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We prove that several extensions of the classic Erlang loss function to non-integral numbers
of servers are scalable: the blocking probability as described by the extension decreases
when the offered load and the number of servers s are increased with the same relative
amount, even when scaling up from integral s to non-integral s. We use this to prove that
when several Erlang loss systems pool their resources for efficiency, various corresponding
cooperative games have a non-empty core.

1. INTRODUCTION

The Erlang loss function is a true classic in queueing theory. Derived by A. K. Erlang in
1917, it represents the steady-state blocking probability in an M/G/s/s queue. It is often
convenient to have an extension of the classic Erlang loss function, that is, a function that
extends the domain of the Erlang loss function to non-integral values of s. For instance,
techniques such as the equivalent random method and Hayward’s approximation (Freder-
icks [5]) for performance approximations of loss systems with overflow layers require such an
extension. Extensions also come in handy for the analysis of cooperative resource pooling
games; cf. Karsten, Slikker and Van Houtum [11].

Various extensions are available in the literature, such as the linear interpolation (used
in Kortanek, Slikker and Van Houtum [12]) and the integral representation in terms of the
Gamma function (see, e.g., Jagerman [7]). The present paper will introduce a new extension
with interesting properties that are helpful in analyzing the linear interpolation. Of course,
we can concoct an infinite number of extensions. What is important is whether or not an
extension satisfies appealing properties.

One property that we will be particularly interested in deals with the behavior of an
extension when the arrival rate λ and the number of servers s are scaled up with the same
relative amount. Smith and Whitt [14] showed that the classic Erlang loss probability always
decreases when we scale up in this fashion (and stick to integral numbers for s). For instance,
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the blocking probability in a system with λ = 2 and s = 1 is higher than in a system with
λ = 4 and s = 2 or a system with λ = 6 and s = 3. But if we would scale up to a system
with, say, λ = 5 and s = 2.5, then we would have to interpret its blocking probability via
an extension. A natural question is whether or not an extension retains the economies-of-
scale behavior exhibited by the classic Erlang loss function when scaling up to any non-
integral number of servers. To capture this concept formally, we introduce a property that we
call scalablility.

The question of whether or not an extension is scalable is particularly interesting for the
linear interpolation L, as this interpolation represents a long-run blocking probability that is
actually achievable by “mixing” between two consecutive integer numbers of servers. That
is, operating under each of those two numbers of servers during a desired percentage of
time. This “mixing” (cf. Van Houtum and Zijm [16]) sometimes occurs in practice to meet
a service constraint exactly. The first major contribution of this paper is that we prove
scalability of L. So, the blocking probability in a system with λ = 2 and s = 1 is higher
than the blocking probability in a system with λ = 5 that uses two servers half of the time
and three servers the other half, assuming steady-state conditions are continually achieved
under both.

Scalability of L does not come automatically. Indeed, the above-mentioned “mixing”
yields a combination of the Erlang loss probability under λ = 5 and s = 2 and the Erlang
loss probability under λ = 5 and s = 3, whereas Smith and Whitt [14] only told us something
about the scaled system with λ = 4 and s = 2 and the scaled system with λ = 6 and s = 3.
In fact, we will show that the linear interpolation of the closely related Erlang delay function
(for the M/M/s queue) is not scalable, in contrast to L.

The economies-of-scale behavior of the blocking probability encourages service providers
to cooperate by pooling their M/G/s/s systems. One may think of hospital departments
that pool intensive care beds, chemical factories that share a specialized fire extinguishing
device, or car rental agencies that pool luxurious rental cars. For such service providers,
each associated with an exogenous Poisson stream of customer arrivals, holding a group
of common servers rather than dedicated resources for each individual customer stream is
beneficial to the system as a whole.

Yet, to achieve a sustainable collaboration between all service providers (the players),
each individual player has to be guaranteed a lower cost than what he would face by acting
independently or by pooling with only a few of the other players. To fairly allocate the joint
costs of the common servers amongst the players, we apply concepts from cooperative game
theory and look for a stable allocation. Under a stable allocation, no subset of players has
an incentive to split off and form a separate pooling group. The set of all such allocations
is called the core.

Several authors have recently analyzed cost allocation problems for shared queueing
systems with infinite waiting room from the perspective of cooperative game theory. For
example, Karsten, Slikker and Van Houtum [10] study a model wherein several M/M/s
queues join forces, and Anily and Haviv [1] focus on the M/M/1 model. Cost allocation
problems for pooled queueing systems where waiting is not possible have been studied
solely in the context of the M/G/s/s system. For M/G/s/s games where any coali-
tion picks a number of common servers to minimize the sum of linear resource costs
for servers and penalty costs for blocked customers, Özen, Reiman and Wang [13] and
Karsten, Slikker and Van Houtum [9] have independently proven that the allocation of
the collective costs proportional to players’ arrival rates is stable. Karsten, Slikker and
Van Houtum [11] extended this to non-identical resource cost parameters across play-
ers and additionally tackled M/G/s/s game variants with exogenously given numbers
of servers.
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In the present paper, our second major contribution (next to the scalability of L)
is that we prove stability of proportional allocations for a generalization of Özen et al.’s
M/G/s/s game and for a variant thereof: the generalization features concave rather than
linear resource costs, and the variant has a service constraint in lieu of actual payments of
penalty costs. To prove these stability results, the scalability of L is instrumental — this
proof approach differs from the one used by Özen, Reiman and Wang [13].

