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Abstract

In this paper we introduce Lévy-driven Cox point processes (LCPs) as Cox point processes
with driving intensity function � defined by a kernel smoothing of a Lévy basis (an
independently scattered, infinitely divisible random measure). We also consider log Lévy-
driven Cox point processes (LLCPs) with � equal to the exponential of such a kernel
smoothing. Special cases are shot noise Cox processes, log Gaussian Cox processes,
and log shot noise Cox processes. We study the theoretical properties of Lévy-based Cox
processes, including moment properties described by nth-order product densities, mixing
properties, specification of inhomogeneity, and spatio-temporal extensions.
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1. Introduction

Cox point processes constitute one of the most important and versatile classes of point
process models for clustered point patterns [12], [13], [29], [31], [32], [41]. During the last
decades, several new classes of Cox point process models have appeared in the literature,
e.g. shot noise Cox processes defined by means of generalized gamma measures [5], log
Gaussian Cox processes [9], [33], and shot noise Cox processes [28]. These models share
some common properties and differ in others, depending on how the driving intensity measure
of the Cox process is constructed. One of the aims of this paper is to introduce a unified
framework which is able to include all the different models mentioned above, thereby allowing
us to show the models in a new light, investigate their relationships, and define further natural
extensions.

The starting point for us will be the notion of a Lévy basis L, an independently scattered,
infinitely divisible random measure. The short terminology of a Lévy basis has been introduced
in [2] and [3]. Independently scattered, infinitely divisible random measures have been studied
in detail in [36]. Lévy bases include Poisson random measures, mixed Poisson random
measures, and Gaussian random measures, as well as the so-called G-measures [5]. Thus,
having in mind the construction of the shot noise Cox processes, the second step in defining
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the driving intensity � of the Cox process should be a kernel smoothing of the Lévy basis

�(ξ) =
∫

k(ξ, η)L( dη),

where k is a kernel (weight) function. By this we arrive at the definition of the Lévy-driven
Cox processes (LCPs), i.e. Cox processes with the random driving intensity function defined
by an integral of a weight function with respect to a Lévy basis. This construction has been
discussed by Wolpert [48] under the name of Lévy moving average processes; see also [49]
and [50]. It will be shown that LCPs are, under regularity conditions, shot noise Cox processes
with additional random noise.

Furthermore, it is also possible to define the driving intensity as the exponential of a kernel
smoothing of a Lévy basis (now allowing for nonpositive weight functions and nonpositive
Lévy bases), thus, arriving at the log Lévy-driven Cox processes (LLCPs). It will be shown
that LLCPs have, under regularity conditions, a driving field of the form � = �1�2, where
�1 and �2 are independent, �1 is a log Gaussian field, and �2 is a log shot noise field. The
latter process may describe clustered point patterns with randomly placed empty holes.

Shot noise Cox processes, log Gaussian Cox processes, and log shot noise Cox processes
will appear as natural building blocks in a modeling framework for Cox processes. Different
types of combinations of the building blocks (corresponding to thinning and superposition) will
be discussed in the present paper.

Having defined the framework, the second aim of this paper is to study the theoretical proper-
ties of Lévy-based Cox processes, including moment properties described by nth-order product
densities, mixing properties, specification of inhomogeneity, and spatio-temporal extensions.

Examples where the new models are needed already appear in the literature. In [47] an LCP
(Cox process with additional random noise) is used in the modeling of a tropical rain forest.
In [13, pp. 92–100] a point pattern from forestry is described by a shot noise Cox process thinned
by a random field, taking unexplained large-scale environmental heterogeneity into account. If
this field is log Gaussian, the resulting process is one of the combinations of LCPs and LLCPs
to be described in the present paper. In the very recent review paper [32], a tropical rain forest is
modeled by inhomogeneous shot noise Cox processes, obtained by thinning of a homogeneous
shot noise Cox process with a log-linear deterministic field depending on explanatory variables.
If the deterministic field is substituted with a log Gaussian field, we again arrive at a combination
of an LCP and an LLCP.

The present paper is organized as follows. In Section 2 we give a short overview of the
theory of Lévy bases and integration with respect to such bases. In Section 3 we recall standard
results about Cox processes. In Sections 4 and 5 we introduce and study the Lévy-driven Cox
processes and the log Lévy-driven Cox processes, respectively. Combinations of LCPs and
LLCPs are discussed in Section 6, while inhomogeneous LCPs and LLCPs are considered in
Section 7. We conclude in Section 8 with a discussion.

2. Lévy bases

This section provides a brief overview of the general theory of Lévy bases, in particular, the
theory of integration with respect to Lévy bases. For a more detailed exposition, see [2], [36],
[40], and the references therein.

Let R be a Borel subset of R
d , let B(R) be the Borel sets contained in R, and let A be the

δ-ring of bounded Borel subsets of R.
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Following [36], we consider a collection of real-valued random variables L = {L(A), A ∈
A} with the following properties:

• for every sequence {An} of disjoint sets in A, L(A1), . . . , L(An), . . . are indepen-
dent random variables and L(

⋃
n An) = ∑

n L(An) almost surely (a.s.) provided that⋃
n An ∈ A,

• for every A in A, L(A) is infinitely divisible.

If L has these properties, L will be called a Lévy basis; cf. [2]. If L(A) ≥ 0 for all A ∈ A,
L is called a nonnegative Lévy basis.

For a random variable X, the logarithm of the characteristic function, log E(eivX), will be
called the cumulant function and will be denoted by C(v, X). This notation has been used
in [2], where the terminology of a Lévy basis was introduced. When L is a Lévy basis, the
cumulant function of L(A) can, by the Lévy–Khintchine representation, be written as

C(v, L(A)) = iva(A) − 1

2
v2b(A) +

∫
R

(eivr − 1 − ivr 1[−1,1](r))U(dr, A), (1)

where a is a σ -additive set function on A, b is a measure on B(R), and U(dr, A) is a measure on
B(R) for fixed dr and a Lévy measure on B(R) for each fixed A ∈ B(R), i.e. U({0}, A) = 0
and

∫
R
(1 ∧ r2)U(dr, A) < ∞, where ‘∧’ denotes the minimum. In fact, U is a measure on

B(R) × B(R); cf. [36, Lemma 2.3]. This measure is referred to as the generalized Lévy
measure and L is said to have characteristic triplet (a, b, U). If b = 0 then L is called a Lévy
jump basis; if U = 0 then L is a Gaussian basis; see the examples below. A general Lévy basis
L can always be written as a sum of a Gaussian basis and an independent Lévy jump basis.
Note that the term iva(A) corresponds to a nonrandom shift of the values of L. The nonrandom
shift may be included in the Gaussian component or in the jump component of the Lévy basis,
or may be shared amongst them.

Let |a| = a+ + a−. Then there exists a unique nonnegative measure µ on B(R) satisfying

µ(A) = |a|(A) + b(A) +
∫

R

(1 ∧ r2)U(dr, A) for A ∈ A;

cf. [36, Proposition 2.1, Definition 2.2]. We will call µ the control measure. In [36, Lemma 2.3]
it was shown that the generalized Lévy measure U factorizes as

U(dr, dη) = V (dr, η)µ(dη), (2)

where V (dr, η) is a Lévy measure for fixed η. Moreover, a and b are absolutely continuous
with respect to µ, i.e.

a(dη) = ã(η)µ(dη), b(dη) = b̃(η)µ(dη), (3)

and, obviously, |ã|, b̃ ≤ 1 µ-a.s.
Let L′(η) be a random variable with the cumulant function

C(v, L′(η)) = ivã(η) − 1

2
v2b̃(η) +

∫
R

(eivr − 1 − ivr 1[−1,1](r))V (dr, η). (4)

Then, we obtain the representation

C(v, L(A)) =
∫

A

C(v, L′(η))µ(dη). (5)
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The random variables L′(η) will play an important role in the following and will be called spot
variables. Note that L′(η) characterizes the behavior of L at location η. For later use, note that
if E(L′(η)) and var(L′(η)) exist then

E(L′(η)) = ã(η) +
∫

[−1,1]C
rV (dr, η),

var(L′(η)) = b̃(η) +
∫

R

r2V (dr, η).

