On Pseudo-Frobenius Rings

Mohamed F. Yousif, Yiqiang Zhou and Nasr Zeyada

Abstract. It is proved here that a ring R is right pseudo-Frobenius if and only if R is a right Kasch ring such that the second right singular ideal is injective.

Throughout, rings R are associative with an identity and modules are unitary *R*-modules. We write J(M) and soc(M) for the Jacobson radical and the socle of the module *M*, respectively. For a submodule *N* of *M*, $N \leq_e M$ means that *N* is essential in *M*. The singular submodule of the module *M* is defined by $Z(M) = \{m \in M\}$ M : $\exists I_R \leq_e R_R$ such that mI = 0}. For a ring R, $Z(R_R)$ and Z(R) are called the right singular ideal and the left singular ideal of R, respectively. The second right singular ideal of R, denoted by Z_2^r , is defined by the equality $Z_2^r/Z(R_R) = Z(R_R/Z(R_R))$ and the second left singular ideal Z_2^l of R can be defined analogously. We write $J(R), S_r, S_l$ for the Jacobson radical, right socle and left socle of R, respectively. A ring R is called right pseudo-Frobenius, briefly right PF, if every faithful right R-module is a generator of the category of all right *R*-modules; and the ring *R* is called right Kasch if every simple right R-module embeds in R_R. Analogously, one defines left PF and left Kasch rings. It is a well-known result of Osofsky [6] that R is right PF if and only if R is semiperfect, right self-injective with $(S_r)_R \leq_e R_R$ if and only if R is right Kasch, right self-injective (see [1]). It is shown in [8] that a ring R is right PF if and only if $(Z_{2}^{r})_{R}$ is injective and the dual of every simple left R-module is simple. In [10], it is proved that a ring R is a two-sided PF-ring if and only if R is a two-sided Kasch ring such that $(Z_2^r)_R$ and $_R(Z_2^l)$ are both injective. However, it has been left open in [10] whether a right Kasch ring R with $(Z_2^r)_R$ injective is necessarily right PF (also see [8]). In this note, we answer this question affirmatively.

We start by proving the following result.

Theorem 1 A ring R is right PF if and only if R has a finitely generated projective, quasi-injective right R-module containing a copy of every simple right R-module.

Proof One direction is clear. Let *P* be a finitely generated projective, quasi-injective right *R*-module containing a copy of every simple right *R*-module. By [3, Theorem 14], *P* has a finitely generated essential socle. Let $\{S_1, \ldots, S_n\}$ be a complete set of representatives of the isomorphism classes of simple submodules of *P*; it is actually a complete set of representatives of the isomorphism classes of simple right

Received by the editors July 7, 2003; revised April 19, 2004.

Part of this work was carried out while the second author was spending his sabbatical leave at the University of Calgary. He gratefully acknowledges the financial support and the warm hospitality received from his host institute. The research was supported in part by NSERC of Canada, grant OGP0194196, and a grant from Ohio State University

AMS subject classification: 16D50, 16L60.

[©]Canadian Mathematical Society 2005.

R-modules since *P* contains a copy of every simple right *R*-module. Since *P* is quasiinjective, there exists a summand $Q_1 \oplus \cdots \oplus Q_n$ of P such that $S_i \leq_e Q_i$ for all i = 1, ..., n. Then, clearly Q_i is Q_j -injective for all $1 \le i, j \le n$. Since Q_i is indecomposable quasi-injective, it has a local endomorphism ring. Thus, $J(Q_i)$ is maximal and small in Q_i for each i by [5, Lemma 1.54]. Since Q_i is projective, it follows that Q_i is a projective cover of the simple module $Q_i/J(Q_i)$. Since every module has at most one projective cover up to isomorphism, we have $Q_i/J(Q_i) \cong Q_i/J(Q_i)$ if and only if $Q_i \cong Q_i$. On the other hand, $Q_i \cong Q_i$ implies clearly that $S_i \cong S_i$ and the converse holds because of [4, Corollary 2.32]. Hence $\{Q_1/J(Q_1), \ldots, Q_n/J(Q_n)\}$ is a complete set of representatives of the isomorphism classes of simple right *R*-modules. Now one concludes that every simple right R-module has a projective cover, so R is semiperfect; moreover, $\{Q_1, \ldots, Q_n\}$ is a complete set of representatives of the isomorphism classes of indecomposable projective right R-modules. Since R is semiperfect, write $R_R = e_1 R \oplus \cdots \oplus e_m R$ where each $e_i R$ is indecomposable. So, for each $i, 1 \leq i \leq m, e_i R \cong Q_k$ for some $k, 1 \leq k \leq n$. It follows that $e_i R$ is $e_i R$ -injective for all $1 \le i, j \le m$. This shows by [4, Proposition 1.17] that R_R is quasi-injective, and hence is injective. So, being right Kasch, R is right PF.