2. THE ERLANG LOSS FUNCTION AND ITS EXTENSIONS

In this section, we define the classic Erlang loss function and subsequently introduce three
functions that extend its domain to non-integral numbers of servers.

2.1. The Classic Erlang Loss Function

To describe the classic Erlang loss function, let N0 = N ∪ {0} denote the set of all non-
negative integers and let R++ = R+ \ {0} denote the set of all (strictly) positive real
numbers. Then, the Erlang loss function B : N0 × R++ → [0, 1] is defined by

B(s, a) =
as/s!∑s

y=0 ay/y!
for anys ∈ N0 and a ∈ R++. (1)

B(s, a) may be interpreted as the blocking probability, that is, the steady-state probability
that an arriving customer finds no free server, in an Erlang loss system (M/G/s/s queue)
with s servers and offered load a. In such a system, the service times are independent and
identically distributed according to some general distribution function with finite mean
τ > 0, customers arrive according to a Poisson process with rate a/τ > 0, and each newly
arriving customer immediately goes into service if there is an unoccupied server available.
All other customers are lost.

The Erlang loss function satisfies several useful properties. The properties that we will
use in this paper’s analysis are collected in the following theorem.

Theorem 2.1: Let s, s′ ∈ N and a, τ, λ, λ′ ∈ R++. Then:
(i) B(s, λ/μ) is decreasing and convex in μ for μ on R++.

(ii)
∂B

∂a
(s, a) = [B(s, a) − 1 +

s

a
] · B(s, a).

(iii) B(s, a) =
aB(s − 1, a)

aB(s − 1, a) + s
.

(iv) a[B(s, a)]2 − 1 − (a − s − 1)B(s, a) ≤ 0.
(v) B(ts, ta) is decreasing in t for t ∈ {1/s, 2/s, . . .}.

Property (i) corresponds to Proposition 3 in Harel [6]. The partial derivative, (ii), is due
to Theorem 15 in Jagerman [7]. The recursive relation of property (iii) is well-known (see,
e.g., Jagerman [7], p. 531). Property (iv) corresponds to Inequality (19) in Özen, Reiman
and Wang [13]. They show that this inequality is valid by contradiction. We provide an
alternative, independently derived, direct proof in the Appendix.

The final property, (v) captures the economies of scale in Erlang loss systems: as shown
in the appendix of Smith and Whitt [14], when we increase the offered load a and the number
of servers s with the same relative amount t, the blocking probability always decreases. This
scaling occurs, for instance, when we combine the servers and arrival streams of two Erlang
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Figure 1. The extensions X(s, a) (dashed), L(s, a) (middle), and B̂(s, a) (thick) for a = 1
fixed.

loss systems with the same a/s value into a single joint system. Note that this is only
meaningful when the scaling factor t is chosen such that the number of servers in the scaled
system, ts, is an integer number. In Section 3, we will introduce a scaling concept that
retains meaning for non-integral numbers of servers.

2.2. Extensions of the Erlang Loss Function

In this paper, we are interested in functions that extend the domain of the Erlang loss
function to non-integral numbers of servers. Formally, we call any function E : R+ × R++ →
[0, 1] an extension of the Erlang loss function (or extension for short) if E(s, a) = B(s, a)
for all s ∈ N0 and a ∈ R++. We next introduce three different extensions; all are depicted
in Figure 1.

First, the continuous function B̂ : R+ × R++ → [0, 1] is defined by

B̂(s, a) =
(

a

∫ ∞

0

e−ax(1 + x)sdx

)−1

for all s ∈ R+ and a ∈ R++. (2)

This function, which is related to the Erlang loss function via the Gamma function, is
indeed an extension (Jagerman [7]). It is one of the most commonly used extensions in the
literature (Fredericks [5]).

Another extension is obtained by using linear interpolation (cf. Kortanek [12]). To be
more precise, this piecewise linear function L : R+ × R++ → [0, 1] is defined by

L(s, a) = (1 − (s − �s�)) · B(�s�, a) + (s − �s�) · B(�s	, a) for all s ∈ R+ and a ∈ R++,
(3)

where �s	 denotes the smallest integer larger than or equal to s, and �s� denotes the largest
integer smaller than or equal to s. By virtue of being a linear interpolation, this function is
obviously an extension of the Erlang loss function.

Finally, we introduce a new extension of the Erlang loss function X : R+ × R++ → [0, 1],
which is defined by

X(s, a) =

{
B(�s�, a · �s�/s) if s ≥ 1 and a ∈ R++;
1 if s ∈ [0, 1) and a ∈ R++.

(4)
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This function is not continuous, but it is clearly an extension by definition. We use this
extension to prove scalability of L in the next section.

3. SCALABILITY OF THE EXTENSIONS

In this section, we aim to show that all three extensions, and the linear interpolation in par-
ticular, satisfy the scalability property. This property will prove instrumental in analyzing
cooperative resource pooling games later on. We start by defining it formally.

