with or without twin maternities. Such a grouping
in surely homogeneous classes prior to the outcomes is pos-
sible only if every mother forms her own group. In this case,
the total variation consists of inter-group variation and for-
mula (1) holds.

The results obtained have an interesting interpretation.
Without any grouping, the variance formula (1) holds. A
grouping giving additional information about the variation
of the probability reduces the variance. The reduction from
(1) to Var( p̂) = 1

n2

∑
r nr pr(1 − pr ) indicates the effect of

grouping. If the variation in the prs is large, then the group-
ing factors (race, maternal age, parity, marital status, time,
rural or urban population, season, etc.) are informative with
respect to the TWR. On the other hand, if the variation in
the prs is very small then the grouping factors are of small
informative value, and consequently, the reduction from (1)
to (3) can be ignored. Furthermore, the overestimation in-
dicates that all statistical tests give excessively low test val-
ues, that is, the tests are conservative.

According to Fellman and Eriksson (2004), both the clas-
sical variance formula and the variance formula (3) are
over-estimates as long as the groups are still heterogeneous.
This follows from the fact that the formulae are based on the
assumption that the probability of a twin maternity is con-
stant within every group. Within these groups, additional
factors, not considered, may cause unidentifiable hetero-
geneity. Such variations may be caused by inter-individual
differences in the probabilities. Fellman and Eriksson
(2004) observed that the corrections are minute, but in
studies where one considers small series, great differences
between groups, or large numbers of groups (cf. grouping
according to individual mothers, discussed above), the cor-
rections may be notable. The formulae derived above are the
only ones available for correcting the variance of group het-
erogeneity in the probabilities for twin maternities. It is very
common that registered twinning data are pooled, and later
it is impossible to split the data into more homogeneous
groups.

Confidence Interval for an Unknown Proportion

Now, we consider confidence intervals (CIs) for an un-
known proportion p. The ML estimator of p is p̂ = S

n ,
where S is the number of successes (in our study, the num-
ber of twin maternities) and n is the total number of ob-
servations (all maternities). It is a well-known fact that p̂
has the mean p, is asymptotically normal, and, if we con-
sider ungrouped data or data for a specific group, the vari-
ance Var( p̂) = p(1−p)

n is given in (1). The standard method,
at least in applied studies, is that the variance formula is
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estimated so that p is replaced by p̂, resulting in the approx-
imate test statistic

z = p̂ − p√
p̂(1− p̂)

n

. (5)

Based on this formula, the 100(1-α)% CI, the so-called
Wald’s CI, is

(
p̂ − z1/2α

√
p̂(1 − p̂)

n
, p̂ + z1/2α

√
p̂(1 − p̂)

n

)
, (6)

where z1/2α is the (1-½ α) quantile for the standardized nor-
mal distribution.

Brown et al. (2001; 2002) gave a thorough presentation
of the problems concerning CIs for unknown proportions.
They showed that the standard method (6) in universal
use is riddled with problems. The actual coverage proba-
bility for p can differ significantly from the nominal confi-
dence level at realistic and even larger than realistic sam-
ple sizes. The error comes from two sources: discreteness
and skewness (p �= 0.5) in the underlying distribution. For
a two-sided interval, the rounding error due to discreteness
is asymptotically dominant, being of the order n-½. The er-
ror due to skewness is of the order n-1, but still important
for even moderately large n. For one-sided intervals, the er-
ror caused by skewness can be larger than the rounding er-
ror. Brown et al. (2002) applied Edgewood expansions and
found that two-term expansions fitted very well. This find-
ing is a consequence of the fact that the first two terms in
the Edgewood expansions are of the orders n-½ and n-1, re-
spectively, being of the same order as the errors presented
above.

The standard CI is centered at p̂ = S
n . Although p̂ is an

unbiased ML estimator of p, as a center of a CI, it causes a
systematic negative bias in the coverage. Brown et al. (2001)
stressed that even in cases where the textbooks indicate that
the formula (6) is safe, the coverage probability may dif-
fer markedly from the expected. As alternatives, they pro-
posed the Wilson (1927) or the Agresti–Coull CI (Agresti &
Coull, 1998). The alternative methods are briefly presented
below.