Remark 2 The proof of Theorem 1 shows that if *R* has a finitely generated projective, quasi-injective right module *P* containing a copy of every simple right *R*-module, then P_R is injective (hence a cogenerator) and is a generator. In Theorem 1, "projective" cannot be weakened to "quasi-projective". To see this, let $R = \{ \begin{pmatrix} a & x \\ 0 & a \end{pmatrix} : a \in \mathbb{Z}_2, x \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \}$ and let $P = \{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} : x \in (0) \oplus \mathbb{Z}_2 \}$. It can easily be seen that P_R is a finitely generated quasi-projective, quasi-injective module containing a copy of every simple *R*-module, but *R* is not PF. The proof of Theorem 1 also shows that a ring *R* is a right Kasch, right continuous ring if and only if *R* has a finitely generated projective, continuous right *R*-module containing a copy of every simple right *R*-module; in this case *R* is semiperfect (for the definitions of continuous modules, right continuous rings, and right CS-rings below, see [4]). We refer to [7] for the discussion of right Kasch, right continuous rings. It is a result of Gómez Pardo and Guil Asensio that every right Kasch, right CS-ring has a finitely generated essential right socle, but it is unknown whether a right Kasch right CS-ring is always semiperfect [3].

Corollary 3 Let $R_R = I \oplus K$ where I_R is injective and $soc(K_R) = 0$. If R is right Kasch then R is right PF.

Proof Clearly, I_R is a finitely generated projective, injective module containing a copy of every simple right *R*-module; so *R* is right PF by Theorem 1.

Theorem 4 If $(Z_2^r)_R$ is injective such that every simple singular right R-module embeds in $(Z_2^r)_R$, then R is semiperfect.

Proof This proof uses the same idea of the proof of Theorem 1. It follows from [3, Theorem 14] that $(Z_2^r)_R$ has a finitely generated essential socle. Then, by hypothesis, there exist simple submodules S_1, \ldots, S_n of $(Z_2^r)_R$ such that $\{S_1, \ldots, S_n\}$ is a

complete set of representatives of the isomorphism classes of simple singular right R-modules. Since $(Z_2^r)_R$ is injective, there exist submodules Q_1, \ldots, Q_n of $(Z_2^r)_R$ such that $Q_1 \oplus \cdots \oplus Q_n$ is a direct summand of $(Z_2^r)_R$ and $(S_i)_R \leq_e (Q_i)_R$ for $i = 1, \ldots, n$. Since Q_i is an indecomposable injective R-module, it has a local endomorphism ring, and since Q_i is projective, $J(Q_i)$ is maximal and small in Q_i by [5, Lemma 1.54]. Then Q_i is a projective cover of the simple module $Q_i/J(Q_i)$. Note that $Q_i \cong Q_j$ clearly implies $Q_i/J(Q_i) \cong Q_j/J(Q_j)$, and the converse also holds because every module has at most one projective cover up to isomorphism. But it is clear that $Q_i \cong Q_j$ if and only if $S_i \cong S_j$ if and only if i = j. Moreover, every $Q_i/J(Q_i)$ is singular. Thus, $\{Q_1/J(Q_1), \ldots, Q_n/J(Q_n)\}$ is a complete set of representatives of the isomorphism classes of simple singular right R-modules. Hence every simple singular right R-module has a projective cover. Since every non-singular simple right R-module is projective, we conclude that R is semiperfect.

Theorem 5 A ring R is right PF if and only if R is a right Kasch ring such that $(Z_2^r)_R$ is injective.