Definition 3.1: An extension E is said to be scalable if, for each s ∈ N0 and a ∈ R++,
E(ts, ta) ≤ E(s, a) for all t ∈ (1,∞) and E(ts, ta) ≥ E(s, a) for all t ∈ (0, 1).

In words, scalability means that if we take an Erlang loss system with an integer number
of servers as our starting point, an increase (decrease) of the offered load and the number
of servers with the same relative amount will result in a non-strictly decreased (increased)
blocking probability. If this scaling would result in a system with a non-integral number of
servers, then the blocking probability is described by the extension.

Not every extension is scalable. Nevertheless, one might expect that any “natural”
extension, such as a linear interpolation, is scalable. Surprisingly, however, linear interpola-
tions of elementary performance measures for canonical multi-server queueing models need
not satisfy (the equivalent of) scalability in general, as shown in the following example.

Example 3.1: Besides B, Erlang [4] derived another classic performance measure: the
Erlang delay function C, defined for any a > 0 and s ∈ N with s > a by

C(s, a) =

(
1 +

s−1∑
y=0

s!(1 − a/s)
y!as−y

)−1

.

C(s, a) may be interpreted as the steady-state probability that an arrival must wait before
beginning service in an Erlang delay system (M/M/s queue) with s servers and offered load
a. As the analogue of Part (v) of Theorem 2.1, it holds that C(ts, ta) is decreasing in t for
t ∈ {1/s, 2/s, . . .}, for each a > 0 and s ∈ N with s > a (Calabrese [2]). We now consider
the linear interpolation Clin, defined for any a > 0 and s ∈ N with �s� > a by

Clin(s, a) = (1 − (s − �s�)) · C(�s�, a) + (s − �s�) · C(�s	, a).

Let s = 1, a = 0.5, and t = 1.2. We obtain that Clin(s, a) = C(1, 0.5) = 0.5, whereas
Clin(ts, ta) = 0.8 · C(1, 0.6) + 0.2 · C(2, 0.6) = 0.8 · 3

5 + 0.2 · 9
65 = 33

65 . So, if we start with an
Erlang delay system with 1 server and offered load 0.5, then scaling up by a factor of 1.2
results in an increased delay probability.

The same type of scaling, however, leads to a decreased blocking probability in an Erlang
loss system: L(s, a) = B(1, 0.5) = 1

3 , whereas L(ts, ta) = 0.8 · B(1, 0.6) + 0.2 · B(2, 0.6) =
0.8 · 3

8 + 0.2 · 9
89 = 57

178 .

Given the tight link (see, e.g., p. 92 of Cooper [3]) between the Erlang loss function
and the Erlang delay function and the negative result that Example 3.1 established for the
latter, there is the question of whether L is actually scalable.

A sufficient condition for scalability of an extension E is subhomogeneity of degree zero,
that is, the property that E(ts, ta) is decreasing in t on R++, for each s ∈ R+ and a ∈ R++.
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Figure 2. For s = 2 and a = 1 fixed, the extensions X(ts, ta) (dashed), L(ts, ta) (middle),
and B̂(ts, ta) (thick) as functions of t.

(This goes beyond scalability by additionally comparing two systems that both have a real
number of servers.) Scalability of the extensions B̂ and X is readily shown.

Proposition 3.1: The extension B̂ is scalable.

Proof: Follows from the appendix of Smith and Whitt [14]. �

Proposition 3.2: The extension X is scalable.

Proof: Let s ∈ N0 and a ∈ R++. Then, X(ts, ta) as a function of t is stepwise constant
and non-increasing for t on R++. (See Figure 2 for an illustration.) More precisely, if s > 0,
then for t between two successive values t− ∈ {1/s, 2/s, . . .} and t+ = t− + 1/s, X(ts, ta)
equals B(st−, at−). (And for any t ∈ R++ with ts < 1, we have X(ts, ta) = 1.) Combining
this with Part (v) of Theorem 2.1 completes the proof. �

To prove scalability of L, it will be convenient to show that the graph of L never dips
below the graph of B̂ and never jumps above the graph of X, as illustrated in Figures 1
and 2.

Proposition 3.3: B̂(s, a) ≤ L(s, a) for all s ∈ R+ and a ∈ R++.

Proof: Let a ∈ R++. Since B̂(s, a) as a function of s is convex for s on R+ (Jagers and
Van Doorn [8]), whereas L(s, a) linearly interpolates between points on the graph of B(s, a)
at which B(s, a) = B̂(s, a), the desired inequality follows immediately from the definition
of convexity. �

In the process of proving that the graph of L always lies at or below the graph of
X, we will present two lemmas that consider X and L as a function of the number of
servers on a domain restricted to an interval between two consecutive integers. To describe
this formally, it will be convenient to introduce two restricted functions: for any fixed r =
(S, a) ∈ N × R++, we define the functions Lr and Xr, both mapping [S, S + 1) to [0, 1], by
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Lr(s) = L(s, a) and Xr(s) = X(s, a) for all s ∈ [S, S + 1). So, these functions are described
on their domain by

Xr(s) = B(S, aS/s); (5)

Lr(s) = (1 + S − s) · B(S, a) + (s − S) · B(S + 1, a). (6)

Figure 1 on page 476 provides an illustration: there, the graph of X(1,1) corresponds to the
dashed curve on [1, 2) and the graph of L(1,1) corresponds to the middle curve on [1, 2). The
following lemma states two useful properties of X.