By (1)–(3), it is no restriction in generality if, for modeling purposes, we only consider Lévy
bases with characteristic triplet (a, b, U) of the form

a(dη) = ãν(η)ν(dη), (6)

b(dη) = b̃ν(η)ν(dη), (7)

U(dr, dη) = Vν(dr, η)ν(dη), (8)

where ν is a nonnegative measure on B(R), aν : R → R and bν : R → [0, ∞) are measurable
functions, and Vν(dr, η) is a Lévy measure for fixed η. The random variable satisfying (5),
with µ replaced by ν, will be denoted by L′

ν(η). For simplicity, we write L′
µ(η) = L′(η),

ãµ = ã, b̃µ = b̃, and Vµ(dr, η) = V (dr, η). If Vν(·, η), ãν(η), and b̃ν(η) do not depend on η,
neither does the distribution of L′

ν(η) and the Lévy basis L is called ν-factorizable. If, moreover,
the measure ν is proportional to the Lebesgue measure, L is called homogeneous and all the
finite-dimensional distributions of L are translation invariant.

Now let us consider the integration of a measurable function f on (R, B(R)) with respect
to a Lévy basis L. The function f is said to be integrable with respect to L (cf. [36]) if there
exists a sequence of simple functions fn converging to f µ-almost everywhere and such that∫
A

fn dL converges in probability as n → ∞ for all A ∈ B(R). The limit is denoted
∫
A

f dL.
The integral of a simple function fn = ∑k

j=1 xj 1An
j

with respect to L is defined in the following
obvious manner: ∫

A

fn dL =
k∑

j=1

xjL(A ∩ An
j ).

The following lemma gives conditions for integrability and characterizes the distribution of the
resulting integral.

Lemma 1. Let f be a measurable function on (R, B(R)), and let L be a Lévy basis on R
with characteristic triplet (a, b, U). If

(i)
∫
R |f (η)||a|(dη) < ∞,

(ii)
∫
R f (η)2b(dη) < ∞, and

(iii)
∫
R

∫
R

|f (η)r|V (dr, η)µ(dη) < ∞,

then the function f is integrable with respect to L and
∫
R f dL is a well-defined random variable

with the cumulant function

C

(
v,

∫
R

f dL

)
= iv

∫
R

f (η)a(dη) − 1

2
v2

∫
R

f (η)2b(dη)

+
∫

R

∫
R

(eif (η)vr − 1 − if (η)vr 1[−1,1](r))V (dr, η)µ(dη). (9)
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Proof. It suffices to check that the regularity conditions of [36, Theorem 2.7] are satisfied
under the assumptions of Lemma 1. More specifically, we need to check that

(a)
∫
R |h(f (η), η)|µ(dη) < ∞,

(b)
∫
R f (η)2b̃(η)µ(dη) < ∞, and

(c)
∫
R(

∫
R

min{1, (rf (η))2}V (dr, η))µ(dη) < ∞,

where

h(u, η) = uãτ (η) +
∫

R

(τ (ru) − uτ(r))V (dr, η).

Here
τ(r) = r 1[−1,1](r) + r

|r| 1[−1,1]C (r)

and

ãτ (η) = ã(η) +
∫

[−1,1]C
r

|r|V (dr, η).

To prove (a), note that |τ(ru)| ≤ |ur|. Therefore,

|h(f (η), η)| ≤ |f (η)ãτ (η)| + 2
∫

R

|f (η)r|V (dr, η).

Using (i) and (iii) of Lemma 1, it follows that

∫
R

|h(f (η), η)|µ(dη) ≤
∫

R
|f (η)ã(η)|µ(dη) + 3

∫
R

∫
R

|f (η)r|V (dr, η)µ(dη) < ∞.

Condition (b) is the same as (ii) and (c) follows from (iii) and the fact that

min{1, (rf (η))2} ≤ |rf (η)|.

This completes the proof.

The conclusions of Lemma 1 hold under weaker assumptions; see [20, Proposition 5.6]
or [36, Theorem 2.7]. The assumptions of Lemma 1 are simple to check and suffice for our
purposes. Hellmund [20] also contains new selfcontained proofs of a number of other results
concerning integration with respect to a Lévy basis.

Using (4), we can rewrite (9) as

C

(
v,

∫
R

f dL

)
=

∫
R

C(vf (η), L′(η))µ(dη).

The logarithm of the Laplace transform of a random variable X will be called the kumulant
function and denoted by K(v, X) = log E(e−vX) for v ∈ R, in accordance with the notation
used in [2]. If the kumulant function of the integral

∫
R f dL exists then

K

(
v,

∫
R

f dL

)
=

∫
R

K(vf (η), L′(η))µ(dη). (10)
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Example 1. (Gaussian Lévy basis.) If L is a Gaussian Lévy basis with characteristic triplet
(a, b, 0) then L(A) is N(a(A), b(A))-distributed for each set A ∈ A. If (6) and (7) hold, we
obtain L′

ν(η) ∼ N(ãν(η), b̃ν(η)). Furthermore,

C

(
v,

∫
R

f dL

)
= iv

∫
R

f (η)a(dη) − 1

2
v2

∫
R

f (η)2b(dη).

It follows that ∫
R

f dL ∼ N

(∫
R

f (η)a(dη),

∫
R

f (η)2b(dη)

)
.

The basis is ν-factorizable when ãν and b̃ν are constant. A concrete example of a Gaussian
Lévy basis is obtained by attaching independent Gaussian random variables {Xi} to a locally
finite sequence {ηi} of fixed points and letting

L(A) =
∑
ηi∈A

Xi, A ∈ A.

Another example of a Gaussian Lévy basis is the white noise process; cf., e.g. [24, Section 1.3].

Example 2. (Poisson Lévy basis.) The simplest Lévy jump basis is the Poisson basis for which
L(A) ∼ Po(ν(A)), where ν is a nonnegative measure on B(R). Clearly, L is a nonnegative
Lévy basis. This basis has characteristic triplet (ν, 0, δ1(dr)ν(dη)), where δc denotes the Dirac
measure concentrated at c. Note that ãν(η) ≡ 1 and Vν(dr, η) = δ1(dr). This basis is always
ν-factorizable. The random variable L′

ν(η) has a Po(1) distribution.

Example 3. (Generalized G-Lévy basis.) A broad and versatile class of (nonnegative) Lévy
jump bases are the so-called generalized G-Lévy bases with characteristic triplet of the form
(a, 0, U) depending on a nonnegative measure ν on B(R). The measures a and U satisfy (6)
and (8) with

Vν(dr, η) = 1R+(r)
r−α−1

	(1 − α)
e−θ(η)r dr and ãν(η) =

∫ 1

0

r−α

	(1 − α)
e−θ(η)r dr,

where α ∈ (−∞, 1), θ : R → (0, ∞) is a measurable function, and 	 denotes the gamma
function. The class includes two important special cases: the gamma Lévy basis for α =
0 with L′

ν(η) ∼ 	(1, θ(η)) and the inverse Gaussian Lévy basis for α = 1
2 with L′

ν(η) ∼
IG(

√
2,

√
2θ(η)). If the function θ is constant, θ(η) = θ , we find that L(A) ∼ G(α, ν(A), θ),

i.e. L is a G-measure as defined in [5, Section 2].

