
5 Toward Modeling of Metabolic
Networks

In research on bacteria metabolism we have indeed much the same position as an
observer trying to gain an idea of the life of a household by careful scrutiny of the
persons and material arriving or leaving the house; we keep accurate records of the
foods and commodities left at the door and patiently examine the contents of the
dust-bin and endeavour to deduce from such data the events occurring within the
closed doors.

(Marjorie Stephenson, 1930)

The early development of cybernetic models (Kompala et al., 1984, 1986; Ramkrishna,
1983) began with viewing metabolism with gross networks. The more detailed models
that were discussed in Chapter 2 were based on ad hoc formulations without a general
prescription and hence could not be readily extended to larger networks. With the advent
of metabolic engineering in the 1990s, modeling of large metabolic networks became
a problem of vigorous engagement. Researchers sought to make genetic changes in
microbes to alter their metabolism to produce specific products of interest. This called
for a comprehensive understanding of pathways and how their regulatory mechanisms
navigated the flow of metabolites through a maze of reactive paths. Clearly, understand-
ing the complexity of such regulated flow is a forbidding task and, not surprisingly,
modelers have resorted to various simplifying approaches, some with stated justifica-
tions and some without them. In this quest, we state forthwith the need for a dynamic
approach without which there would be no way to introduce the role of productivity, the
quantity of prime interest in any engineering endeavor.

Extending Straight’s analysis (1991) of a metabolic network by parsing it into path-
way units with regulation based on local goals ran into difficulties as such goals could
not relate unambiguously to an overall (global) metabolic goal. The resolution of this
difficulty was eventually to be found in the use of network decompositions that have
come to be known as Metabolic Pathway Analysis. The reader, interested in the general
background of this field, has available a spate of publications in the literature (Clarke,
1988; Schilling et al., 2000; Schuster and Hilgetag, 1994; Schuster et al., 2000, 2002;
Trinh et al., 2009). Among many different concepts of metabolic pathway, our focus
here is on an elementary (flux) mode (EM). While mathematically precise definitions
exist, we will convey here its conceptual essence without distraction. An EM may be
understood as a minimal sequence of reactions beginning with the uptake of a substrate
from outside the cell followed by a sequence of intracellular reactions and terminating
in an extracellular product with all intracellular intermediates at steady state. The term
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“minimal” implies that if any reaction in the sequence is excluded no flux can occur
through the sequence. The foregoing definition of an EM is somewhat restrictive in that
it is not essential that the reaction sequence must necessarily involve the uptake of a
substrate or excretion of a product. However, the discussion of cybernetic models in
this chapter is better served by avoiding the nuances associated with the many different
characterizations in the literature of EMs and their offshoots which are motivated by
various considerations of pathway analysis that can be postponed for the present. Note
that because of an EM being a sequential pathway, steady state implies that all the fluxes
through it are fully determined up to a multiplicative constant. Thus the uptake rate
of the substrate through a specific EM determines all of the fluxes through that path-
way, thereby providing a quantitative characterization of the mode as a mathematical
vector.

Metabolism involves the interplay of intracellular and extracellular variables. The
intracellular variables are generally assumed to be under “quasi” steady state, as
described by the following equation

dm
dt

= Smr = 0 (5.1)

where m is the specific concentration vector of intracellular species, the term “specific”
connoting amount per unit biomass; r is the metabolic flux vector which includes
exchange fluxes that feature extracellular species, and intracellular fluxes involving only
intracellular metabolites. It is well to remember that Eq. (5.1) has been stripped of the
“dilution” term due to growth as it is usually negligible. The steady state theories seek
to describe metabolism in terms of the metabolic flux vector r so that its prime pursuit
is the solution of the linear, homogeneous equations (5.1). The extracellular fluxes
are generally obtainable by temporal measurements of the (well-stirred) extracellular
environment. However, the deficit relating to the considerably smaller number of
equations than unknowns in r remains unresolved at this stage. The different theories
to overcome this issue will be dealt with in an upcoming chapter. For the present, we
address issues toward the extension of cybernetic models to metabolic networks.

The matrix Sm contains stoichiometric coefficients of all intracellular reaction species
(metabolites). Thus Sm,ij, the ijth coefficient of Sm, represents the stoichiometric
coefficient of the ith metabolite in the jth reaction. For a metabolic network, one
encounters a large number of rows and columns in Sm. Since the reaction rates are
intrinsic, the irreversible reactions form nonnegative components of the rate vector r
while the components from reversible reactions can be positive or negative. Eq. (5.1)
shows that for any solution vector r, the vector αr is also a solution for any positive
α as the distribution of signs among the reaction components is unaffected. Thus Eq.
(5.1) satisfies the mathematical definition of a cone. EMs are a superset of the convex
basis of the cone. Thus every convex combination of such a set of EMs is a solution to
Eq. (5.1).