Lemma 3.4: Let r = (S, a) ∈ N × R++. Then Xr is decreasing and convex on its domain
[S, S + 1).

Proof: By part (i) in Theorem 2.1, it holds for each fixed ŝ ∈ N and λ ∈ R++ that
B(ŝ, λ/μ) is decreasing and convex in μ for μ ∈ [S, S + 1). By substituting ŝ = S, λ =
aS, and μ = s, we conclude that Xr(s) = B(S, aS/s) is decreasing and convex in s on
[S, S + 1). �

In contrast to X and L, the functions Xr and Lr are differentiable, which allows us to
compare their derivatives, evaluated at S, in the following lemma.

Lemma 3.5: Let r = (S, a) ∈ N × R++. Then L′
r(S) ≤ X ′

r(S).

Proof: First of all, the derivative of Lr for any s ∈ [S, S + 1) is

L′
r(s) = B(S + 1, a) − B(S, a). (7)

To obtain the derivative of Xr, we combine part (ii) of Theorem 2.1 with Equation (5) to
derive that for any s ∈ [S, S + 1):

X ′
r(s) = [B(S, aS/s) − 1 + S/(aS/s)] · B(S, aS/s) · (−aS/s2

)
= [B(S, aS/s) − 1 + s/a] · B(S, aS/s) · (−aS/s2

)
. (8)

For notational ease, let B = B(S, a). Evaluating the derivatives (7) and (8) at s = S, we
obtain

L′
r(S) − X ′

r(S) = B(S + 1, a) − B −
[
B − 1 +

S

a

]
· B · −a

S

=
aB

aB + S + 1
− B −

[
B − 1 +

S

a

]
· B · −a

S

= B ·
[

a

aB + S + 1
+ (B − 1) · a

S

]

=
aB

S(aB + S + 1)
·
[
S + (B − 1) · (aB + S + 1)

]

=
aB

S(aB + S + 1)
·
[
aB2 − 1 − (a − S − 1)B

]
≤ 0.

The second equality holds by part (iii) of Theorem 2.1. The other equalities hold by
rewriting. The inequality holds because B > 0, a > 0, S(aB + S + 1) > 0, and
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aB2 − 1 − (a − S − 1)B ≤ 0, where the last-named inequality holds by Part (iv) of Theorem
2.1. We conclude that L′

r(S) ≤ X ′
r(S). �

We use these lemmas to prove that the graph of L never jumps above the graph of X.

Proposition 3.6: X(s, a) ≥ L(s, a) for all s ∈ R+ and a ∈ R++.

Proof: Let s ∈ R+ and a ∈ R++. We distinguish two cases.
Case 1: s < 1. Then, by definition X(s, a) = 1, whereas L(s, a) ≤ 1.
Case 2: s ≥ 1. Then, we denote S = �s� and consider the functions X(S,a) and L(S,a),

which are described on their domain [S, S + 1) by Eqs. (5) and (6). First of all, observe
that X(S,a)(S) = L(S,a)(S) since both X and L are extensions of the Erlang loss func-
tion. Secondly, by Lemma 3.5, we observe that the derivative of L(S,a) at S does not
exceed the derivative of X(S,a) at S. Third, X(S,a) is convex by Lemma 3.4, whereas L(S,a)

is by definition a linear function, which (together with the second observation) implies
that X ′

(S,a) ≥ L′
(S,a) on [S, S + 1). Combining these three observations yields X(S,a)(s) ≥

L(S,a)(s). We conclude that X(s, a) ≥ L(s, a). �

With the various propositions derived so far, we can now prove the following theorem.

Theorem 3.7: The extension L is scalable.

Proof: Let s ∈ N0 and a ∈ R++. For any t ∈ (1,∞), we find that

L(ts, ta) ≤ X(ts, ta) ≤ X(s, a) = L(s, a),

where the first inequality holds by Proposition 3.6, the second inequality holds by Proposi-
tion 3.2, and the equality holds because both X and L are extensions. Analogously, for any
t ∈ (0, 1), we find that

L(ts, ta) ≥ B(ts, ta) ≥ B(s, a) = L(s, a),

where the first inequality holds by Proposition 3.3, the second inequality holds by Propo-
sition 3.1, and the equality holds because both B and L are extensions. Hence, L is
scalable. �

We remark that it remains an open question whether or not L satisfies the stronger
property of subhomogeneity of degree zero. We have not been able to find a counterexample,
but at the same time our proof approach for Theorem 3.7 is not readily adaptable for
subhomogeneity of degree zero. Nevertheless, scalability is sufficient for the purpose of the
next section.