The following theorem is a special case of the Lévy–Itô decomposition. This theorem
will play a crucial role in the interpretation of some of the Lévy-driven Cox processes to be
considered in the subsequent sections.

Theorem 1. Suppose that the Lévy basis L has no Gaussian part (b = 0) and that its
generalized Lévy measure U satisfies the following conditions:

• U({(r, η)}) = 0 for all (r, η) ∈ R × R (U is diffuse),

• ∫
[−1,1]×A

|r|U(dr, dη) < ∞ for all A ∈ A.
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Then

L(A) = a0(A) +
∫

R

rN(dr, A), A ∈ A,

where

a0(A) = a(A) −
∫

[−1,1]
rU(dr, A), A ∈ A,

and N is a Poisson measure on R × R with intensity measure U .

The conditions of Theorem 1 are satisfied for a Poisson Lévy basis and a generalized G-Lévy
basis if ν is a diffuse, locally finite measure on B(R).

3. Cox processes

Let S be a Borel subset of R
d , and suppose that {�(ξ) : ξ ∈ S} is a nonnegative random field

which is almost surely integrable (with respect to the Lebesgue measure) on bounded Borel
subsets of S. A point process X on S is a Cox process with the driving field �, if conditionally
on �, X is a Poisson process with intensity �; cf. [11], [12], and [31]. The driving measure
�M of the Cox process X is defined by

�M(B) =
∫

B

�(ξ) dξ, B ∈ Bb(S),

where Bb(S) is the bounded Borel subsets of S.
In the following, the intensity function of X will be denoted by ρ(ξ) and, more generally,

ρ(n)(ξ) is the nth-order product density of X. It follows from the conditional structure of X

that ρ(n) can be computed from � by

ρ(n)(ξ1, . . . , ξn) = E

( n∏
i=1

�(ξi)

)
, ξi ∈ S

(for a proof, using moment measures, see, e.g. [12]). A useful characteristic of a point process
is the pair correlation function defined by

g(ξ1, ξ2) = ρ(2)(ξ1, ξ2)

ρ(1)(ξ1)ρ(1)(ξ2)
, ξ1, ξ2 ∈ S,

provided that ρ(1)(ξi) > 0 for i = 1, 2. (We let g(ξ1, ξ2) = 0 if ρ(1)(ξ1)ρ
(1)(ξ2) = 0; cf. [31,

p. 31].) Note that, for a Cox process, the pair correlation function can be calculated as

g(ξ1, ξ2) = E(�(ξ1, ξ2))

E(�(ξ1)) E(�(ξ2))
.

It can be shown that a Cox process is overdispersed relative to the Poisson process, i.e.

var(X(B)) ≥ E(X(B)),

where X(B) denotes the number of points from X falling in B.
Examples of Cox processes include shot noise Cox processes (see [5], [28], and [49]) with

a driving field of the form
�(ξ) =

∑
(r,η)∈�

rk(ξ, η),
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where k is a probability kernel (k(·, η) is a probability density) and � is the atoms of a Poisson
measure on R+ × R, say. Concrete examples of probability kernels are the uniform kernel

k(ξ, η) = 1

ωdRd
1[0,R](‖ξ − η‖),

where R > 0 and ωd = πd/2/	(1+d/2) is the volume of the unit ball in R
d , and the Gaussian

kernel

k(ξ, η) = 1

(2πσ 2)d/2 exp

(
−‖ξ − η‖2

2σ 2

)
, (11)

where σ 2 > 0. Another important class of Cox processes are the log Gaussian Cox processes
(see [33]) driven by the exponential of a Gaussian field �,

�(ξ) = exp(�(ξ)).

4. Lévy-driven Cox processes (LCPs)

4.1. Definition

A point process X on S is called an LCP if X is a Cox process with a driving field of the
form

�(ξ) =
∫

R
k(ξ, η)L(dη), ξ ∈ S, (12)

where L is a nonnegative Lévy basis on R. Furthermore, k is a nonnegative function on S ×R
such that k(ξ, ·) is integrable with respect to L for each ξ ∈ S and k(·, η) is integrable with
respect to the Lebesgue measure on S for each η ∈ R.

Note that, for each pair (k, L), it is always possible to construct an associated pair (k̃, L̃)

generating the same driving field �, where now k̃(·, η) is a probability kernel. We may simply
let

k̃(ξ, η) = k(ξ, η)

α(η)
and L̃(dη) = α(η)L(dη),

where

α(η) =
∫

S

k(ξ, η) dξ

is assumed to be strictly positive. In the formulation and analysis of the models it is, however,
not always convenient to restrict to probability kernels.

It is important to note that, from the nonnegativity of the Lévy basis L and [12, Theo-
rem 6.1.VI], we find that L is equivalent to a random measure on R. Thus, the measurability of
� defined in (12) follows from measurability of k as a function of η and ξ and Tonelli’s theorem.
Therefore, � is a well-defined random field and (under the condition of local integrability; see
below) the driving measure

∫
B

�(ξ)dξ, B ∈ Bb(S), is also a well-defined random measure
determined by the finite-dimensional distributions of L.

It will be assumed that the function k and the Lévy basis L have been chosen such that �

is almost surely locally integrable, i.e.
∫
B

�(ξ) dξ < ∞ with probability 1 for B ∈ Bb(S).
A sufficient condition for the last property is that (cf. [31, Remark 5.1])

∫
B

E(�(ξ)) dξ < ∞, B ∈ Bb(S). (13)
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If L is factorizable then (13) is satisfied if the following conditions hold:
∫ ∞

1
rV (dr) < ∞,

∫
B

∫
R

k(ξ, η)µ(dη) dξ < ∞, B ∈ Bb(S).

4.2. The nth-order product densities of an LCP

It is possible to derive a number of properties of LCPs, using the theory of Lévy bases
presented in Section 2. Below, the nth-order product densities, the generating functional, and
the void probabilities of an LCP are considered. In Proposition 1, below, (complete) Bell
polynomials, well known in combinatorics, are used; see [10].

Proposition 1. Suppose that

E

(∫
R

k(ξ, η)L(dη)

)n

< ∞

and that ∫
R

∫
R+

(k(ξ, η)r)nV (dr, η)µ(dη) < ∞ for all ξ ∈ S.

Then, the nth-order product density of an LCP is given by

ρ(n)(ξ1, . . . , ξn) = 1

2nn!
∑
t∈Tn

( n∏
j=1

tj

)
Bn(κ1(t), . . . , κn(t)), ξ1, . . . , ξn ∈ S,

where Tn denotes the set of all functions from {1, . . . , n} to {−1, 1}n, Bn is the nth complete
Bell polynomial evaluated at

κj (t) =
∫

R

( n∑
i=1

tik(ξi, η)

)j

κj (L
′(η))µ(dη), j = 1, . . . , n,

and κj (L
′(η)) is the j th kumulant moment of the spot variable L′(η).

