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Abstract

This short note investigates convergence of adaptive Markov chain Monte Carlo
algorithms, i.e. algorithms which modify the Markov chain update probabilities on the
fly. We focus on the containment condition introduced Roberts and Rosenthal (2007).
We show that if the containment condition is not satisfied, then the algorithm will
perform very poorly. Specifically, with positive probability, the adaptive algorithm will
be asymptotically less efficient then any nonadaptive ergodic MCMC algorithm. We call
such algorithms AdapFail, and conclude that they should not be used.
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1. Introduction

Markov chain Monte Carlo (MCMC) algorithms are used to sample from complicated
probability distributions. They proceed by simulating an ergodic Markov chain with transition
kernel P and stationary distribution of interest, say π . Unlike in the case of independent and
identically distributed (i.i.d.) Monte Carlo algorithms, the MCMC output

X0, X1, . . . , Xn, . . .

is a correlated sample. Nevertheless, if the Markov chain is ergodic (i.e. converges in distribution
to π ), then the asymptotic validity is retained under appropriate conditions (see, e.g. [12], [17]).
In particular, for large enough M and the subsampled random variables

XM, X2M, . . . , XnM, . . . (1.1)

are approximately independent draws from the target distribution π . For the MCMC-based
statistical inference to be reliable, it is essential to design algorithms that mix quickly, i.e. for
which the asymptotic i.i.d. property in (1.1) holds with reasonably small M . (Note, however,
that for estimation purposes, subsampling is desirable only if the cost of using the sample is
substantial compared to the cost of generating samples, otherwise the entire sample should be
used; see [5, Section 3.6].)

In a typical MCMC setting, the algorithm is determined by a Markov chain transition kernel
Pθ , where θ ∈ � is a high dimensional tuning parameter, e.g. the covariance matrix of a
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random walk Metropolis proposal [21], [16], or the vector of random scan Gibbs sampler
selection probabilities [11]. Usually the parameter space � is large, and for ‘good’ values of
θ , the iterates P n

θ will converge quickly to π as n increases, resulting in small M in (1.1).
However, such ‘good’values are often very difficult to find, and for most values of θ the iterates
P n

θ will converge arbitrary slowly.
Since a good θ is difficult to find manually, the idea of adaptive MCMC was introduced [6],

[9] to enable the algorithm to learn ‘on the fly’, and redesign the transition kernel during the
simulation as additional information about π becomes available. Thus, an adaptive MCMC
algorithm would apply the transition kernel Pθn for obtaining Xn from Xn−1, where the choice
of the tuning parameter θn at the nth iteration is itself a random variable which may depend
on the whole history X0, X1, . . . , Xn−1 and on θn−1. When using adaptive MCMC, we hope
that the adaptive parameter θn will settle on ‘good’ values, and that the adaptive algorithm will
inherit the corresponding good convergence properties.

Unfortunately, since adaptive algorithms violate the Markovian property they are inherently
difficult to analyse theoretically. Whereas the interest in adaptive MCMC is fuelled by some very
successful implementations for challenging problems (see, for instance, [1], [7], [8], [14],[19],
and [22]), many seemingly reasonable adaptive MCMC algorithms are provably transient or
converge to a wrong probability distribution (see, for instance, [2], [3], [10]), and [11]. Thus,
the theoretical foundations of adaptive MCMC are a very important topic which is still under
active development.

One general and relatively simple approach to analysing adaptive MCMC algorithms was
presented in [18], which showed that the two properties of diminishing adaptation and con-
tainment were sufficient to guarantee that an adaptive MCMC algorithm would converge
asymptotically to the correct target distribution (at some rate). While the diminishing adaptation
property is fairly standard and can be easily controlled by the user, the containment property is
more subtle and can be challenging to verify (see, for example, [3]). This leads to the question
of how important or useful the containment condition actually is, especially since it is known
(see, for example, [4]) that containment is not a necessary condition for the ergodicity of an
adaptive MCMC algorithm.