4. COOPERATIVE RESOURCE POOLING GAMES

For reasons of self-containedness, we first give a brief introduction to cooperative game
theory. Subsequently, we introduce resource pooling situations and analyze two associated
games.
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4.1. Preliminaries on Cooperative Game Theory

A cooperative cost game with transferable utility, which we will simply refer to as game, is
a pair (N, c) where N is a non-empty, finite set of players and c : 2N

− → R is the character-
istic cost function. Here, 2N

− = {M | M ⊆ N,M = ∅} represents the set of all (non-empty)
coalitions. The value c(M) is interpreted as the total costs of the joint cooperative effort if
only the players in coalition M are involved in it. In particular, c(N) represents the total
costs for the grand coalition N when all players agree on working together.

In cooperative game theory, players are assumed to be able to draw up binding agree-
ments, and side payments are allowed. A central problem is to allocate c(N) to the individual
players in a fair way. Formally, an allocation is a vector x ∈ R

N satisfying
∑

i∈N xi = c(N).
The value xi is interpreted as the costs assigned to player i. An allocation is called stable if∑

i∈M xi ≤ c(M) for all M ∈ 2N
− . Under a stable allocation, no group of players has to pay

more collectively than what they would face if they would split off and establish cooperation
on their own. The set of all stable allocations is called the core.

An allocation scheme for a game (N, c) is a vector y = (yi,M )i∈M,M∈2N
−

, with∑
i∈M yi,M = c(M) for all coalitions M ∈ 2N

− , which specifies how to allocate the costs
of every coalition to its members. Such a scheme is called a population monotonic allocation
scheme (PMAS) if the amount that a player has to pay does not increase when the coalition
to which he belongs grows. That is, yi,M ≥ yi,R for all coalitions M,R ∈ 2N

− with M ⊆ R
and i ∈ M . If the game admits a PMAS, say y, then (yi,N )i∈N is an element of its core
(Sprumont [15]).

4.2. Resource Pooling Situations

Consider several players that require certain costly servers for their customer populations.
Each player’s customers arrive according to mutually independent Poisson processes. If a
customer finds no free server upon arrival, he is lost and some penalty costs may have to
be paid. We assume throughout that players are interested in their long-term average costs
per time unit.

In a setting with more than one player, the players could benefit by pooling their servers
and by jointly optimizing the number of servers in their shared service system (with the
objective either of minimizing the sum of resource and penalty costs or of minimizing the
number of servers subject to a constraint on the blocking probability). To analyze such
settings, we define a resource pooling situation as a tuple of parameters (N,λ, τ,H, p, β),
where

• N is the non-empty, finite set of players;
• λ ∈ R

N
++ is the vector of arrival rates, that is, λi > 0 denotes the arrival rate of

customers that belong to player i ∈ N ;
• τ > 0 is the mean service time for an arbitrary customer of any player;
• H : N0 → R+ is a concave, increasing, unbounded function specifying that the

resource costs for holding s servers are H(s) per unit time;
• p > 0 is the expected penalty costs that are incurred whenever a customer is blocked;
• β ∈ (0, 1) is a service level constraint indicating the maximal blocking probability.

This model covers a broad range of situations in which resource sharing can occur between
separate Erlang loss systems. The concave nature of the resource costs represents additional
economies of scale that may be exploited by acquiring and maintaining resources collabo-
ratively. For our analysis, it will be convenient to extend the domain of the resource cost
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function H to all non-negative reals by a linear interpolation, that is, we define the function
H lin : R+ → R+ by

H lin(s) = (1 − (s − �s�)) · H(�s�) + (s − �s�) · H(�s	).

Given any resource pooling situation ϕ = (N,λ, τ,H, p, β), the players in a coalition M ∈ 2N
−

are assumed to collaborate by complete pooling of their respective arrival streams and
common servers into a joint system. Since the superposition of independent Poisson pro-
cesses is also a Poisson process, this coalition now faces a Poisson arrival process with
merged rate λM =

∑
i∈M λi. We assume that the common servers can handle all types of

customers with equal ease and that all customers can effortlessly access the joint service
facility.

Based on these assumptions, coalition M ’s joint service facility behaves as an
Erlang loss system. For this type of resource pooling, we can construct two associated
games, which are introduced in the next two subsections. The first is appropriate when
penalty costs represent tangible monetary payments; the second is appropriate when they
are intangible.

4.3. Games with Penalty Cost Payments

If the penalties for blocked customers represent tangible monetary costs, we can formulate
a game corresponding to resource pooling situation ϕ = (N,λ, τ,H, p, β) in which any coali-
tion picks a cost-minimizing number of servers. Here, bad performance is captured by p,
and β becomes superfluous in the tuple. For any choice of the number of servers in the joint
system s ∈ N0, the expected total relevant costs per unit time in steady state are given by

KM (s) = H(s) + B(s, λMτ) · λMp. (9)

Since the value of the Erlang loss function is confined to the interval (0, 1], whereas the
resource cost function H increases unboundedly, there exists an optimal number of servers,
which can be found by, for example, an enumerative search procedure. There may still be
multiple cost minimizing numbers of servers, so to avoid ambiguity we define a specific
optimal number of servers by

S∗
M = min{S ∈ N0 : KM (S) = mins∈N0 KM (s)}. (10)

We have suppressed the dependence of KM (s) and S∗
M on ϕ to avoid notational baggage.