The cybernetic approach to a metabolic network aims to combine EMs in such a way
that the defined metabolic goal such as maximizing growth rate or uptake of substrate is
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accomplished. This metabolic goal may be referred to as the organism’s global goal. In
addition, local goals applicable to the control of individual reactions in each EM will be
employed toward reinforcing the global goal. Identification of the set of EMs is therefore
a requirement for the implementation of such a model framework. The computation of
EMs has been discussed at length by Gagneur and Klamt (2004). The number of EMs
rises precipitously for large networks. Thus genome-scale networks can produce more
than millions of EMs.

We will present in the following section the development of the cybernetic framework
for a general metabolic network (Young, 2005; Young et al., 2008) followed by its
application to anaerobic growth of E. coli.

5.1 Cybernetic Modeling of Metabolic Networks

Since the optimal choice for meeting the metabolic goal is by distributing substrate
uptake among different EMs, we begin with focusing on control of a single EM so as
to maximize its throughput (Young et al., 2008). Toward this end, Young (2005) defines
the concept of “extent of advancement” through an EM, so that maximization of its
throughput is accomplished through an optimal control problem maximizing the extent
of advancement. A further global control is imposed by combining local and global
cybernetic variables.

5.1.1 Model Formulation

Recall the state variable vector for metabolism y = [xT, eT, c]T introduced in Section
4.1, where x = [sT, mT]T represents the concentration vector of extracellular metabo-
lites (s) and specific concentration vector of intracellular metabolites (m), e is the vector
of enzyme levels, and c is the biomass concentration. The components of e also represent
specific concentrations. The mass balance equations are written as

ds
dt

= Ssrc (5.2)

dm
dt

= Smr − μm (5.3)

de
dt

= α + diag(u)rE − diag(β)e − μe (5.4)

dc

dt
= μc (5.5)

where r denotes the fully regulated reaction rate diag(v)r̂, Ss and Sm represent the rows
of the stoichiometric matrix S corresponding to x and m, respectively. Following earlier
notation, diag(vector) represents a diagonal matrix with the components of the vector
along its diagonal. The cybernetic variables u and v are, as on all previous occasions,
concerned with the regulation of enzyme synthesis and enzyme activity respectively.
The specific growth rate μ can be expressed as
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μ = hTSmr (5.6)

The vector h in Eq. (5.6) has as components the conversion factors required to express
each metabolite concentration as a weight fraction of biomass. The kinetic expressions
of partially regulated reaction rate for components of r̂ and rE are given by

r̂j = kjej

∏
i∈I−( j)

xi

Kij + xi
(5.7)

rE,j = kE, jb
∏

i∈I−(j)

xi

Kij + xi
(5.8)

where I−(j) is the set of metabolite indices associated with the substrates of the jth

reaction, i.e., I−(j) = {i : Sij < 0}. The parameter b appearing in Eq. (5.8) denotes
the fraction of biomass ascribed to the enzyme synthesis machinery. It represents the
specific concentration of a “lumped” biomass component B including DNA, RNA, pro-
tein, lipid, and other core biomass constituents. A balance equation for b will also be a
feature of the model in a manner akin to that for the resource variable R used by Baloo
and Ramkrishna (1991a).

Cybernetic Laws
The cybernetic laws remain to be incorporated in the model for which, per the discussion
at the beginning of this chapter, the EMs must be identified. This identification would
require specification of the metabolic network. For the development of the model frame-
work, however, we may grant that the set of EMs has been determined without having
to summon a specific network. The relative flux pattern for the kth EM may be denoted
as zk. As some of the components of zk may be zero (since reactions not included in the
EM would have flux zero), it is convenient to define a set P(zk) as the “support” of zk

which will represent reactions in the mode with non-zero flux. The EM matrix Z will
possess the vectors zk as its columns. Clearly, the matrix Z will be determined entirely
by the network stoichiometry.

Young’s (2005) control strategy for metabolic regulation first seeks at each instant
the optimal distribution of substrate among the various EMs based on their capacity to
contribute to the global metabolic goal. This goal was chosen to be the maximization
of biomass or a part of it essential for survival such as the component B. The asso-
ciated cybernetic variables were denoted u′ for enzyme synthesis and v′ for enzyme
activation. Second, the resources made available to any EM were shared in such a way
as to prevent the possibility of any reaction throttling the expected flux throughput
because of a diminished level or activity of the enzyme catalyzing that reaction. The
cybernetic variables governing this control of a specific EM are denoted u′′ and v′′.
Thus the overall cybernetic variables u and v, appearing in Eqs. (5.2)–(5.5) may be
written as

u = U′′u′ (5.9)
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where U′′ is a matrix which has along its rows the cybernetic variables u′′
k with k

representing the kthmode.

v = V′′v′

‖ V′′v′ ‖∞
(5.10)

Eq. (5.10) assures us that ‖ v ‖∞= 1 as required. Further, it implies that the cyber-
netic variables v are a nonnegative linear combination of the local v′′ control vectors.
Thus the resulting (fully regulated) flux distribution is a convex combination of the
locally optimized flux vectors. It must be borne in mind here that at any instant the
actual fluxes in an EM may not be at steady state and that the targeted role of the
cybernetic variables u′′ and v′′ is to facilitate a quick approach to steady state. How
this is to be accomplished will be the domain of the optimal control problem to be
formulated for both sets of cybernetic variables (u′, v′) and (u′′, v′′) which will be
addressed next.