Proof. First we rewrite ρ(n)(ξ1, . . . , ξn) = E(
∏n

i=1 �(ξi)), using the polarization formula
(cf. [15, p. 43])

E

( n∏
i=1

�(ξi)

)
= 1

2nn!
∑
t∈Tn

( n∏
i=1

ti

)
E

( n∑
i=1

ti�(ξi)

)n

. (14)

The terms

E

( n∑
i=1

ti�(ξi)

)n

can be computed by evaluating the nth complete Bell polynomial in the first n cumulants of∑n
i=1 ti�(ξi) = ∫

R

∑n
i=1 tik(ξi, η)L(dη). Thus, we have

E

( n∑
i=1

ti�(ξi)

)n

= Bn(κ1(t), . . . , κn(t)),
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where κj (t) is the j th cumulant of

∫
R

n∑
i=1

tik(ξi, η)L(dη).

Under the assumptions of the proposition, κj (t) can be calculated by differentiating (10) j times
with f (η) = ∑n

i=1 tik(ξi, η). We obtain

κj (t) =
∫

R

( n∑
i=1

tik(ξi, η)

)j

κj (L
′(η))µ(dη).

Note that

E

(∫
R

n∑
i=1

tik(ξi, η)L(dη)

)j

< ∞

and ∫
R

∫
R+

( n∑
i=1

tik(ξi, η)

)j

V (dr, η)µ(dη) < ∞, j = 1, . . . , n,

under the assumptions of the proposition. This completes the proof.

Corollary 1. Suppose that k(ξ, ·) satisfies the assumptions of Lemma 1 for each ξ ∈ S. Then
the intensity function of the LCP exists and is given by

ρ(ξ) =
∫

R
k(ξ, η) E(L′(η))µ(dη) for all ξ ∈ S. (15)

Furthermore, if

E

(∫
R

k(ξ, η)L(dη)

)2

< ∞
and ∫

R

∫
R

(k(ξ, η)r)2V (dr, η)µ(dη) < ∞ for each ξ ∈ S,

the pair correlation function of the process exists and is given by

g(ξ, ζ ) = 1 +
∫
R k(ξ, η)k(ζ, η) var(L′(η))µ(dη)

ρ(ξ)ρ(ζ )
for all ξ, ζ ∈ S. (16)

Proof. The result follows from Proposition 1, using the fact that the first and second
complete Bell polynomials are given by B1(x) = x and B2(x1, x2) = x2

1 + x2. Also, recall
that κ1(L

′(η)) = E(L′(η)) and κ2(L
′(η)) = var(L′(η)).

Corollary 2. (Stationary LCP.) Let S = R = R
d , and assume that k is a homogeneous kernel

in the sense that
k(ξ, η) = k(ξ − η) for all ξ, η ∈ R

d .

Let
∫

k(η) dη = α. Assume that L is a homogeneous Lévy basis with control measure µ(dη) =
c dη for some c > 0. Then (15) and (16) take the following simplified form:

ρ = c E(L′)α, g(ξ, ζ ) = 1 + var(L′)
(E(L′))2

Ik(ζ − ξ)

c
,
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Figure 1: Examples of realizations of homogeneous LCPs with Poisson (left), gamma (middle), and
inverse Gaussian (right) Lévy bases. For details, see the text.

where Ik depends only on the kernel k,

Ik(ζ − ξ) =
∫

Rd

k(ζ − ξ + η)k(η)

α2 dη.

Note that the fraction var(L′)/(E(L′))2 is equal to 1/E(L′), 1, and E(L′) for the Poisson,
gamma, and inverse Gaussian bases, respectively. The choice of the Lévy basis substantially
changes the correlations in the LCP and the overall variability in the point pattern even when
the corresponding LCPs are stationary and all other parameters of the model are the same. As
an illustration, Figure 1 shows three stationary LCPs observed on a [0, 100]× [0, 200] window
with c = 0.003, E(L′) = 2, and a Gaussian kernel obtained as 10 times kernel (11) with
σ = 4. The spot variable L′ is distributed as E(L′) times a Po(1)-distributed variable, as a
	(1, E(L′))-distributed variable, and as an IG(1, 1/ E(L′))-distributed variable, respectively.
From left to right in Figure 1, an increasing irregularity is clearly visible.

The distribution of a point process X on S can be characterized by the probability generating
functional GX. This functional is defined by

GX(u) = E

(∏
ξ∈X

u(ξ)

)

for functions u : S → [0, 1] with {ξ ∈ S : u(ξ) < 1} bounded. As proved, for example, in [12],
the probability generating functional of a Cox process can be computed by

GX(u) = E

(
exp

(
−

∫
S

(1 − u(ξ))�(ξ) dξ

))
.

Void probabilities can be calculated as

v(B) := P(X ∩ B = ∅) = E

(
exp

(
−

∫
B

�(ξ) dξ

))
, B ∈ Bb(S).
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Below, we give the expressions for GX and v for an LCP.

Proposition 2. The probability generating functional of an LCP has the following form:

GX(u) = exp

(
−

∫
R+

∫
R

(
1 − exp

(
−

∫
S

(1 − u(ξ))k(ξ, η)r dξ

))
U(dr, dη)

−
∫

R

∫
S

(1 − u(ξ))k(ξ, η) dξa0(dη)

)
,

while the void probabilities are given by

v(B) = exp

(
−

∫
R+

∫
R

(
1 − exp

(
−r

∫
B

k(ξ, η) dξ

))
U(dr, dη)

−
∫

R

∫
B

k(ξ, η) dξa0(dη)

)
, B ∈ Bb(S).

Proof. Since �(ξ) is almost surely locally integrable,∫
S

(1 − u(ξ))�(ξ) dξ ≤
∫

S

1supp(1−u)(ξ)�(ξ) dξ < ∞ (17)

is a well-defined nonnegative random variable and its kumulant transform exists. (In (17) the
support of the function 1 − u is denoted supp(1 − u).) Using the key relation (10) for the
kumulant function, we obtain

log(GX(u)) = log

(
E

(
exp

(
−

∫
S

(1 − u(ξ))�(ξ) dξ

)))

= K

(
1,

∫
S

(1 − u(ξ))�(ξ) dξ

)

= K

(
1,

∫
S

(1 − u(ξ))

∫
R

k(ξ, η)L(dη) dξ

)

= K

(
1,

∫
R

(∫
S

(1 − u(ξ))k(ξ, η) dξ

)
L(dη)

)

=
∫

R
K

(∫
S

(1 − u(ξ))k(ξ, η) dξ, L′(η)

)
µ(dη)

= −
∫

R

∫
S

(1 − u(ξ))k(ξ, η) dξa0(dη)

+
∫

R

∫
R+

(
exp

(
−

∫
S

(1 − u(ξ))k(ξ, η)r dξ

)
− 1

)
V (dr, η)µ(dη).

The result for the void probabilities is obtained by choosing u(ξ) = 1Bc(ξ). This completes
the proof.

4.3. Mixing properties

The following proposition gives conditions for stationarity and mixing of an LCP. Mixing
and ergodicity are important, for example, for establishing the consistency of model parameter
estimates, including nonparametric estimates of the nth-order product density ρ(n) and the pair
correlation function g. Mixing [12, Definition 10.3.I] implies ergodicity [12, p. 341]. The case
of an LCP with G-Lévy basis has been treated in [5, Proposition 2.2].
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Proposition 3. Let S = R = R
d , and assume that the Lévy basis L and the kernel k are

homogeneous. Then, an LCP with driving field � of the form (12) is stationary and mixing.

Proof. Note that a Cox process is stationary and mixing if and only if the driving field
of the Cox process has the same property [12, Proposition 10.3.VII]. Using the assumptions
of the proposition, it is easily seen that {�(ξ + x) : ξ ∈ R

d} has the same distribution as
{�(ξ) : ξ ∈ R

d} for all x ∈ R
d .