The purpose of this short note is to show that if containment does not hold, then the
adaptive algorithm will perform very poorly. Specifically, with positive probability the adaptive
algorithm will be asymptotically less efficient then any nonadaptive MCMC algorithm. Here,
efficiency is understood as the total variation distance convergence time (see [13] for a different
concept of efficiency in terms of asymptotic variance in the central limit theorem). In effect, the
approximate i.i.d. property in (1.1) will be violated for any finite M . We call such algorithms
AdapFail, and conclude that they should not be used. In particular, we argue that the containment
condition is actually a reasonable condition to impose on adaptive MCMC algorithms, since
without it they perform so poorly as to be unusable.

This paper is structured as follows. In Section 2 we define and characterise the class of
AdapFail algorithms. In Section 3 we relate theAdapFail property to the containment condition.
In Section 4 we present a very simple example to illustrate our results.

2. The class of AdapFail algorithms

We first introduce necessary notation (see, for example, [12], [17], and [18] for a more
complete development related to Markov chains and adaptive MCMC). Let Pθ , parametrized
by θ ∈ �, be a transition kernel of a Harris ergodic Markov chain on (X, F ) with stationary
distribution π . Thus, for all x ∈ X and θ ∈ � we have limn→∞ ‖P n

θ (x, ·)−π(·)‖ = 0, where
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‖ν(·) − μ(·)‖ := supA∈F |ν(A) − μ(A)| is the usual total variation norm. We shall also use
the ‘ε convergence time function’ Mε : X × � → N defined as

Mε(x, θ) := inf{n ≥ 1 : ‖P n
θ (x, ·) − π(·)‖ ≤ ε}.

Let {(Xn, θn)}∞n=0 be a corresponding adaptive MCMC algorithm, where Xn is updated from
Xn−1 using Pθn for some �-valued random variable θn (which might depend on the chain’s
history and on θn−1). For the adaptive algorithm, denote the marginal distribution at time n by

A(n)((x, θ), B) := P(Xn ∈ B | X0 = x, θ0 = θ),

and say that the algorithm is ergodic for starting values x and θ if

lim
n→∞ ‖A(n)((x, θ), ·) − π(·)‖ = 0.

Similarly, let the ‘ε convergence time function’ for the adaptive case be

MA
ε (x, θ) := inf{n ≥ 1 : ‖A(n)((x, θ), ·) − π(·)‖ ≤ ε}.

In both cases the function Mε(x, θ) has the same interpretation: it is the number of iterations
that the algorithm must take to be within ε of stationarity.

We are now ready to define the class of AdapFail algorithms.

Definition 2.1. Let {(Xn, θn)}∞n=0 evolve according to the dynamics of an adaptive MCMC
algorithm A, with starting values X0 = x∗ and θ0 = θ∗. We say that A ∈ AdapFail if there is
εAF > 0 such that

lim
M→∞ lim sup

n→∞
P(MA

εAF
(Xn, θn) > M | X0 = x∗, θ0 = θ∗) =: δAF > 0. (2.1)

Remark 2.1. Intuitively, (2.1) says that the convergence times of the adaptive algorithm will
be greater than any fixed value M , i.e. that the algorithm will converge arbitrarily slowly and,
thus, perform so poorly as to be unusable.

Remark 2.2. In our experience, the inner limit in (2.1) will typically exist, so that lim supn→∞
can be replaced by limn→∞ there (and similarly in the related expressions below). However,
without assuming specific details about the type of adaptation used, we are unable to make
conclusive statements about what conditions guarantee this.

Remark 2.3. For the probabilities in (2.1) to make sense, the function MA
ε needs to be mea-

surable. This follows from [15, Appendix]. Moreover, if the inner limit in (2.1) is denoted
as δAF (M) then this sequence is positive and nonincreasing as a function of M , and will thus
converge to δAF as M → ∞.