Global Control: For a specific metabolic goal, the regulatory machinery is viewed to
select, at each instant t, pathway options (EMs) based on the current metabolic state and
availability of nutrients in the environment.

As indicated earlier, we let u′ and v′ be the global cybernetic variables which control
the enzyme induction and activation of all the EMs. Thus u′

k is the fraction of transcrip-
tional resources allocated to synthesize all enzymes in the kth EM, while v′

k controls the
activities of these enzymes.

Toward computing the global cybernetic variables u′ and v′, we construct a surrogate
dynamical system model

dy
dt

= F(y, u′, v′) (5.11)

by replacing the reaction term r on the right hand sides of Eqs. (5.2) and (5.3) with
Zdiag(v′)q. Eq. (5.11) is to be noted for the replacement of the cybernetic variable v by
the new notation v′ intended for this context and the metabolic vector r̂ by a vector q
whose kth component qk represents the “composite” flux of the kth EM. This composite
flux is meant to represent the contribution of the entire kth EM to the global goal of the
organism. Young et al. (2008) modeled this as the harmonic mean of (r̂jv′′

j /zjk)∀j ∈ P(zk)

by which is meant

qk(r̂k, v′′) = |P(zk) |∑
j∈P(zk)

(zjk/r̂jv′′
j )

(5.12)

where |P(zk)| represents the cardinality of the set P(zk), i.e., the number of non-zero
fluxes in the kth EM. The ratio r̂jv′′

j /zjk represents the involvement of the jth reaction in

the kth mode; we view this reaction as being subject to local control through cybernetic
variables in the vector v′′, which appears in the argument of qk besides r̂k meant to rep-
resent the restriction of r̂ to the kth mode. We will pursue this further but for the present
return to the consideration of v′

k, the control on the entire kth EM relative to other EMs.
Since this is contingent on the realization of the global metabolic objective, we will
evaluate the returns-on-investment from the different EMs by application of cybernetic
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laws derived in the previous chapter. Denoting the metabolic objective function by ψ ′(y)

and following the development in the previous chapter we may write

p = BT∇yψ
′ (5.13)

where the matrix B ≡ ∇v′F represents the effect of control changes made to the EMs on
the system dynamics. The global cybernetic variables u′ and v′ are obtained as (Young,
2005; Young and Ramkrishna, 2007)

u′ = p+

‖ p+ ‖1
(5.14)

v′ = p+

‖ p+ ‖∞
(5.15)

where the elements of p+ are given by

p+
k = max(pk, 0) (5.16)

Next we attend to the local cybernetic variables that are concerned with local control in
the EM.

Local Control: This control strategy aims to reinforce the flux throughput across modes
preferred by the global control system because of high performance for the global
objective. Thus it circumvents problems encountered with extending Straight’s approach
to networks by preventing flux-throttling bottlenecks due to low enzyme levels and
activities anywhere in the EM. For application of the cybernetic laws we return to the
metabolic model restricted to the reactions in the EM. Thus we have

dyk

dt
= f(yk, u′′, v′′) (5.17)

The right hand side of Eq. (5.17) is different from the right hand side of Eq. (5.11)
because the former has (i) the local cybernetic variables and (ii) the reactions other than
those in the EM are excluded, which is also reinforced by the subscript k on y. This
model is augmented by a differential equation for the rate of change in the extent of
advancement defined by

dξk

dt
= qk(r̂k, v′′) (5.18)

which is coupled to Eq. (5.17) without reverse coupling. The cybernetic variables u′′

and v′′ have not been affixed with the subscript k as the process is only just afoot to
identify them. Let the objective function to be maximized for the kth mode be denoted
by ψ ′′(yk, ξk). Following the development in the previous chapter for the v-variables,
we can obtain the return-on-investment for the kth mode as.

pk = BT
k eAT

k �t(∇yψ
′′) (5.19)

where Ak ≡ ∇yk
f, and Bk ≡ ∇v′′ f, distinct from the same symbol used in Eq. (5.11) for

global control, can be determined from linearization of the right hand side of Eq. (5.17).
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The linearization is performed about (y(t), u′′o, v′′o). The reference control (u′′o, v′′o)
are chosen so that there is no regulation. Thus

u′′
i

o =
⎧⎨⎩

1

|P(zk|) , if i ∈ P(zk)

0, otherwise
(5.20)

v′′
i

o =
{

1, if i ∈ P(zk)

0, otherwise
(5.21)