According to [12, Proposition 10.3.VI(a)], � is mixing if and only if

L�[h1 + Txh2] → L�[h1]L�[h2] as ‖x‖ → ∞.

Here, h1 and h2 are arbitrary nonnegative bounded functions on R
d of bounded support, L� is

the Laplace functional defined by

L�[h] = E

(
exp

(
−

∫
Rd

h(ξ)�(ξ) dξ

))
,

and Txh(ξ) = h(ξ + x), ξ, x ∈ R
d . We obtain

L�[h1 + Txh2]
= E

(
exp

(
−

∫
Rd

∫
Rd

(h1(ξ) + h2(ξ + x))k(ξ − η)L(dη) dξ

))

= E

(
exp

(
−

∫
Rd

(∫
Rd

h1(ξ)k(ξ − η) dξ +
∫

Rd

h2(ξ)k(ξ − η − x) dξ

)
L(dη)

))

= E

(
exp

(
−

∫
Rd

h̃1(η)L(dη)

)
exp

(
−

∫
Rd

h̃2(η + x)L(dη)

))
,

where

h̃i (η) =
∫

Rd

hi(ξ)k(ξ − η) dξ.

If k has bounded support then we can find a C > 0 such that, for ‖x‖ > C,

{η ∈ R
d : h̃1(η) > 0} ∩ {η ∈ R

d : h̃2(η + x) > 0} = ∅.

It follows that, for ‖x‖ > C,

L�[h1 + Txh2] = E

(
exp

(
−

∫
Rd

h̃1(η)L(dη)

))
E

(
exp

(
−

∫
Rd

h̃2(η + x)L(dη)

))

= L�[h1]L�[h2],
since L is independently scattered. If k does not have bounded support, we define a series of
functions with bounded support

kn(ξ − η) = k(ξ − η) 1[0,n)(‖ξ − η‖), n = 1, 2, . . . ,

that converges monotonically from below to k. It follows that h̃i,n defined by

h̃i,n(η) =
∫

Rd

hi(ξ)kn(ξ − η) dξ
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converges monotonically from below to h̃i (η) and, for fixed n, we can find a Cn such that, for
‖x‖ > Cn,

E

(
exp

(
−

∫
Rd

h̃1,n(η)L(dη)

)
exp

(
−

∫
Rd

h̃2,n(η + x)L(dη)

))

= E

(
exp

(
−

∫
Rd

h̃1,n(η)L(dη)

))
E

(
exp

(
−

∫
Rd

h̃2,n(η + x)L(dη)

))
.

Using the reasoning just after [12, Proposition 10.3.VI], it follows that

L�[h1 + Txh2] → L�[h1]L�[h2]
for the original functions h1 and h2. This completes the proof.

4.4. Examples of LCPs

4.4.1. Shot noise Cox processes with random noise. Under the assumptions of Theorem 1, the
driving field of an LCP takes the form

�(ξ) =
∫

R
k(ξ, η)a0(dη) +

∑
(r,η)∈�

rk(ξ, η), (18)

where � is the atoms of a Poisson measure on R+ × R with intensity measure U . An LCP
X with such a driving field is distributed as a superposition X1 ∪ X2, where X1 and X2 are
independent, X1 is a Poisson point process with intensity function

ρ1(ξ) =
∫

R
k(ξ, η)a0(dη),

and X2 is a shot noise Cox process as defined in [28] with driving field

�2(ξ) =
∑

(r,η)∈�

rk(ξ, η).

An LCP with driving field � of the form (18) is therefore a shot noise Cox process (SNCP)
with additional random noise. Simulation of the associated Lévy basis can be performed, using
the algorithm introduced in [16], if L is factorizable, otherwise the algorithm developed in [50]
may be used (see also [46]). A third option is the method used in [28]. An overview of available
methods of simulating Lévy processes can be found in [39].

For a0 ≡ 0, we obtain the familiar SNCPs. In [28] three specific examples of stationary
SNCPs are considered. Using the notion of a Lévy basis, they are specified by U(dr, dη) =
V (dr, η)ν(dη), where ν(dη) ∝ dη, and one of the following conditions.

• V is concentrated in a single point c > 0, i.e. V (dr) = δc(dr). If c = 1, the corresponding
Lévy basis is Poisson. If c �= 1, L(A) ∼ c Po(ν(A)). LCPs of this type are the well-
known Matérn cluster process [25] and the Thomas process [42].

• V ((0, ∞)) < ∞. In this case, � can be represented as a marked Poisson point process.
Examples of LCPs with such a Lévy basis are the Neyman–Scott processes; cf. [34].

•
V (dr) = 1R+(r)

r−α−1

	(1 − α)
e−θr dr

corresponding to a G-Lévy basis. The resulting LCP is a so-called shot noise G-Cox
process [5].
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Figure 2: Example of an SNCP with extra noise. For details, see the text.

In Figure 2 we show an example of an SNCP with a homogeneous Poisson process (a0
is proportional to the Lebesgue measure) with additional random noise. More precisely, the
process X = X1 ∪ X2 is defined on [0, 200] × [0, 100], X1 is a Poisson process with intensity
0.01, and X2 is an SNCP with Gaussian kernel (11) with σ = 2 and an intensity measure U of
the form U(dr, dη) = δ25(r)0.0025 dη. The process X2 is thereby a Thomas process.

4.4.2. LCPs driven by smoothed discrete random fields. We suppose that {ηi} is a locally finite
sequence of fixed points, and let

L(A) =
∑
ηi∈A

Xi,

where {Xi} is a sequence of independent and identically distributed nonnegative random
variables with infinitely divisible distribution. If, for instance, Xi is gamma or inverse Gaussian
distributed then L is a special case of a gamma or inverse Gaussian Lévy basis, respectively.
The driving intensity of the associated LCP will take the form

�(ξ) =
∑
ηi

k(ξ, ηi)Xi.

5. Log Lévy-driven Cox processes (LLCPs)

5.1. Definition

A point process X on S is called an LLCP if X is a Cox process with intensity field of the
form

�(ξ) = exp

(∫
R

k(ξ, η)L(dη)

)
, (19)

where L is a Lévy basis and k is a kernel such that k(ξ, ·) is integrable with respect to L for
each ξ ∈ S, k(·, η) is integrable with respect to the Lebesgue measure on S for each η ∈ R,
and � is almost surely locally integrable.

Since the driving intensity field of an LLCP is always nonnegative because of the exponential
function, we can generally use kernels and Lévy bases which also have negative values.
Moreover, using the Lévy–Khintchine representation, (1), we see that each Lévy basis L is
equal to a sum of two independent parts—a Lévy jump part (let us denote it by LJ) and a
Gaussian part (let us denote it by LG). Thus, we can represent the driving intensity of an LLCP
as a product of two independent driving fields:

�(ξ) = exp

(∫
R

k(ξ, η)LJ(dη)

)
exp

(∫
R

k(ξ, η)LG(dη)

)
= �J(ξ)�G(ξ).
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If LJ ≡ 0, � is the driving field of a log Gaussian Cox process [9], [33]; if LG ≡ 0, � is,
under regularity conditions, the driving field of a log SNCP (see the examples in Section 5.4,
below).