We call the game (N, cϕ) with cϕ(M) = mins∈N0 KM (s) for all coalitions M ∈ 2N
− the

associated penalty cost game.
An easy way of allocating the total costs of the grand coalition — or any other coalition

that may form — is by dividing these costs proportional to the arrival rate of each player.
Formally, we define for any resource pooling situation ϕ = (N,λ, τ,H, p, β) this allocation
scheme A(ϕ) by Ai,M (ϕ) = cϕ(M) · λi/λM for any coalition M ∈ 2N

− and player i ∈ M . If
costs are shared according to this scheme, then a player with more frequent customer arrivals
pays a greater share of the costs, which seems reasonable. What’s more, this scheme is always
population monotonic, as stated by the following theorem.

Theorem 4.1: Let ϕ = (N,λ, τ,H, p, β) be a resource pooling situation. Then A(ϕ) is a
PMAS of the associated penalty cost game (N, cϕ).
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Proof: For any coalition M ∈ 2N
− , we extend the domain of the cost function KM ,

introduced in Eq. (9), by a linear interpolation, that is, we define the function
K lin

M : R+ → R+ by

K lin
M (s) = (1 − (s − �s�)) · KM (�s�) + (s − �s�) · KM (�s	) = H lin(s) + L(s, λMτ) · λMp.

We now fix two arbitrary coalitions M,R ∈ 2N
− with M ⊆ R, and we let i ∈ M . Then,

Ai,R(ϕ) =
λi

λR
· KR(S∗

R)

≤ λi

λR
· K lin

R

(
λR

λM
S∗

M

)

=
λi

λR
· H lin

(
λR

λM
S∗

M

)
+ L

(
λR

λM
S∗

M , λRτ

)
· λip

≤ λi

λR
· H lin

(
λR

λM
S∗

M

)
+ L(S∗

M , λMτ) · λip

=
λi

λM
· λM

λR
· H lin

(
λR

λM
S∗

M

)
+ B(S∗

M , λMτ) · λip

≤ λi

λM
· H(S∗

M ) + B(S∗
M , λMτ) · λip

=
λi

λM
· KM (S∗

M ) = Ai,M (ϕ).

The first inequality holds because S∗
R is a cost minimizing number of servers for coalition R,

so both KR(� λR

λM
S∗

M�) and KR(� λR

λM
S∗

M	) are no smaller than KR(S∗
R), and the same holds

for the associated linear interpolation. The second inequality holds because L is scalable
(Theorem 3.7) and S∗

M ∈ N0. The third inequality holds because H is a concave non-negative
function, so the same holds for its linear interpolation H lin, and thus

λM

λR
· H lin

(
λR

λM
S∗

M

)
≤ λM

λR
· H lin

(
λR

λM
S∗

M

)
+

λR − λM

λR
· H lin(0) ≤ H lin (S∗

M ) ,

where the first inequality holds because H lin(0) ≥ 0 and the second inequality holds by
concavity (since S∗

M = λM

λR
· λR

λM
· S∗

M + λR−λM

λR
· 0). We conclude that A(ϕ) is a PMAS. �

We remark that the linear interpolation L could not have been replaced by the continu-
ous extension B̂ in this proof because then, as shown in the following example, an inequality
corresponding to the proof’s first inequality would not hold anymore.

Example 4.1: Consider the two-player resource pooling situation (N,λ, τ,H, p, β) with
N = {1, 2}, λ1 = 0.6, λ2 = 0.4, τ = 1, H(s) = 0.85s for all s ∈ N0, and p = 3. For coalition
M = {1}, the optimal number of servers is S∗

M = 1. For coalition R = {1, 2}, the optimal
number of servers is S∗

R = 2 with associated costs KR(S∗
R) = 0.85S∗

R + B̂(S∗
R, λRτ) · 3λR =

2.3. However, for s = S∗
MλR/λM = 12

3 , it holds that 0.85s + B̂(s, λRτ) · 3λR < 2.26 < 2.3 =
KR(S∗

R). So, the costs for coalition R under the optimal (integer) number of servers are
actually larger than the costs for this coalition under 1 2

3 servers when the associated block-
ing probability is interpreted via the continuous extension B̂. This is graphically represented
in Figure 3.
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Figure 3. For each of the three extensions of the Erlang loss function and for the
Erlang loss function itself, the corresponding costs hs + B(s, λRτ) · λRp (thick curve),
hs + L(s, λRτ) · λRp (straight line segments), hs + X(s, λRτ) · λRp (dashed, discontinuous),
and KR(s) (big dots) as functions of s for the coalition R as described in Example 4.1.

Finally, by Sprumont [15], the following corollary follows immediately from
Theorem 4.1.

Corollary 4.2: Let ϕ = (N,λ, τ,H, p, β) be a resource pooling situation. Then (Ai,N (ϕ))i∈N

is in the core of the associated penalty cost game (N, cϕ).