Young (2005) observes that the foregoing reference choice ensures that the computed
cybernetic variables u′′

k and v′′
k (the suffix k has been added as they are associated

with the control of the kth EM) are not unduly biased by the reference inputs. If we
set the local goal as maximum advancement of flux through the kth mode in time 	t,
then we may have ψ ′′ = ξk, so that ∇yψ

′′ = [0, 0, ..., 0, 1]T ≡ 1T. The cybernetic
variables are obtained from the linearized version of the right hand side of Eq. (5.18).
The process, after some extended algebra available in Young (2005), will precisely
identify the returns-on-investment vector p+

k in the following expressions for the local
cybernetic variables.

u′′
k = p+

k

‖ p+
k ‖1

, v′′
k = p+

k

‖ p+
k ‖∞

(5.22)

Young et al. (2008) consider two policies, (i) the temperate policy with �t > 0 and
(ii) the greedy policy implying �t = 0. We discuss two applications. The first is a
simple linear pathway and the second to anaerobic growth of E. coli using its central
carbon metabolism. For the case of �t > 0, the matrix exponential was evaluated using
the Padé approximation

eA	t ≈ (I − 1

2
A	t)−1(I + 1

2
A	t) (5.23)

The time interval 	t for the temperate policy was chosen by Young (2005) as 1/ρ(A)

where ρ(A) is the logarithmic norm of A (Ström, 1975; Young and Ramkrishna, 2007).

5.1.2 Modeling of a Simple Linear Pathway

Although our undertaking in this chapter was to apply cybernetic models to metabolic
networks, it is useful to begin with a simple linear pathway to show how the methodol-
ogy in this chapter provides a resolution of the difficulties behind the extension of the
pathway unit approach to large networks. Clearly the linear pathway in Figure 5.1 has
only one EM and has no room for a global objective.

The intracellular component M is expected to be low in amount relative to B. The
model equations are readily written as follows

ds

dt
= −v1r̂1c (5.24)

dm

dt
= v1r̂1 − v2r̂2 − μm (5.25)

https://doi.org/10.1017/9780511731969.006 Published online by Cambridge University Press

https://doi.org/10.1017/9780511731969.006


5.1 Cybernetic Modeling of Metabolic Networks 93

Table 5.1 Model parameters for linear pathway of
Figure 5.1. Reproduced from Young et al. (2008), with
permission, Copyright © 2008 Wiley Periodicals, Inc.

i ki Ki kE,i(h−1) βi(h−1) ei(0)

1 5 1g/L 1 0.05 0.1
2 1 10−3g/g 1 0.05 0.1

Figure 5.1 A simple linear pathway for cybernetic control. M and B are intracellular. B represents
the core biomass component. Reproduced from Young et al. (2008), with permission, Copyright
© 2008 Wiley Periodicals, Inc.

db

dt
= v2r̂2 − μb (5.26)

de1

dt
= rE,1u1 − (β1 + μ)e1 (5.27)

de2

dt
= rE,2u2 − (β2 + μ)e2 (5.28)

dc

dt
= μc (5.29)

with kinetics as given below

r̂1 = k1e1
s

(K1 + s)
, r̂2 = k2e2

m

(K2 + m)
(5.30)

rE,1 = kE,1b
s

(K2 + s)
, rE,2 = kE,2b

m

(K2 + m)
(5.31)

The growth rate μ is the net expansion of the biophase given by

μ = v1r̂1 (5.32)

The model parameters chosen by Young and Ramkrishna (2007) and Young et al. (2008)
are presented in Table 5.1.

Simulations were reported for initial conditions s(0) = 5g/L, m(0) = 1 × 10−3g/g,
b(0) = 0.999g/g, c(0) = 0.01g/L for four different model choices. We consider four
different control policies for comparison. The first two are after Straight and Ramkrishna
(1994a,b) that will be referred to as SR-1 and SR-2, while the remaining two are due to
Young and Ramkrishna denoted YR-1 (based on the temperate policy) and YR-2 (based
on the greedy policy). SR-1 uses the cybernetic variables

u = r̂
r̂1 + r̂2

, v = r̂
max(r̂1, r̂2)

(5.33)

the matching law for enzyme synthesis and the proportional law for enzyme activation.
These laws arise from maximizing the sum of the amounts of M and B. SR-2 uses the
alternative set of cybernetic variables
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Figure 5.2 Comparison of prediction of a simple linear pathway of Section 5.1.2 by models (a)
SR-1 (—) and SR-2 (– – –) and (b) by YR-1 (—) and YR-2 (– – –). Reproduced from Young
et al. (2008), with permission, Copyright © 2008 Wiley Periodicals, Inc.

u = p
p1 + p2

,
p

max(p1, p2)
(5.34)

where the components of p are given by p1 = r̂1/m and p2 = r̂2/b, which arise
from maximizing the product of the amounts of M and B. We note, however, that these
formulations here were used by Straight and Ramkrishna only for diverging units.