Because of the exponential function in the definition of �(ξ), stronger conditions on k and
L are needed in order to ensure that � is almost surely locally integrable. A sufficient condition
is that the kumulant transform K(−k(ξ, η), L′(η)) exists for all ξ ∈ S and η ∈ R, and that∫

B

exp

(∫
R

K(−k(ξ, η), L′(η))µ(dη)

)
dξ < ∞ for all B ∈ Bb(S). (20)

This result follows from the definition of the kumulant function and from the key relation (10)
for the kumulant transform. In particular, we use

E(�(ξ)) = exp

(
K

(
1, −

∫
R

k(ξ, η)L(dη)

))
= exp

(∫
R

K(−k(ξ, η), L′(η))µ(dη)

)
.

Note that
K(−k(ξ, η), L′(η)) = k(ξ, η)ã(η) + 1

2k(ξ, η)2b̃(η)

+
∫

R

(ek(ξ,η)r − 1 − k(ξ, η)r 1[−1,1](r))V (dr, η).

If L is factorizable then (20) is satisfied if either there exist B > 0, C > 0, and D > 0 such
that

|k(ξ, η)| ≤ C for all ξ ∈ S, η ∈ R, (21)∫
R

|k(ξ, η)|iµ(dη) < BDi, i = 1, 2, . . . , ξ ∈ S, (22)
∫

R

(e(C∨D)|r| − 1 − (C ∨ D)|r| 1[−1,1](r))V (dr) < ∞, (23)

or there exist C > 0 and R > 0 such that

|k(ξ, η)| ≤ C for all ξ ∈ S, η ∈ R, (24)

k(ξ, η) = 0 for ‖ξ − η‖ > R, (25)

µ is locally finite,∫
R

(eC|r| − 1 − C|r| 1[−1,1](r))V (dr) < ∞. (26)

Note that (21) and (22) are satisfied for the Gaussian kernel if µ is the Lebesgue measure,
while (24) and (25) hold for the uniform kernel. In the case of a purely Gaussian basis, (22) is
needed only for i = 2 and conditions (23) and (26) are trivially satisfied since V ≡ 0.

5.2. The n-th order product densities of an LLCP

The nth-order product densities of LLCPs are easily derived, using Lévy theory.

Proposition 4. The nth-order product density is given by

ρ(n)(ξ1, . . . , ξn) = exp

(∫
R

K

(
−

n∑
i=1

k(ξi, η), L′(η)

)
µ(dη)

)
, ξ1, . . . , ξn ∈ S,

provided that the right-hand side exists.
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Proof. The formula follows directly from the definition of the kumulant function and from
the key relation (10). We obtain

ρ(n)(ξ1, . . . , ξn) = E

( n∏
i=1

�(ξi)

)

= E

(
exp

( n∑
i=1

∫
R

k(ξi, η)L(dη)

))

= exp

(
K

(
1, −

n∑
i=1

∫
R

k(ξi, η)L(dη)

))

= exp

(∫
R

K

(
−

n∑
i=1

k(ξi, η), L′(η)

)
µ(dη)

)
.

Corollary 3. The intensity function of an LLCP X is given by

ρ(ξ) = exp

(∫
R

K(−k(ξ, η), L′(η))µ(dη)

)
,

provided that the right-hand side exists. When the second-order product density exists, the pair
correlation function of an LLCP takes the following form:

g(ξ, ζ ) = exp

(∫
R

[K(−k(ξ, η) − k(ζ, η), L′(η))

− K(−k(ξ, η), L′(η)) − K(−k(ζ, η), L′(η))]µ(dη)

)

= exp

(∫
R

k(ξ, η)k(ζ, η)b(dη)

+
∫

R

∫
R

(e(k(ξ,η)+k(ζ,η))r − ek(ξ,η)r − ek(ζ,η)r + 1)V (dr, η)µ(dη)

)
.

Corollary 4. (Stationary LLCP.) Let S = R = R
d . Assume that k is a homogeneous kernel

and that L is a homogeneous Lévy basis with µ(dη) = cdη for some c > 0. Then,

ρ = exp

(
c

∫
Rd

K(−k(η), L′) dη

)

and

g(ξ, ζ ) = exp

(
b̃c

∫
Rd

k(ξ − ζ + η)k(η) dη

+ c

∫
Rd

∫
R

(e(k(ξ−ζ+η)+k(η))r − ek(ξ−ζ+η)r − ek(η)r + 1)V (dr) dη

)
.

5.3. Mixing properties

Proposition 5. Let S = R = R
d , and assume that the Lévy basis L is homogeneous and that

the kernel k is homogeneous. Then an LLCP with driving field of the form (19) is stationary
and mixing.
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Proof. As in the proof of Proposition 3, we immediately obtain the stationarity. The method
of proving mixing has to be modified compared to the one used in Proposition 3. First, rewrite

L�[h1 + Txh2] = E

(
exp

(
−

∫
Rd

h1(ξ) exp

(∫
Rd

k(ξ − η)L(dη)

)
dξ

)

× exp

(
−

∫
Rd

h2(ξ + x) exp

(∫
Rd

k(ξ − η)L(dη)

)
dξ

))

= E(ABx),

say. If k has bounded support, A and Bx will be independent if ‖x‖ is large enough. If k does
not have bounded support, we use a series of functions kn with bounded support that converges
to k. To be precise, let, as in Proposition 3,

kn(u) = k(u) 1[0,n)(‖u‖), u ∈ R
d ,

n = 1, 2, . . . . We have kn → k and |kn| ≤ |k|. Now, let

An = exp

(
−

∫
Rd

h1(ξ) exp

(∫
Rd

kn(ξ − η)L(dη)

)
dξ

)

and

Bx,n = exp

(
−

∫
Rd

h2(ξ + x) exp

(∫
Rd

kn(ξ − η)L(dη)

)
dξ

)
.

Note that 0 ≤ A, An, Bx, Bx,n ≤ 1. Now, consider the following inequality

| E(ABx) − E(A) E(Bx)|
≤ | E(ABx) − E(ABx,n)| + | E(ABx,n) − E(AnBx,n)|

+ | E(AnBx,n) − E(An) E(Bx,n)| + | E(An) E(Bx,n) − E(An) E(Bx)|
+ | E(An) E(Bx) − E(A) E(Bx)|

= δ1xn + δ2xn + δ3xn + δ4xn + δ5xn,

say. Let us evaluate each of these five terms. Using the facts that 0 ≤ A ≤ 1 and L is
homogeneous, we obtain

δ1xn = | E(A(Bx − Bx,n))|
≤ E(A|Bx − Bx,n|)
≤ E(|Bx − Bx,n|)
= E(|B0 − B0,n|).

Now, since kn → k and |kn| ≤ |k|, where k is L-integrable, it follows that∫
Rd

kn(ξ − η)L(dη) →
∫

Rd

k(ξ − η)L(dη) a.s.

We can therefore find n1 (not dependent on x) such that, for n ≥ n1, δ1xn ≤ ε, say. Using the
same type of arguments, we can find n2, n4, and n5 such that, for n ≥ ni , δixn ≤ ε, i = 2, 4, 5.
Now choose a fixed n ≥ max(n1, n2, n4, n5) and consider

δ3xn = | E(AnBx,n) − E(An) E(Bx,n)|.
Using the previous results for bounded functions of bounded support, we finally find a constant,
C > 0, such that, for x with ‖x‖ > C, we have δ3xn ≤ ε. This completes the proof.
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5.4. Examples of LLCPs

5.4.1. Log shot noise Cox processes (LSNCPs). Under the assumptions of Theorem 1, the
driving field of an LLCP takes the form

�(ξ) = exp

(
d(ξ) +

∑
(r,η)∈�

rk(ξ, η)

)
,

where d(ξ) is a deterministic function and � is the atoms of a Poisson measure on R ×R with
intensity measure U . Such a process is called a log shot noise Cox process (LSNCP).