Remark 2.4. To obtain the approximate i.i.d. property of the {Xn} in (1.1), we want the
distribution of X(n+1)M conditionally on the value of XnM to be within ε of the stationary
measure, i.e.

‖L(X(n+1)M | XnM) − π‖ ≤ ε. (2.2)

Being an AdapFail algorithm means that for any fixed 0 < ε ≤ εAF and some fixed δAF > 0,
we are infinitely often in a regime where (2.2) is violated for any finite M , with probability at
least δAF , further illustrating its poor performance.
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The following two results shed additional light on the AdapFail class.

Proposition 2.1. Any ergodic nonadaptive MCMC algorithm Pθ is not in AdapFail.

Proof. For a nonadaptive chain, the quantity MA
ε in (2.1) becomes Mε and θ∗ = θ . For

arbitrary ε > 0 and δ > 0, we shall show that δAF < 2δ, from which it follows that
δAF = 0. Indeed, first find n0 such that ‖P n0

θ (x∗, ·) − π(·)‖ < δ, and then find M0 such
that π({x : Mε(x, θ) ≤ M0}) > 1 − δ. Then for every n ≥ n0 and every M ≥ M0, we can
write

P(Mε(Xn, θ) > M | X0 = x∗) ≤ δ + π({x : Mε(x, θ) > M}) < 2δ.

The result follows.

Theorem 2.1. For an algorithm A the following conditions are equivalent.

(i) It hold that A ∈ AdapFail.

(ii) There are ε > 0 and δ > 0 such that for all x ∈ X, θ ∈ �, and K > 0,

lim sup
n→∞

P(MA
ε (Xn, θn) > KMε(x, θ) | X0 = x∗, θ0 = θ∗) ≥ δ.

(iii) There are ε > 0 and δ > 0 such that for all θ ∈ �, K > 0, and y∗ ∈ X,

lim sup
n→∞

P(MA
ε (Xn, θn) > KMε(Yn, θ) | X0 = x∗, θ0 = θ∗, Y0 = y∗) ≥ δ,

where {Yn} is a Markov chain which follows the dynamics Pθ and is independent of the
adaptive process {Xn}.

Moreover, in (ii) and (iii) we can take δ = δAF .

Proof. It is immediate (i) implies (ii) when δ = δAF and ε = εAF . To verify (ii) implies
(iii), fix δ∗ > 0 and using monotonicity of the total variation distance (see [17]) take n0 such
that ‖P n

θ (y∗, ·) − π(·)‖ ≤ δ∗ for every n > n0. Next, find M0 such that π(XM0) > 1 − δ∗,
where XM0 = {x : MεAF

(x, θ) ≤ M0}. Then for fixed θ , K , and y∗, compute

P(MA
εAF

(Xn, θn) > KMεAF
(Yn, θ) | X0 = x∗, θ0 = θ∗, Y0 = y∗)

=
∫

X
P(MA

εAF
(Xn, θn) > KMεAF

(x, θ) | X0 = x∗, θ0 = θ∗)P n
θ (y∗, dx)

≥
∫

X
P(MA

εAF
(Xn, θn) > KMεAF

(x, θ) | X0 = x∗, θ0 = θ∗)π(dx) − δ∗

≥
∫

XM0

P(MA
εAF

(Xn, θn) > KM0 | X0 = x∗, θ0 = θ∗)π(dx) − δ∗

≥ (1 − δ∗)P(MA
εAF

(Xn, θn) > KM0 | X0 = x∗, θ0 = θ∗) − δ∗.