For YR-1 and YR-2, the single EM vector for the pathway in Figure 5.1, given by
z = [1, 1]T has the composite flux

q = 2

1/r̂1 + 1/r̂2
(5.35)

The predictions by models SR-1 and SR-2 are presented in Figure 5.2a alongside those
by YR-1 and YR-2 in Figure 5.2b. Consider first the predictions of the Y-R models. For
the temperate policy, growth is complete in 10hrs before M starts to deplete, while for
the greedy policy, growth is stymied as the level of M drops to values too low to recover.
On the other hand, SR-1 starts to fill the cell with M as B starts to drop precipitously
thus producing unrealistic cell compositions. Figure 5.2 makes for interesting study in
various ways but it clearly emerges that YR-1 is more realistic than all the other models.
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This merit is due to the anticipatory quality of the returns-on-investment which properly
assesses the direction in which control action must be taken. Thus the temperate policy
upregulates reaction 1 to maintain a higher level of M to realize the maximum growth
potential while the greedy policy makes a premature switch to the second reaction and
falls short of producing the highest growth. The enzyme level profiles in particular are
markedly different for different models.

5.1.3 Modeling of Anaerobic Metabolism of Escherichia coli

We will now be concerned with the application of the cybernetic framework due to
Young (2005) (see also Young and Ramkrishna, 2007; Young et al., 2008) to modeling
the anaerobic metabolism of E. coli. Growth of the bacteria is accompanied by the
formation of a variety of fermentation products such as formate, acetate, lactate,
succinate, ethanol, CO2, and H2. The reaction network is that of central carbon
metabolism which is presented in Figure 5.3 below.

Figure 5.3 Metabolic network (central carbon metabolism) for modeling anaerobic metabolism of
E. coli. Cofactor molecules are shown in grey. AcCoA: acetyl-CoA; ACT: acetate; ACTN:
acetoin; ETH: ethanol; FOR: formate; G6P: glucose-6- phosphate; GLC: glucose; LAC: lactate;
OAC: oxaloacetate; PEP phosphoenolpyruvate; PYR: pyruvate; SUC: succinate; T3P:
triose-3-phosphate. Reproduced from Young et al. (2008), with permission, Copyright © 2008
Wiley Periodicals, Inc.
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Table 5.2 displays the various reactions in the network. Reactions 1, 2, 4, and 5
are glycolysis reactions, while 3 represents pentose phosphate pathway; reactions 6-11
represent the various fermentation pathways. Reaction 12 is a reflection of the assump-
tion that all of the core biomass arises from G6P. The stoichiometric coefficients for
G6P and NADH in this reaction were estimated by letting B be the molecular formula
CH1.8O0.5N0.2 (Stephanopoulos et al., 1998). The reader is referred to Young (2005) for
a more detailed discussion of the reactions in the chosen network.

Model Equations
The mass balance equations Eqs. (5.24)–(5.29) with kinetics as appearing below
them are applicable to the model in question. There are, however, some additional
considerations that must be made because of kinetic inhibitory effects in reaction (10)
which call for modifying both r10 and rE,10 with the multiplicative (inhibitory) factor
K′

10,PYR/(xPYR + K′
x,10,PYR). Justification for such inhibition by pyruvate, otherwise

unknown, is available from Yang et al. (2001). Young et al. (2008) also point out the
need for introducing into r12, the rate of biosynthesis, inhibition due to G6P, PEP,
PYR, and T3P, which is accomplished by multiplying by the four inhibition terms
2x′

j/(x
′
j + K′

12,j), j = G6P, PEP, PYR, and T3P to arrive at r12 and rE,12. With a view to
exploring the model capabilities for describing the behavior of multiple mutants, Young
et al. (2008) report on two engineered strains, a pta-ackA ldhA double knockout strain
(GJT001) that cannot ferment to acetate or lactate, and an adhE single knockout strain
(YBS121) that cannot ferment to ethanol. Experimental data obtained by Young (2005)
based on the fractional carbon yield for different fermentation products are presented in
Figure 5.4. The anaerobic network shown in Figure 5.3 has 8 growth-associated EMs
(see Table 5.3) which are the only ones that are needed as the global objective involves
only maximizing core biomass. Table 5.4 shows the EMs in terms of net conversion of
substrate to fermentation products and biomass (Young et al., 2008).

The cybernetic control laws are incorporated per the development in Section 5.1.1
using the global objective of maximizing ψ ′ = bc, which represents maximization
of the production of core biomass component. Since reaction 11 is not involved in
growth associated modes, its regulation is described by kinetics alone and by setting
the cybernetic variables u11 = v11 = 1 as it is not in competition with other network
reactions.

The model parameters were fitted by Young (2005) by using growth and fermentation
data on both strains GJT001 and YBS121. We omit the details available in Young et al.
(2008) in favor of a more general discussion on the topic of parameter estimation
elsewhere in this book. Figure 5.5 shows two sets of simulations one for each of the
two strains showing biomass, residual glucose and the different fermentation products.
The model fits can be seen to be excellent for both species, as the observed metabolic
shifts caused by knocking out the acetate pathway genes are faithfully represented by
the model using a single set of kinetic parameters. For the YBS121 strain, the enzyme
synthesis parameter kE,9, connected with the single knockout of adhE gene, was set
to zero.
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Table 5.2 Stoichiometric reactions for anaerobic E. coli
network (Young et al., 2008).