The Wilson Interval

Using the notations introduced above, we consider the exact
test statistic

z = p̂ − p√
p(1−p)

n

, (7)

which, on theoretical grounds, can be considered more re-
liable than the approximate one in (5). From (7) we obtain,
after some calculations, the 100(1-α)% Wilson confidence

interval
⎛
⎝np̂ + 1/2z2

1/2α

n + z2
1/2α

− z1/2α

√
n

n + z2
1/2α

√
p̂(1 − p̂) +

z2
1/2α

4n
,

np̂ + 1/2z2
1/2α

n + z2
1/2α

+ z1/2α

√
n

n + z2
1/2α

√
p̂(1 − p̂) +

z2
1/2α

4n

⎞
⎠ . (8)

The Agresti–Coull Interval

If we start from (8), use its mid-point p̃ =
np̂+1/2z2

1/2α

n+z2
1/2α

as a

modified rate, and calculate the interval analogously to (6),
we then obtain the Agresti–Coull confidence interval

(
p̃ − z1/2α

√
p̃(1 − p̃)
n + z2

1/2α

, p̃ + z1/2α

√
p̃(1 − p̃)
n + z2

1/2α

)
. (9)

This is related to the ‘adjusted Wald’ CI, defined accord-
ing to the following advice for a 95% CI: ‘Add two successes
and two failures and then use the Wald formula’.

Furthermore, their conclusion was that the Agresti–
Coull interval dominates the other intervals in coverage but
is, on average, slightly longer. The Wilson (1927) interval is
comparable with the Agresti–Coull interval in both cover-
age and length. In addition, Brown et al. (2001) stressed that
if one takes simplicity of presentation and ease of compu-
tation into account, the Agresti–Coull interval, although a
bit too long, could be recommended for use. In our opin-
ion, the Wilson CI is easy to interpret and is comparable
with the Agresti–Coull CI in simplicity; we therefore rec-
ommend both as improved alternatives to the standard CI.

In studies of multiple maternities, the choice of method
is important, for the conditions are conflicting. In general,
one can expect a large number of maternities (n), but the
proportion of multiple maternities (p) is small, and conse-
quently, the distribution is skewed. In addition, in this study
of the TWRs in small isolates the number of maternities can
be moderate and sometimes even small, and consequently,
the choice of the CI formula is of great importance.

Results
Our studies of the temporal trends in the countries of
Norway, Sweden, and Finland show similar trends (Eriks-
son et al., 1995; Fellman & Eriksson, 1993; 2003; Fellman,
2016b). Comparisons are presented in Figure 1. One can
observe similar levels and tendencies.

In our study to identify isolates with extreme TWRs, we
constructed 99.9% CIs and compare them with the gen-
eral TWRs. The chosen CIs are the Agresti–Coull ones. The
high confidence levels were selected in order to stress the
strong deviations and reduce the possibility that the differ-
ences are only random.
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TWR in Nordic countries
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FIGURE 1
Comparisons of TWRs in Nordic countries. The temporal trends are similar and show marked fluctuations.

FIGURE 2
Comparison between the TWRs in Gotland, in the county of Älvsborg, and in Sweden overall. The discrepancies between the TWRs in
the isolates and in Sweden are marked. The convergence between the TWRs is obvious.

Norway

Bonnevie and Sverdrup (1926) presented a detailed study
of the TWRs in Norway. They paid special attention to ex-
treme TWRs in an isolated Norwegian valley consisting of
the three villages of Meldal, Rennebo, and Ringebu. They
observed families with recurrent twin maternities. The fam-
ily dataset consisted of 330 twin maternities among 10,155
maternities. The observed TWR was 32.50 per 1,000 and
the 99.9% Agresti–Coull CI was (27.16, 38.82), indicating
an extremely high TWR compared with the all-round TWR
value of 14.67 given by Bonnevie and Sverdrup (1926) for
Norway (1916–1917). They connected the observed high
TWR in the valley to a strong heredity of twinning within
the families.

