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Abstract. A previous stability condition (see Throumoulopoulos and Tasso, Phys.
Plasmas 14, 122104 (2007)) for incompressible plasmas with field-aligned flows is
extended to gravitating plasmas, including self-gravitation. It turns out that the
stability condition is affected by gravitation through the equilibrium values only.

In a previous paper [1] a sufficient condition was derived
for the linear stability of plasmas of uniform density and
incompressible flow parallel to the magnetic field. This
condition states that a generic steady state of the plasma
is stable to three-dimensional perturbations if the flow
is sub-Alfvénic (λ2 < 1, where λ is the Alfvén Mach
function) and A � 0 with

A= −g2
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2
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g(ψ,B2) =
P ′
s
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− (λ2)′

1 − λ2

B2

2
. (2)

Here, ψ is a smooth function which labels the magnetic
surfaces, B is the magnetic field, B is the magnetic field
modulus, J = ∇ × B is the current density, the surface
function Ps(ψ) coincides with the thermal pressure when
the flow vanishes and the prime indicates a derivat-
ive with respect to ψ. All the quantities in (1) and
(2) pertain to equilibrium. Aim of the present note is
to extend the aforementioned condition to gravitating
plasmas.

As in [1], the system under consideration is a constant
density plasma with an incompressible flow aligned with
B, which, in addition to Lorenz and thermal pressure
forces, is maintained in a magnetohydrodynamic equi-
librium by external and self-gravitation. It is governed
by the following equations:

v = λB (3)

with λ being an arbitrary function,

∇ · v = 0, (4)

v · ∇v = J × B − ∇P + ∇φ, (5)

where v is the velocity, P is the thermal pressure and φ
is the gravitational potential. The equations are written
in convenient units and the constant density is set
to 1. In fact, due to incompressibility it suffices to
assume constant density only at equilibrium. Also, we as-
sume the existence of well-defined equilibrium magnetic
surfaces.

Equations (3) and (5) lead to λ = λ(ψ), and using the
identity v · ∇v = ∇v2/2 − v × ∇ × v, (3)–(5) lead to

(1 − λ2) J × B = ∇
(
P +

λ2B2

2
− φ

)
− B2∇λ

2

2
, (6)

where v is the velocity field modulus. Taking the scalar
product of (6) with B gives

P +
λ2B2

2
− φ = Psφ(ψ), (7)

where Psφ(ψ) is the arbitrary function in the presence of
gravity.

Consequently, (6) can be put in the form

(1 − λ2) J × B = P ′
sφ∇ψ − (λ2)′B

2

2
∇ψ, (8)

with

J × B = gφ(ψ,B
2)∇ψ, (9)

where

gφ(ψ,B
2) =

P ′
sφ
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− (λ2)′
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2
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The only difference with [1] is the presence of the
gravitational potential φ in (5)–(10). This potential obeys
Poisson’s equation

∆φ = −1, (11)

whose solution is the superposition of the internal poten-
tial φi given by φi =

∫
V

1
|(x−x′)|d

3x′, where V is the volume
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of the considered plasma, and an external potential φe
due to fixed masses outside the plasma.

Let us now come to the stability of our flowing
and gravitating equilibria. The general problem without
gravity has been already formulated in [2] in terms
of the Lagrangian displacement ξ. Its application to
equilibria with field-aligned incompressible flows and
homogeneous density was investigated in [1, 3]. The
correct derivation of the final condition briefly presented
here in the preamble was done in [1]. Now note that
the quantity g in (2) is like the gφ in (10), but Ps in it
does not contain the gravitational potential φ. Therefore,
A � 0 remains valid as a stability criterion if g in (1) is
replaced by gφ. The reason is that the perturbed density,
ρ1, in the linearized dynamical equations vanishes for
∇ · ξ = 0 and homogeneous density at equilibrium.
Consequently, it follows that φ1 = 0, as the internal
potential is determined solely by the plasma density
distribution and the external potential, by definition, is
unaffected by the perturbation. Hence, ρ∇φ1 = 0 and
the perturbed momentum equation has the same form
with and without the presence of gravity. The fact that
for uniform equilibrium density, the density remains uni-
form in the perturbed state because of incompressibility
was not noticed in [1, 3].

We conclude by stating that the above-mentioned
condition is sufficient for stability if we replace g in
(1) by gφ [Eq. (10)], which means that this stability

condition is affected by gravity through the equilibrium
values only. A possible application of the condition
in the framework of an idealized model could be the
stability of the earth magma. It is emphasized, however,
that the condition is applicable to internal modes of
generic plasma equilibria.
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