Reaction Stoichiometry

1 GLC + PEP → G6P + PYR
2 G6P + ATP → 2 T3P + ADP
3 G6P + 6 NAD+ → T3P + 3 CO2 + 6 NADH
4 T3P + NAD+ + ADP → PEP + NADH + ATP
5 PEP + ADP → PYR + ATP
6 PEP + CO2 + 2 NADH → SUC + 2 NAD+
7 PYR + CoA → AcCoA + FOR
8 PYR + NADH → LAC + NAD+
9 AcCoA + ADP → ACT + CoA + 2 NAD+

10 AcCoA + 2 NADH → ETH + CoA + ATP
11 FOR → CO2 + H2
12 6.775 G6P + 82.217 ATP + 4.065 NADH →

B + 82.225 ADP + 4.065 NAD+ + 0.001 CoA

Growth requirements in reaction 12 are in mmoles per gram
of biomass
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Figure 5.4 Distribution of glucose carbon in fermentation products of GJT001 (black) and
YBS121 (white) obtained by Young et al. (2008) in shake flask experiments. Error bars indicate
standard errors. Reproduced from Young et al. (2008), with permission, Copyright © 2008 Wiley
Periodicals, Inc.

Figure 5.6 presents the model predictions of intracellular metabolites in GJT001 and
YBS121 strains. Literature sources (Chassagnole et al., 2002; Kümmel et al., 2006;
Yang et al., 2001) show that the estimated metabolite levels are within the expected
range; the results suggest that pyruvate accumulation in the YBS121 strain is responsible
for inducing the succinate and lactate production pathways while inhibiting ethanol
production.
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Table 5.3 Relative flux patterns in EMs of E. coli network in Figure 5.3. Reproduced from Young et al.
(2008), with permission, Copyright © 2008 Wiley Periodicals, Inc.

Reaction

EM 1 2 3 4 5 6 7 8 9 10 11 12

1 51.6 44.2 0.7 89.0 37.4 0 0 89.0 0 0 0 1
2 89.0 70.9 11.4 153.1 0 64.1 0 89.0 0 0 0 1
3 49.2 42.5 0 84.9 35.7 0 4.1 80.9 4.1 0 0 1
4 49.2 42.5 0 84.9 0 35.7 39.8 9.5 39.8 0 0 1
5 35.8 29.0 0 58.0 22.2 0 58.0 0 31.0 27.0 0 1
6 46.9 40.1 0 80.2 0 33.3 46.9 0 42.1 4.7 0 1
7 59.0 36.7 15.5 89.0 30.0 0 89.0 0 0 89.0 0 1
8 89.0 58.1 24.1 140.4 0 51.4 89.0 0 0 89.0 0 1

EM fluxes are scaled relative to the rate of biomass synthesis.

Table 5.4 Elementary modes of E. coli network in Figure 5.3 represented by net
conversions of substrates to products. Reproduced from Young et al. (2008), with
permission, Copyright © 2008 Wiley Periodicals, Inc.

EM Net Conversion of Substrate to Fermentation Products and Biomass

1 51.6 GLC → 89.0 LAC + 2.0 CO2 + B
2 89.0 GLC + 30.0 CO2 → 89.0 LAC + 64.1 SUC + B
3 49.2 GLC → 4.1 ACT + 4.1 FOR + 80.9 LAC + B
4 49.2 GLC + 35.7 CO2 → 39.8 ACT + 39.8 FOR + 9.5 LAC + 35.7 SUC + B
5 35.8 GLC → 31.0 ACT + 27.0 ETH + 58.0 FOR + B
6 46.9 GLC + 33.3 CO2 → 42.1 ACT + 4.7 ETH + 46.9 FOR + 33.3 SUC + B
7 59.0 GLC → 89.0 ETH + 89.0 FOR + 46.5 CO2 + B
8 89.0 GLC → 89.0 ETH + 89.0 FOR + 51.4 SUC + 20.8 CO2 + B

A unique attribute of the cybernetic model, not shared by constraint based models,
is its ability to predict both yields and productivities of the recombinant strains. The
simulations show that the deletion of both ldha and pta-ackA improve ethanol produc-
tion over and above that of the wild-type strain, a result that has corroboration in the
literature (Yang et al., 1999b).