4.4. Games with a Service Constraint

If penalty costs are hard to quantify, a service constraint model may be preferable: we
can let each player incur the consequences for its own blocked customers and look for
an allocation of only the resource costs that ensures that no subcoalition can improve
(achieve the service constraint at lower resource cost) by splitting off. This gives rise to
an alternative game corresponding to any resource pooling situation ϕ = (N,λ, τ,H, p, β)
where any subcoalition will pick the (possibly “mixed”, cf. Van Houtum and Zijm [16])
number of servers that yields a blocking probability of exactly β. That is, any coalition
M ∈ 2N

− will pick the unique s ∈ R++ such that L(s, λM ) = β, and we will denote this
number of servers by σM . This σM is well defined because L(s, λM ) as a function of s
on R+ is strictly decreasing and continuous, with image or range (0, 1]. We call the game
(N, dϕ), with dϕ(M) = H lin(σM ) for all M ∈ 2N

− the associated service constraint game.
We propose for any resource pooling situation ϕ = (N,λ, τ,H, p, β) a proportional allo-

cation P(ϕ), defined by Pi(ϕ) = H lin(σN ) · λi/λN for each player i ∈ N . The following
theorem states that this allocation is always stable provided that there is an integer in
the interval [σNλM/λN , σN ] for all subcoalitions M . This is a technical requirement that
simultaneously illustrates the limitation and allure of scalability. This requirement is met if
σN is a sufficiently large real number and each player is big enough. It is also met if σN is
any integer number.

Theorem 4.3: Let ϕ = (N,λ, τ,H, p, β) be a resource pooling situation. If �σN� ≥
σNλM/λN for all M ∈ 2N

− \ {N}, then P(ϕ) is in the core of the associated service
constraint game (N, dϕ).
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Proof: Let M ∈ 2N
− \ {N}. Since β ∈ (0, 1), we must have σN > 0. Assume that �σN� ≥

σNλM/λN . As σN > 0 and λM/λN > 0, this assumption implies that �σN� > 0. Then,

L(σM , λM ) = β = L(σN , λN ) ≤ L

(
�σN�, λN

�σN�
σN

)
≤ L

(
σN

λM

λN
, λM

)
. (11)

The equalities hold by definition of σM and σN , respectively. The inequalities hold because
L is scalable (Theorem 3.7), which we can employ because �σN� ∈ N and because σN ≥
�σN� ≥ σNλM/λN .

Since L(s, λM ) is decreasing in s on R+, Inequality (11) implies that σNλM/λN ≤ σM .
This yields∑

i∈M

Pi(ϕ) = H lin(σN ) · λM/λN ≤ H lin(σN · λM/λN ) ≤ H lin(σM ) = dϕ(M).

In the first inequality, we use that H lin is concave and non-negative. In the second inequality,
we use that H lin is increasing. We conclude that P(ϕ) is stable.

�

Acknowledgments

Parts of results of this paper appeared in the preliminary working paper version, Karsten, Slikker and
Van Houtum [9].

References

1. Anily, S. & Haviv, M. (2010). Cooperation in service systems. Operations Research 58(3): 660–673.
2. Calabrese, J. (1992). Optimal workload allocation in open networks of multi-server queues. Management

Science 38(12): 1792–1802.
3. Cooper, R. (1981). Introduction to queueing theory. New York: North-Holland.
4. Erlang, A. (1917). Løsning af nogle problemer fra sandsynlighedsregningen af betydning for de automa-

tiske telefoncentraler. Electroteknikeren 13: 5–13. Translation: Solution of some problems in the theory
of probabilities of significance in automatic telephone exchanges. In E. Brockmeyer, H.L. Halstrøm, and
A. Jensen, editors, The Life and Works of A.K. Erlang, pages 138–155. Transactions of the Danish
Academy of Technical Sciences, 1948.

5. Fredericks, A. (1980). Congestion in blocking systems — a simple approximation technique. Bell System
Technical Journal 59(6): 805–827.

6. Harel, A. (1990). Convexity properties of the Erlang loss formula. Operations Research 38(3): 499–505.
7. Jagerman, D. (1974). Some properties of the Erlang loss function. Bell System Technical Journal 53(3):

525–551.
8. Jagers, A. & Van Doorn, E. (1986). On the continued Erlang loss function. Operations Research Letters

5(1): 43–46.
9. Karsten, F., Slikker, M. & Van Houtum, G. (2011). Analysis of resource pooling games via a new

extension of the Erlang loss function. BETA Working Paper 344, Eindhoven University of Technology.
10. Karsten, F., Slikker, M. & Van Houtum, G. (2011). Resource pooling and cost allocation among

independent service providers. BETA Working Paper 352, Eindhoven University of Technology.
11. Karsten, F., Slikker, M. & Van Houtum, G. (2012). Inventory pooling games for expensive, low-demand

spare parts. Naval Research Logistics 59(5): 311–395.
12. Kortanek, K., Lee, D. & Polak, G. (1981). A linear programming model for design of communications

networks with time varying probabilistic demands. Naval Research Logistics Quarterly 28(1): 1–32.
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APPENDIX

In this appendix, we prove Part (iv) of Theorem 2.1: a[B(s, a)]2 − 1 − (a − s − 1)B(s, a) ≤ 0 for
all s ∈ N and a ∈ R++.

Proof: (Proof of Part (iv) of Theorem 2.1.) Let S ∈ N and a ∈ R++. By Eq. (1), what we aim to
show is that

a

[
aS/S!∑S
y=0 ay/y!