Consequently,

lim sup
n→∞

P(MA
εAF

(Xn, θn) > KMεAF
(Yn, θ) | X0 = x∗, θ0 = θ∗, Y0 = y∗)

≥ (1 − δ∗) lim sup
n→∞

P(MA
εAF

(Xn, θn) > KM0 | X0 = x∗, θ0 = θ∗) − δ∗.
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Since δ∗ was arbitrary, (iii) follows from (ii) with K = KM0 and δ = δAF . To verify that (iii)
implies (i), note that MεAF

(Yn, θ) ≥ 1, so (iii) gives

lim sup
n→∞

P(MA
εAF

(Xn, θn) > K | X0 = x∗, θ0 = θ∗) > δAF for every K > 0.

The result follows by taking K → ∞.

Remark 2.5. Condition (iii) has the interpretation that if we run the adaptive algorithm {Xn} and
a nonadaptive {Yn} independently on two computers side by side, and monitor the ε convergence
time of both algorithms, then as the simulation progresses, the ε convergence time of the adaptive
algorithm will infinitely often be bigger by an arbitrarily large factor K , with probability at
least δ, i.e. {Xn} will be arbitrarily worse than {Yn} (no matter how bad the tuning parameters
θ and starting point Y0 for {Yn} are).

3. Relation to the containment condition

The following condition was introduced in [18] as a tool to analyse adaptive MCMC
algorithms.

Definition 3.1. (Containment condition.) The algorithm A with starting values X0 = x∗ and
θ0 = θ∗ satisfies containment if, for all ε > 0, the sequence {Mε(Xn, θn)}∞n=0 is bounded in
probability.

It is augmented by the usual requirement of diminishing adaptation.

Definition 3.2. (Diminishing adaptation.) The algorithm A with starting values X0 = x∗ and
θ0 = θ∗ satisfies diminishing adaptation, if lim Dn = 0 as n → ∞ in probability, where

Dn := sup
x∈X

‖Pθn+1(x, ·) − Pθn(x, ·)‖.

Containment has been extensively studied in [3] and [18] and verified for large classes of
adaptive MCMC samplers (compare also [11] and [19]). Together with diminishing adaptation,
it guarantees ergodicity. As illustrated in the next section, it is not a necessary condition.
However, it still turns out to be an appropriate condition to require, due to the following result.

Theorem 3.1. Assume the diminishing adaptation is satisfied. Then the containment condition
does not hold for A if and only if A ∈ AdapFail.

Proof. The proof utilises a construction similar to the coupling proof of [18, Theorem 1]
(see also [20]). First, by the diminishing adaptation property, for any fixed δc > 0, εc > 0, and
integer M ≥ 1, we can choose n large enough such that

P

( M⋃
k=1

{
Dn+k >

εc

2M2

})
≤ δc

2
.
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Now, on the set
⋂M

k=1{Dn+k ≤ (εc/2M2)} for transition kernels Pθn, Pθn+1 , . . . , Pθn+M
, by

the triangle inequality we have

sup
x∈X

∥∥∥∥
( M∏

k=0

Pθn+k

)
(x, ·) − P M

θn
(x, ·)

∥∥∥∥ ≤
M∑

k=1

sup
x∈X

∥∥∥∥
(( k+1∏

i=0

Pθn+i

)
P M−k−1

θn

)
(x, ·)

−
(( k∏

i=0

Pθn+i

)
P M−k

θn

)
(x, ·)

∥∥∥∥

≤
M∑

k=1

(k + 1)
εc

2M2

= M + 1

4M
εc

<
εc

2
. (3.1)

Consequently, we conclude that for large enough n,

P

(
LHS of (3.1) <

εc

2

)
> 1 − δc

2
. (3.2)

For the ‘only if’part of the theorem, note that if containment does not hold, then for the adaptive
algorithm in question, there is εc > 0 and δc > 0 such that for all M, n0, there exists n > n0
such that

P(Mεc(Xn, θn) > M) > δc. (3.3)

By (3.2), we obtain for all M, n0, there exists n > n0 such that

P(MA
εc/2(Xn, θn) > M) >

δc

2
,

which implies the AdapFail condition with εAF ≥ εc/2 and δAF ≥ δc/2.
The proof for the ‘if’ part of the theorem is essentially the same. From (2.1) and (3.2), we

obtain (3.3) with εc ≥ εAF /2 and δc ≥ δAF /2.