Figure 5.7 displays the global v-variables during the exponential phase which indi-
cates the relative preferences of the different EMs. Specifically, EMs 5–7 are shown to
be down-regulated in YBS121 in response to the acetate pathway bottleneck. Further,
the dominance of EM 5 in the parent strain shifts away to EM1 in the knockout strain
resulting in the observed shift to lactate production. Experimental findings by Zhu and
Shimizu (2005) showed a small growth rate of adhE knockout strain, considerably
smaller than depicted in Figure 5.5. Gupta and Clark (1989) found that E. coli strains
lacking adhE cannot grow anaerobically on glucose although significant amounts of
acetate and lactate were observed. However, spontaneous pta mutations in the organ-
ism restored growth to this strain with small amounts of succinate and acetate and
large amounts of lactate. Thus adaptive evolution is found to vindicate model predicted
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Figure 5.5 Simulated behavior of strains GJT001 (—–) and YBS121 (– –) fitted to experimental
measurements. Error bars indicate standard errors of the measurements. Reproduced from Young
et al. (2008), with permission, Copyright © 2008 Wiley Periodicals, Inc.
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Figure 5.6 Simulated exponential phase intracellular concentrations of various metabolites in
GJT001 (black) and YBS121 (white). Reproduced from Young et al. (2008), with permission,
Copyright © 2008 Wiley Periodicals, Inc.
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Figure 5.7 The global v cybernetic variables for GJT001 (black) and YBS12 strains (white)
during exponential growth. Reproduced from Young et al. (2008), with permission, Copyright ©
2008 Wiley Periodicals, Inc.

Figure 5.8 Simulated exponential phase profiles of productivity (a) and fractional carbon yield
(b) of fermentation products for wild-type, pta-ackA ldhA double knockout, adhE knockout
strains of E. coli; (a): Rates of product formation and growth. (b): Distribution of glucose carbon
in the fermentation products. Reproduced from Young et al. (2008), with permission, Copyright
© 2008 Wiley Periodicals, Inc.

behavior of recombinant strains leading Young et al. (2008) to conclude that “it is
often better to have a model that overestimates the robustness of the organism and thus
provides some estimate of its ultimate metabolic capabilities, rather than a model that
cannot be extrapolated effectively outside of a limited phenotypic range.”

Young et al. (2008) also present the results of modeling the genetic manipulation with
introduction of heterologous genes. Such gene additions lead to additional metabolic
routes thus creating additional EMs. The predicted results of three different E. coli
strains, for which experimental results are available for comparison, are presented in
Figure 5.9. The three strains are: S1) the wild type (WT) with an NAD+ dependent
formate dehydrogenase (fdh1) gene from the yeast Candida boidinii, S2) WT with a
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Figure 5.9 Simulated exponential phase fermentation profiles of 4 different strains of E. coli:
wild-type, wild-type with insertion of C. boidinii fdh1 gene, pta-ackA knockout with insertion of
B. subtilis alsS gene, and adhE ldhA double knockout with insertion of L. lactis pyc gene.
Reproduced from Young et al. (2008), with permission, Copyright © 2008 Wiley Periodicals,
Inc.

pta-ackA knockout and an acetolactase synthase (alsS) gene insertion from Bacillus
subtilis, S3) WT with an adhE idhA double knockout and pyruvate carboxylase gene
(pyc) insertion from Lactobacillus lactis.

In formulating the model for S1, Young et al. (2008) added the NADH-producing
reaction below as a consequence of the addition of fdh1 gene.

FOR + NAD+ → CO2 + NADH (5.36)

with a fully identified (specific) kinetic rate given by

rFDH(mmol/g/h) = 100b ×
( xFOR

xFOR + 13mM

)
×
( xNAD+

xNAD+ + 0.1μmol/g

)
(5.37)

The saturation constants above were obtained from Schütte et al. (1976). Young et al.
(2008) assumed that transcription of heterologous genes was controlled by a non-native
promoter and adopted an arbitrary rate constant without involving an enzyme balance
thus bypassing the associated u-variable. However, they employed the v-variable as
determined by the level of participation of the FDH reaction in the four additional EMs
acquired by the expanded network, reflecting the assumption that the enzyme was sub-
ject to native activity control. The net stoichiometry of each FDH-containing reaction
EM is reproduced below with the full list of participating reactions in parentheses.

4.1 FOR + 51.3 GLC → B + 4.1 CO2 + 89.0 LAC

(1, 2, 4, 5, 8, 12, FDH) (5.38)

79.5 FOR + 89.0 GLC → B + 4.1 CO2 + 89.0 LAC + 75.4 SUC

(1, 2, 4, 6, 8, 12, FDH) (5.39)

4.1 FOR + 51.3 GLC → B + 93.1 CO2 + 89.0 ETH

(1, 2, 4, 5, 7, 10, 12, FDH) (5.40)
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79.5 FOR + 89.0 GLC → B + 93.1 CO2 + 89.0 ETH + 75.4 SUC

(1, 2, 4, 6, 7, 10, 12, FDH) (5.41)

Similarly, the alsS gene insertion from B. subtilis confers the pyruvate draining reaction

2 PYR → ACTN + 2 CO2 (5.42)

where ACTN refers to actoin, the end product of the ALS reaction. The kinetics of this
reaction was assigned the rate expression

rALS = 100b ×
( xPYR

xPYR + 21μmol/g

)
(5.43)