It is important to realize that SNCPs and LSNCPs are quite different model classes. An
SNCP X with a driving field of the form

�(ξ) =
∑

(r,η)∈�

rk(ξ, η)

is a superposition of independent Poisson processes X(r,η), (r, η) ∈ �, where X(r,η) has
intensity function rk(·, η). (The process {η : (r, η) ∈ �} is usually called the center process
(although it is not necessarily locally finite) while X(r,η) is called a cluster around η.) The
presence of a particular cluster X(r,η) will not affect the presence of the other clusters.

In contrast to this, the driving field of an LSNCP takes the form

�(ξ) = exp(d(ξ))
∏

(r,η)∈�

exp(rk(ξ, η)).

A cluster X(r,η) with negative, numerically large values of rk(·, η) will very likely contain zero
points and, moreover, wipe out points from other clusters in the neighborhood of η. In the
resulting point pattern, empty holes may therefore be present. Examples of such point patterns
are shown in Figure 3. Here, {η} is a homogeneous Poisson process on [0, 100]× [0, 200] with

Figure 3: Examples of LSNCPs. Note the circular empty holes in the point patterns. For details, see the
text.
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intensity c = 0.003, V (dr) = 1
3δ1(r) + 2

3δ−1(r), and the kernel is k(ξ) = 1(|ξ | ≤ R) (left
plot) and k(ξ) = (1 − |ξ |3/R3) 1(|ξ | ≤ R) (right plot), with R = 10.

5.4.2. Log Gaussian Cox processes (LGCPs). In this subsection we consider LLCPs with a
driving field of the form

�(ξ) = exp

(∫
R

k(ξ, η)L(dη)

)
, (27)

where L is a Gaussian Lévy basis.
Clearly, the resulting process is an LGCP [9], [33]. If k and L are homogeneous, the process

is stationary. In this case the random intensity function �(ξ) is well defined for all ξ ∈ R
d and

almost surely integrable if

k(ξ) ≤ C, ξ ∈ R
d , and

∫
Rd

k(ξ)2 dξ < ∞. (28)

The covariance function of the Gaussian field

�(ξ) =
∫

Rd

k(ξ − η)L(dη)

takes the form

cov(�(ξ1), �(ξ2)) =
∫

Rd

k(ξ1 − ξ2 + η)k(η) dη = c(ξ1 − ξ2),

say. Note that, under (28), c is integrable. Under the mild additional assumption that the set of
discontinuity points of k has Lebesgue measure 0, c is also continuous. In Proposition 6, below,
we show that any stationary LGCP with a continuous and integrable covariance function can
indeed be obtained as a kernel smoothing (27) of a Gaussian Lévy basis. The proposition is a
generalization of a result mentioned in [21].

Proposition 6. Any stationary Gaussian random field with continuous and integrable covari-
ance function can be generated by a kernel smoothing of a homogeneous Lévy basis.

Proof. Let {�(ξ) : ξ ∈ R
d} be an arbitrary stationary zero mean Gaussian field. Let

c(ξ1, ξ2) = c(ξ1 − ξ2) denote its covariance function, which is a function of ξ = ξ1 − ξ2
due to the stationarity. Since c is continuous and positive definite, it follows from Bochner’s
theorem that

c(ξ) =
∫

Rd

eiξητ (dη)

for some nonnegative measure τ . Since c is integrable and symmetric, τ has a symmetric
density f , which can be found using the inverse Fourier transform. Here

√
f is continuous and

a member of L2(Rd). Note that, for a symmetric function defined on R
d , the Fourier transform

and its inverse are the same up to multiplication/division with the constant (2π)d/2.
By the convolution theorem for the Fourier(–Plancerel) transform, we obtain

(√
f ∗ √

f
)−1

= √
f

−1 √
f

−1

= f ;
thus, √

f ∗ √
f (ξ) = c(ξ).

Set k = √
f , and let L denote a homogeneous Lévy basis with characteristic triplet (0, 1, 0).

Then, since the covariance function for
∫

k dL is equal to k ∗ k, our proof is complete.
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In [33, Theorem 3], conditions for ergodicity are given in the special case of a station-
ary LGCP. Note that, under (28), c(ξ) → 0 for ‖ξ‖ → ∞ and the conditions for ergodicity
stated in [33, Theorem 3b] are satisfied.

6. Combinations of LCPs and LLCPs

The driving field of an LLCP has the form

�(ξ) = exp

(∫
R

k(ξ, η)LJ(dη)

)
exp

(∫
R

k(ξ, η)LG(dη)

)
= �J(ξ)�G(ξ).

It seems natural to extend the model such that the kernels used in the jump part and the Gaussian
part do not need to be the same. We thereby arrive at Cox processes with a driving field of the
form

�(ξ) = exp

(∫
R

k(ξ, η)LJ(dη)

)
�G(ξ),

where �G is an arbitrary log Gaussian random field.
If LJ satisfies the regularity conditions of Theorem 1, we obtain

�(ξ) = exp

(
d(ξ) +

∑
(r,η)∈�

rk(ξ, η) + Y (ξ)

)
,

where d(ξ) is a deterministic function, � is the atoms of a Poisson measure with intensity
measure U , and Y is an independent Gaussian field.

A related model can be found in [37] for modeling the positions of offspring in a long-leaf
pine forest given the positions of the parents and information about the topography. The model
in [37] is formulated conditional on the positions η of the parents.

There are, of course, other possibilities for combining shot noise components and log
Gaussian components in the driving field than the one suggested above. For instance, if LJ is
a nonnegative Lévy jump basis, we may consider Cox processes driven by

�(ξ) =
(∫

R
k(ξ, η)LJ(dη)

)
�G(ξ)

=
(∫

R
k(ξ, η)a0(dη) +

∑
(r,η)∈N

rk(ξ, η)

)
�G(ξ); (29)

cf. [45]. In [13, pp. 92–100], a Cox process model of the type described in (29) has been
considered, but with the Gaussian field replaced by a Boolean field. Such a model will be able
to produce shot noise point patterns with empty holes generated by the Boolean field.

7. Inhomogeneous LCPs and LLCPs

Møller and Waagepetersen [32] suggested introducing inhomogeneity into a Cox process
so that the resulting process becomes second-order intensity reweighted stationary; see [1]
for details. In this section we describe four types of inhomogeneity. Only type 3 leads to
second-order intensity reweighted stationary processes.

We concentrate on SNCPs with a0 ≡ 0; cf. Section 4.4.1. The interpretation of the type of
inhomogeneity introduced may be facilitated by using the cluster representation of an SNCP X.
It is not necessary for the process of cluster centers (mothers) to be locally finite in order to use
this interpretation.
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Example 4. (Type 1.) The kernel is assumed to be homogeneous, k(ξ, η) = k(ξ −η), while the
Lévy basis satisfies V (dr, η) = V (dr) and ν(dη) = cf (η) dη. If the function f is nonconstant,
mothers will be unevenly distributed (according to ν), but the distribution of the clusters will
not depend on the location in the sense that the distribution of X(r,η) − η does not depend on η.

Example 5. (Type 2.) The kernel is assumed to be homogeneous, k(ξ, η) = k(ξ − η), while
the Lévy basis satisfies V (dr, η) = V (d(r/f (η))) and ν(dη) = c dη. In this case the mothers
will be evenly distributed while the distribution of the clusters may be location dependent.
A model with (k, V ) replaced by k(ξ, η) = k(ξ − η)f (η) and V (dr, η) = V (dr) will result in
the same type of LCP.