]2

− 1 − (a − S − 1)
aS/S!∑S
y=0 ay/y!

≤ 0. (A.1)

Re-arranging, combining all terms into a single fraction, and multiplying both sides of the resulting

inequality with −
(∑S

y=0 ay/y!
)2

< 0, we obtain that (A.1) is equivalent to

⎛
⎝ S∑

y=0

ay

y!

⎞
⎠

2

− a ·
(

aS

S!

)2

+ (a − S − 1) ·
⎛
⎝ S∑

y=0

ay

y!

⎞
⎠ · aS

S!
≥ 0. (A.2)

For all s ∈ N, define

f(s) =

⎛
⎝ s∑

y=0

ay

y!

⎞
⎠

2

− a2s+1

s! · s! +

s∑
y=0

ay+s · (a − s − 1)

y! · s! . (A.3)

Note that (A.2) corresponds to f(S) ≥ 0. To complete the proof, we show that f(s) ≥ 0 for all
s ∈ N by induction. First,

f(1) = (1 + a)2 − a3 + (a + a2)(a − 2) = (1 + a)2 − a3 + a2 − 2a + a3 − 2a2 = 1 ≥ 0.

To avoid empty summations later on, it is convenient to treat the case s = 2 separately:

f(2) =

(
1

2
a2 + a + 1

)2

− 1

4
a5 +

(
1

4
a4 +

1

2
a3 +

1

2
a2
)
· (a − 3)

=
1

4
a4 + a3 + 2a2 + 2a + 1 − 1

4
a5 +

1

4
a5 +

1

2
a4 +

1

2
a3 − 3

4
a4 − 3

2
a3 − 3

2
a2

=
1

2
a2 + 2a + 1 ≥ 0.

For the induction step, let s ∈ {3, 4, . . .} and assume that f(s − 1) ≥ 0.
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Then,

f(s) =

⎛
⎝ s∑

y=0

ay

y!

⎞
⎠

2

− a2s+1

s! · s! +
s∑

y=0

ay+s · (a − s − 1)

y! · s!

=

⎛
⎝ s∑

y=0

ay

y!

⎞
⎠

2

− a2s+1

s! · s! +
a2s+1

s! · s! − a2s · s
s! · s! − a2s

s! · s! +

s−1∑
y=0

ay+s · (a − s − 1)

y! · s!

=
a2s

s! · s! + 2 ·
s−1∑
y=0

ay+s

y! · s! +

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

− a2s · s
s! · s! − a2s

s! · s! +

s−1∑
y=0

ay+s · (a − s − 1)

y! · s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

− a2s · s
s! · s! +

s−1∑
y=0

ay+s · (a − s + 1)

y! · s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣−as · s

s!
+

s∑
y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s + 1)

y!

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣s−1∑

y=1

ay

(y − 1)!
+

s−1∑
y=0

ay · (−s + 1)

y!

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣s−2∑

y=1

ay

(y − 1)!
+

s−2∑
y=0

ay · (−s + 1)

y!

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣
⎛
⎝s−2∑

y=1

ay

y!
· (y − s + 1)

⎞
⎠ − s + 1

⎤
⎦ · as

s!

≥
⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣s−2∑

y=1

ay

y!
·
( −s2

y + 1
+ s

)
− s + 1

⎤
⎦ · as

s!

≥
⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣s−2∑

y=1

ay

y!
·
( −s2

y + 1
+ s

)
− s2 + s − s2

a

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣s−2∑

y=0

ay

y!
·
( −s2

y + 1
+ s

)
− s2

a

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣−as−1 · s

(s − 1)!
−

s−2∑
y=0

ay · s2

(y + 1)!
− s2

a
+

s−2∑
y=0

ay−1 · a · s
y!

+
as−1 · s
(s − 1)!

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣−as−1 · s

(s − 1)!
−

s−1∑
y=1

ay−1 · s2

y!
− s2

a
+

s−1∑
y=0

ay−1 · a · s
y!

⎤
⎦ · as

s!

=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

+

⎡
⎣−as−1 · s

(s − 1)!
+

s−1∑
y=0

ay−1 · (a − s) · s
y!

⎤
⎦ · as

s!
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=

⎛
⎝s−1∑

y=0

ay

y!

⎞
⎠

2

− a2(s−1)+1

(s − 1)! · (s − 1)!
+

s−1∑
y=0

ay+s−1 · (a − (s − 1) − 1)

y!(s − 1)!

= f(s − 1) ≥ 0.

In the first couple of steps, we split up summations, split off terms from summations, and cancel
out common terms. The first inequality is valid because, for all y ∈ N0, it holds that s2 − 2s(y + 1)
+ (y + 1)2 = (s − (y + 1))2 ≥ 0, and thus y − s + 1 ≥ −s2/(y + 1) + s. The second inequality holds
because −s + 1 ≥ −s2 + s ≥ −s2 + s − s2/a, since s > 1. In the final steps, we rearrange our
expression to show that it is equal to f(s − 1), which was non-negative by the induction hypoth-
esis. Hence, by the principle of mathematical induction we have for all s ∈ N that f(s) ≥ 0. This
completes the proof. �
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