Remark 3.1. Without assuming diminishing adaptation, Theorem 3.1 does not hold. For
example, if P is a fixed ergodic Markov chain, and I is the identity kernel (which does not move
at all), then the adaptive scheme which simply alternates between P and I converges well (at
half-speed compared to P ) and is not in AdapFail. However, this scheme violates containment,
since if θ1 is the adaptive parameter corresponding to I then Mε(x, θ1) = ∞.

4. A very simple example

In this section we analyse a very simple example of an adaptive algorithm to illustrate our
results about AdapFail.

Example 4.1. Consider the toy example from [4] with state space X = {0, 1} and stationary
distribution π = ( 1

2 , 1
2 ), with Markov transition kernels

Pθ =
(

1 − θ θ

θ 1 − θ

)
.

Suppose the nth iteration of the Markov chain uses kernel Pθn (independent of the chain’s past
history), where θn > 0 and

∑
n θn = ∞ but θn → 0 (e.g. θn = 1/n). Since the θn converge,
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clearly diminishing adaptation is satisfied. On the other hand, as θ → 0, Mε(x, θ) → ∞.
Hence, this adaptive algorithm does not satisfy containment. So, by the above theorems, this
algorithm converges more slowly than any fixed nonadaptive algorithm. But since

∑
n θn = ∞,

this algorithm is still ergodic [4]. We thus have a (very simple) example of an adaptive algorithm
which is ergodic, but is nevertheless in AdapFail and has very poor convergence properties. (A
similar result presents itself if instead θn → 1 with

∑
n(1 − θn) = ∞.)
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[11] Łatuszyński, K., Roberts, G. O. and Rosenthal, J. S. (2013). Adaptive Gibbs samplers and related MCMC

methods. Ann. Appl. Prob. 23, 66–98.
[12] Meyn, S. and Tweedie, R. L. (2009). Markov Chains and Stochastic Stability, 2nd edn. Cambridge University

Press.
[13] Mira, A. and Geyer, C. J. (1999). Ordering Monte Carlo Markov chains. Tech. Rep. No. 632, School of

Statistics, U. of Minnesota, April 1999. Available at: http://eco.uninsubria.it/webdocenti/amira/papers.html
[14] Richardson, S., Bottolo, L. and Rosenthal, J. S. (2011). Bayesian models for sparse regression analysis

of high dimensional data. In Bayesian Statistics 9, Oxford University Press, pp. 539–568.
[15] Roberts, G. O. and Rosenthal, J. S. (1997). Geometric ergodicity and hybrid Markov chains. Electron.

Commun. Prob. 2, 13–25.
[16] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis–Hastings algorithms.

Statist. Sci. 16, 351–367.
[17] Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algorithms.

Prob. Surveys 1, 20–71.
[18] Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo

algorithms. J. Appl. Prob. 44, 458–475.
[19] Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. J. Comput. Graphical Statist. 18,

349–367.
[20] Roberts, G. O. and Rosenthal, J. S. (2013). A note on formal constructions of sequential conditional

couplings. Statist. Prob. Lett. 83, 2073–2076.
[21] Roberts, G. O., Gelman, A. and Gilks, W. R. (1997). Weak convergence and optimal scaling of random walk

Metropolis algorithms. Ann. Appl. Prob. 7, 110–120.
[22] Solonen, A. et al. (2012). Efficient MCMC for climate model parameter estimation: parallel adaptive chains

and early rejection. Bayesian Anal. 7, 715–736.

https://doi.org/10.1239/jap/1421763335 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1421763335

	1 Introduction
	2 The class of AdapFail algorithms
	3 Relation to the containment condition
	4 A very simple example
	Acknowledgements
	References