Sweden

Earlier studies have found strong regional differences in the
TWR. Extremely high TWRs have been registered for the
island (county) of Gotland. Low TWRs have been identi-
fied in the county of Älvsborg located in the south-western
part of Sweden (Fellman & Eriksson, 2003, 2009). In this
study, we intended to identify statistically significant de-
viations in the local TWRs compared with the TWR for
Sweden as a whole. We constructed CIs for the regional
TWRs and compared them with the TWR for Sweden over-
all. In Figure 2, we present the results. We observed that in
general neither the CIs for Gotland nor for Älfsborg cover
the TWR for Sweden. This result indicates that the high
TWRs for Gotland and the low TWRs for Älvsborg differ
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FIGURE 3
Comparison between TWRs for the Åland Islands and for Finland. The TWRs on the Åland Islands is markedly higher than those in Finland.

significantly from the general TWR for Sweden. Further-
more, one observes in Figure 2 that the TWR for both Got-
land and Älvsborg converge toward the TWR for Sweden.
This last finding supports the convergence of the regional
TWRs in Sweden found by Fellman and Eriksson (2005b).

Finland

In his classic study, Eriksson (1973) analyzed in detail the
TWR for the Åland Islands. He especially stressed the high
level of the TWR. In this study, we compared this high TWR
and constructed CIs for the regional TWRs on the Åland Is-
lands and compared them with the TWR for Finland over-
all. In Figure 3, we present the results. We observed that at
least in the 20th century that the CIs for Åland do not cover
the observed TWR for Finland. This indicates that the TWR
for the isolated Åland Islands is significantly higher than the
TWR for Finland.

Discussion
Strong geographical variations have been observed in the
TWR. The TWR is high among people of African origin, in-
termediate among Europeans, and low among most Asiatic
populations (Eriksson, 1973). In Europe, there tends to be a
progressive increase in the TWR from south to north, with
a minimum around the Basque provinces on the border be-
tween Spain and France. The highest TWRs in Europe have
been noted among the Nordic populations (Bulmer, 1970;
Eriksson, 1964, 1973; James, 1985).

Fellman and Eriksson (1990) examined the regional vari-
ation in the TWR in Finland for 1974–1983. Eriksson et al.
(1995) presented a detailed study of the secular changes
in the Nordic countries of Denmark, Finland, and Swe-
den. In our studies of the regional variation of the TWR in
Sweden, we have analyzed TWRs for the different counties

(Eriksson & Fellman, 2004; Fellman & Eriksson, 2003, 2004,
2005a, 2009). In Fellman (2016a), the temporal variation
in the Norwegian TWR was compared with corresponding
trends in the neighboring Nordic countries of Iceland and
Denmark.

Within larger populations, some small, isolated subpop-
ulations have been identified to have extreme, mainly high,
TWRs. Comparisons between the TWRs in isolates and the
rates in the surrounding majority populations have been
presented. These studies have recognized that the TWR of-
ten shows extreme values (high or low rates) within iso-
lated subpopulations. Such investigations are often difficult
to perform, partly because detailed local TWR data are not
obtainable and partly because isolation details are not iden-
tifiable. This study had to be based on earlier investigations.
Therefore, we considered the following isolates: the Åland
Islands (Finland), the island of Gotland and the county of
Älvsborg (Sweden), and mountain villages (Norway).

Acknowledgments
This work was supported by grants from the Finnish So-
ciety of Sciences and Letters and the Magnus Ehrnrooth
Foundation.

References
Agresti, A., & Coull, B. A. (1998). Approximate is better than

‘exact’ for interval estimation of binomial proportions.
American Statistician, 52, 119–126.

Bonnevie, K., & Sverdrup, A. (1926). Hereditary predisposi-
tions to dizygotic twin-births in Norwegian peasant fami-
lies. Journal of Genetics, 16, 125–188.

Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval esti-
mation for a binomial proportion (with discussion). Statis-
tical Science, 16, 101–133.

TWIN RESEARCH AND HUMAN GENETICS 677

https://doi.org/10.1017/thg.2016.77 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2016.77


Johan Fellman

Brown, L. D., Cai, T. T., & DasGupta, A. (2002). Confidence
intervals for a binomial proportion and asymptotic expan-
sions. Annals of Statistics, 30, 160–201.

Bulmer, M. G. (1970). The biology of the twinning in man. Ox-
ford: Oxford University Press.

Cramér, H. (1951). Mathematical methods of statistics. Prince-
ton, NJ: Princeton University Press.

Eriksson, A. W. (1964). Pituitary gonadotrophin and dizygotic
twinning. Lancet 2, 1298–1299.

Eriksson, A. W. (1973). Human twinning in and around the
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