Example 6. (Type 3.) The kernel is inhomogeneous of the form k(ξ, η) = k(ξ −η)f (ξ), while
the Lévy basis is homogeneous, V (dr, η) = V (dr) and ν(dη) = cdη. The resulting LCP will
be a location dependent thinning of a stationary LCP. This option has been discussed in [32]
and [44] with the following log-linear specification of the function f :

f (ξ) = exp(z(ξ)β).

Here, z(ξ) is a list of explanatory variables and β is a parameter vector. Note that type 2 and
type 3 inhomogeneities will typically have a similar appearance. The reason is that they can be
regarded as only differing in the specification of the kernel as either of the form

k(ξ, η) = k(ξ − η)f (η) (type 2)

or

k(ξ, η) = k(ξ − η)f (ξ) (type 3),

and k(ξ − η)(f (η) − f (ξ)) is only nonnegligible if ξ and η are close enough so that k(ξ − η)

is nonnegligible and at the same time there is an abrupt change in f between ξ and η.

Example 7. (Type 4.) Inhomogeneity may also be introduced into the process by a local scaling
mechanism [17], [18]. Here, the kernel is inhomogeneous,

k(ξ, η) = k

(
ξ − η

f (η)

)
1

f (η)d
,

while

V (dr, η) = V (dr) and ν(dη) = c
dη

f (η)d
.

The inhomogeneity of the resulting point process can be explained by local scaling.

In Figure 4 examples of inhomogeneous LCPs of types 1, 2, and 4 are given on S =
R = [0, 100] × [0, 200]. Here, k is the Gaussian kernel, (11), with σ = 2, c = 1

200 , and
V is concentrated in r = 18. The inhomogeneity function f is linear in all three cases,
f (x, y) = y/100.

Inhomogeneity may be introduced into an LSNCP by changing L or k as indicated in the
examples above. Compared to LCPs, the effects are now multiplicative.
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Figure 4: Examples of realizations of inhomogeneous LCPs: type 1 (left), type 2 (middle), and type 4
(right). For details, see the text.

8. Discussion

During the last years, there has been some debate concerning which one of the two model
classes (SNCP or LGCP) are most appropriate [27], [30], [38], [49]. The modeling framework
described in the present paper provides the possibility for using models involving both SNCP
and LGCP components and subsequently testing whether it is appropriate to reduce the model
to a pure SNCP model or a pure LGCP model. Figure 5 summarizes the most important model
classes treated in the present paper. Below, we discuss a few additional issues.

Lévy-based Cox point processes

LCP LLCP

SNCP with
random noise

LCP with
smoothed DF

LCP thinned
by LGF

LSNCP LGCP

Figure 5: Overview of Lévy-based Cox point processes. The abbreviations DF and LGF stand for a
discrete random field and a log Gaussian random field, respectively. For further details, see the text.
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8.1. Probability densities of LCPs and LLCPs

It is possible to derive an expression for the density of an LCP or an LLCP, using the
methodology of Lévy bases. For instance, in the case of an LCP with a0 ≡ 0, the density of XB

for B ∈ Bb(S) can be written as an expansion involving complete Bell polynomials evaluated
at certain cumulants. The derivation of this result utilizes (14). Unfortunately, the expansion
seems to be too complicated to be of practical use for inference. The same type of conclusion
has been reached for likelihood inference in G-SNCPs and in LGCPs; see [5, Section 4.2.1] and
[33]. Closed-form expressions for the densities of other types of Cox processes are available;
see [26].

8.2. Spatio-temporal extensions

The LCPs and LLCPs extend easily to spatio-temporal Cox processes. The set S on which
the process is defined is now a Borel subset of R

d × R, where the last copy of R indicates
time. The dependency on the past at time t and position x may be modeled using an ambit set
At(x), x ∈ R

d and t ∈ R, satisfying

(x, t) ∈ At(x), At (x) ⊆ R
d × (−∞, t].

A spatio-temporal LCP is then defined by a driving intensity of the form

�(x, t) =
∫

At (x)

k((x, t), (y, s))L(d(y, s)),

where L is a nonnegative Lévy basis on R ⊆ R
d × R and k is a nonnegative weight function.

Likewise, a spatio-temporal LLCP has a driving field of the form

�(x, t) = exp

(∫
At (x)

k((x, t), (y, s))L(d(y, s))

)
,

where L and k no longer need to be nonnegative. Using the tools of Lévy theory, it is possible
to derive moment relations as shown in the present paper for the purely spatial case [35]. This
approach to spatio-temporal modeling is expected to be very flexible and has been used with
success in growth modeling [23] (see also [22]). It will be interesting to investigate how it
performs compared to the earlier methods described in [6], [7], [8], and [14].

8.3. Statistical inference

Statistical inference for Cox processes has been studied in a number of papers, including [4],
[19], [27], [30], [32], and [43]. It remains to investigate to what degree known procedures,
based on summary statistics, likelihood, or Bayesian reasoning, can be adjusted to deal with
LCPs and LLCPs. For a stationary LCP with � = ρ1 +�2, it is easy to determine the summary
statistics F , G, and J in terms of the corresponding characteristics F2, G2, and J2 of the shot
noise component with intensity field �2. Thus,

1 − F(r) = exp(−ρ1|B(0, r)|)(1 − F2(r)),

1 − G(r) = exp(−ρ1|B(0, r)|)
(

ρ1

ρ1 + ρ2
(1 − F2(r)) + ρ2

ρ1 + ρ2
(1 − G2(r))

)
,

J (r) = ρ1

ρ1 + ρ2
+ ρ2

ρ1 + ρ2
J2(r).
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However, in general, simple expressions for G2 and J2 in terms of model parameters are not
available. Likewise, it does not seem to be possible to derive general closed-form expressions
for F , G, and J in the case of an LLCP.

In order to evaluate whether both a jump part and a Gaussian part is needed in an LLCP, we
may consider a third-order summary statistic, suggested in [33] (for stationary point processes),

z(t) = 1

π2t4

∫
‖ξ‖≤t

∫
‖ζ‖≤t

ρ(3)(ξ, ζ )

(ρ(1))3g(ξ)g(ζ )g(ξ − ζ )
dξ dζ, t > 0,

where the following abbreviated notation is used, due to the stationarity:

g(ξ1, ξ2) = g(ξ2 − ξ1),

ρ(3)(ξ1, ξ2, ξ3) = ρ(3)(ξ2 − ξ1, ξ3 − ξ1).

When computing the integrand in z(t) for an LLCP, we obtain

ρ(3)(ξ1, ξ2, ξ3)

(ρ(1))3g(ξ1, ξ2)g(ξ2, ξ3)g(ξ1, ξ3)

= E(
∏3

i=1 �J(ξi))
∏3

i=1 E(�J(ξi))

E(�J(ξ1)�J(ξ2)) E(�J(ξ2)�J(ξ3)) E(�J(ξ1)�J(ξ3))
,

where �J(ξ) = exp(
∫
R k(ξ, η)LJ(dη)) is the part of the driving intensity originating from the

pure-jump part of the Lévy basis. Thus, this characteristic of X is not influenced by the Gaussian
part of the model. In particular, z ≡ 1 for LGCPs. A nonparametric unbiased estimator of z(t)

has been derived in [33, Theorem 2].
An assessment of the full potential of the new modeling framework described in the present

paper will also require more detailed studies of inhomogeneity and practical experience with
concrete applications of the models.
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