The saturation constant for pyruvate was obtained from Holtzclaw and Chapman (1975)
and the rate constant was arbitrarily set to a value of 100mmol/g/h as before. The
introduction of the ALS reaction adds four more EMs as given below

51.3 GLC → 2.0 ACTN + B + 4.1 CO2 + 84.9 LAC

(1, 2, 4, 5, 8, 12, ALS) (5.44)

89.0 GLC → 39.8 ACTN + B + 4.1 CO2 + 9.5 LAC + 75.4 SUC

(1, 2, 4, 6, 8, 12, ALS) (5.45)

51.3 GLC → 23.3 ACTN + B + 46.5 CO2 + 42.5 ETH + 42.5 FOR

(1, 2, 4, 5, 7, 10, 12, ALS) (5.46)

89.0 GLC → 42.1 ACTN + B + 8.8 CO2 + 4.7 ETH + 4.7 FOR + 75.4 SUC

(1, 2, 4, 6, 7, 10, 12, ALS) (5.47)

Lastly, the addition of pyc gene from L. lactis confers the pyruvate carboxylase
reaction

PYR + ATP + CO2 → OAC + ADP (5.48)

where OAC represents oxaloacetate. Young et al. (2008) observe that since the base
network of E. coli does not feature oxaloacetate as it is an intermediate in the lumped
pathway from PEP to succinate. Toward avoiding a change of the base network of
E. coli, Young et al. (2008) replace the reaction Eq. (5.48) by

PYR + ATP → PEP + ADP (5.49)

which will account for the recycling of pyruvate in the presence of pyc. The rate of
reaction Eq. (5.49) was assumed to follow the kinetics

rPYR = 50b ×
( xPYR

xPYR + 1μmol/g

)( xATP

xATP + 0.1μmol/g

)
(5.50)
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The lack of data on saturation constants led Young et al. (2008) to adopt constants
for other microbes on the BRENDA website, www.brenda-enzymes.info/. The value of
50 mmol/g/h. was arbitrarily chosen for the rate constant. Three more EMs are acquired
by the introduction of pyc to the base E. coli network as given by internal cycle of two
reactions (5, PYC), and

3 CO2 + 3.5 GLC → 6 SUC

(1, 2, 3, 4, 6, PYC) (5.51)

40.4 CO2 + 49.2 GLC → 44.5 ACT + B + 44.5 FOR + 40.4 SUC

(1, 2, 4, 6, 7, 9, 12, PYC) (5.52)

Only one of the above three EMs is associated with the synthesis of biomass.
Retaining the same objective function, and employing the cybernetic variables model
predictions of the wild type and the three different strains are shown in Figure 5.9. The
results shown are in striking agreement with observations in the published literature.
Thus the increased ethanol production due to the insertion of C. boidinii fdh1 in the
wild-type strain is corroborated by the observation of Berrios-Rivera et al. (2002) who
showed that introduction of the NAD+ dependent fdh1 leads to more ethanol and less
acetate as appearing in Figure 5.9. Next, Yang et al. (1999a) were able to revert a
pta-ackA knockout strain to make ethanol instead of lactate by introducing the alsS
gene from Bacillus subtilis. The model is able to reproduce this result by restoring
ethanol production in this strain to nearly that of the wild-type. Since the underlying
mechanism for this effect is the dynamics of intracellular pyruvate levels, this prediction
of the cybernetic model is outside the purview of stoichiometric modeling approaches.
Finally, the improved production of succinate reported by Sánchez et al. (2005) through
the insertion of pyc gene from Lactobacillus lactis in an adhE ldhA double knockout
background is successfully reproduced by the model by showing that half of the
available carbon is diverted to succinate production.

5.2 Concluding Remarks

It should be evident to the reader that the work of Young (2005) has successfully
accomplished the conceptual extension of the cybernetic framework to a metabolic
network. The introduction of EM decomposition is a significant aspect in this regard
because the underlying structure minimizes the need for introduction of ad hoc features
often found in the early cybernetic models. The different control policies that appeared
in Chapter 4 notably add to the armory of cybernetic models in understanding the
regulatory underpinnings of bioinformatic data. In this regard, emergence of the concept
of a temperate policy deserves a special note of approbation because of its latent capacity
to overcome the potential shortfalls of the “greedy” version. A case in point, as pointed
out by Young et al. (2008), is the circumstance of a reaction capable of contributing to
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the organism’s goal lagging behind other reactions because of substrate depletion that
might spur the greedy policy to promote the level and activity of the enzyme for the
slow reaction which could be a potentially hasty response.

Multiple ways of attributing costs to regulatory action can also produce a variety
of formulational alternatives for the cybernetic model. Recognition of these and other
aforementioned attributes considerably expands the scope of the cybernetic approach
notwithstanding viewpoints in the literature expressed to the contrary.
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