Proof One direction is clear. Suppose that *R* is right Kasch and $(Z_2^r)_R$ is injective. Then every simple singular right *R*-module embeds in $(Z_2^r)_R$. So it follows from Theorem 4 that *R* is semiperfect. Let $\{S_1, \ldots, S_n\}$ be a complete set of representatives of the isomorphism classes of non-singular simple right *R*-modules. Then all $(S_i)_R$ are projective. Write $R_R = Z_2^r \oplus N$. There is an epimorphism f_1 from R_R to $(S_1)_R$. By the choice of S_1 , $f_1|_N \colon N \to S_1$ is epic, so $N = X_1 \oplus N_1$ where $X_1 \cong S_1$. There is an epimorphism f_2 from R_R to $(S_2)_R$. By the choice of S_1 and S_2 , $f_2|_{N_1} \colon N_1 \to S_2$ is epic, so $N_1 = X_2 \oplus N_2$ where $X_2 \cong S_2$. Continuing this process, we have $R_R = Z_2^r \oplus X_1 \oplus \cdots \oplus X_n \oplus Y$ where $X_i \cong S_i$ for $i = 1, \ldots, n$. Let $Q = Z_2^r \oplus X_1 \oplus \cdots \oplus X_n$. Then Q_R is a finitely generated projective, quasi-injective module containing a copy of every simple right *R*-module. So *R* is right PF by Theorem 1.

Remark 6 An example is provided in [8] of a left Kasch ring R with $(Z_2^r)_R$ injective which is not right PF. However, it is still an open question whether a left Kasch, right self-injective ring is necessarily right PF (see [2]).

Corollary 7 A ring R is two-sided PF if and only if R is a right Kasch ring such that $(Z_2^r)_R$ and $_R(Z_2^l)$ are both injective.

Proof A right PF-ring must be left Kasch; so the claim follows from Theorem 5.

Corollary 8 Let $R_R = I \oplus K$ where I_R is injective and K_R is semisimple. If R is right Kasch then R is right PF.

Proof If $R_R = I \oplus K$ where I_R is injective and K_R is semisimple, then $Z_2^r \subseteq I$. So $(Z_2^r)_R$ is a direct summand of I_R since $(Z_2^r)_R$ is a closed submodule of I_R (*i.e.*, $(Z_2^r)_R$)

has no proper essential extensions within I_R). So $(Z_2^r)_R$ is injective, and hence R is right PF by Theorem 5.

The next corollary gives an answer to a question of R. Yue Chi Ming [9].

Corollary 9 If R is a right Kasch ring containing an injective maximal right ideal, then R is right PF.

References

- [1] C. Faith, *Algebra, II. Ring Theory.* Grundlehren der Mathematischen Wissenschaften 191, Springer-Verlag, Berlin, 1976.
- [2] J. L. García Hernández and J. L. Gómez Pardo, *Closed submodules of free modules over the endomorphism ring of a quasi-injective module.* Comm. Algebra **16**(1988), 115–137.
- [3] J. L. Gómez Pardo and P. A. Guil Asensio, *Torsionless modules and rings with finite essential socle*. In: Abelian groups, module theory, and topology, Lecture Notes in Pure and Appl. Math. 201, Dekker, New York, 1998, pp. 261–278,
- [4] S. H. Mohamed and B. J. Müller, *Continuous and Discrete Modules*. London Mathematical Society Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
- [5] W. K. Nicholson and M. F. Yousif, *Quasi-Frobenius Rings*. Cambridge Tracts in Mathematics 158, Cambridge University Press, Cambridge, 2003.
- [6] B. Osofsky, A generalization of quasi-Frobenius rings. J. Algebra 4(1966), 373–387.
- [7] M. F. Yousif, On continuous rings. J. Algebra 191(1997), 495–509.
- [8] M. F. Yousif and Y. Zhou, Pseudo-Frobenius rings: characterizations and questions. Comm. Algebra 31(2003), 4473–4484.
- [9] R. Yue Chi Ming, On p-injectivity, Y J-injectivity and quasi-Frobeniusean rings. Comment. Math. Univ. Carolinae 43(2002), 33–42.
- [10] Y. Zhou, Rings in which certain right ideals are direct summands of annihilators. J. Aust. Math. Soc. 73(2002), 335–346.

Department of Mathematics Ohio State University Lima, OH 45804 U.S.A.

and

The American University in Cairo, Egypt e-mail: yousif.1@osu.edu

Department of Mathematics Faculty of Science Cairo University Giza Egypt Department of Mathematics and Statistics Memorial University of Newfoundland St.John's, Newfoundland A1C 5S7 e-mail: zhou@math.mun.ca

320