UNIQUENESS OF COMPLEMENTING PAIRS IN PARTIALLY ORDERED ABELIAN GROUPS

RODNEY T. HANSEN

(Received 9 September 1969; revised 12 November 1969)

Communicated by B. Mond

Let A and B denote subsets of an abelian group (G, +). The pair (A, B) is called a *complementing pair* for A + B provided each element of the sum is uniquely represented. A complementing pair (A, B) for C is denoted $(A, B) \sim C$.

A pair $(A, B) \sim C$ is said to be *unique* provided that for any pair $(A', B) \sim C$ we have A = A'. R. M. McLeod and R. Spira [1] showed that complementing pairs for certain subsets of $N = \{0, 1, 2, \dots\}$, including N and $N_n = \{0, 1, 2, \dots, n-1\}$, are unique. In this paper we shall first generalize this result to certain subsets of a partially ordered abelian group and then deduce several related results as special cases. The necessity of the conditions placed on the subsets is shown by constructing a non-unique complementing pair that violates only a single condition.

By a partially ordered abelian group (additively written), we mean an abelian group (G, +) together with an order relation \leq (reflexive, antisymmetric, and transitive) such that $x \leq y$ implies $x+z \leq y+z$ for all $x, y, z \in G$. The basic result is now formulated.

THEOREM. Let $(G, +, \leq)$ be a partially ordered abelian group. Let A_1, A_2 , and B be subsets of G satisfying.

- 1. $(A_1, B) \sim A_1 + B$
- 2. $(A_2, B) \sim A_2 + B$
- 3. $A_1 + B = A_2 + B$
- 4. B has a minimum element.

5. Each nonempty subset of $A_1 \cup A_2$ has a minimal element. Then $A_1 = A_2$.

PROOF. Let $D = A_1 \triangle A_2$, where ' \triangle ' denotes the symmetric difference of the two sets. Assuming the proposition is false, we have $D \neq \emptyset$. Then by condition 5, D has a least element. We denote the least element of D by d. Without loss of generality assume $d \in A_1 \cap A'_2$, where $A'_2 = \{x | x \in G \text{ and } x \notin A_2\}$. Further, let us assume that b_1 is the minimum element of set B. Then $d+b_1 \in A_1+B$, and since $A_1+B = A_2+B$ we have $d+b_1 \in A_2+B$.

Thus $d+b_1 = a_2+b_2$ for elements $a_2 \in A_2$ and $b_2 \in B$. If $a_2 \in A_1$, then d+b has two representations in A_1+B - contrary to condition 2. Hence $a_2 \in A'_1 \cap A_2 \subset D$

which implies $d < a_2$. Now

$$d < a_2 \Rightarrow d + b_2 < a_2 + b_2.$$

Therefore

$$d+b_2 < a_2+b_2 = d+b_1$$

and so $b_2 < b_1$, contradicting the minimality of b_1 . We conclude that our original assumption of $D \neq \emptyset$ is false, and hence $A_1 = A_2$ as desired.

Let us now see an application of this result by considering subsets of Z^n , where Z denotes the set of integers and n is a positive integer. Characterizing properties of complementing pairs in Z^n (principally in Z^2) may be found in [2]. To prove the uniqueness results in Z^n we first need to define a partially ordered abelian group on Z^n . The ordered triple $(Z^n, +, \leq)$, where + is n-dimensional vector addition and \leq denotes the lexicographic order, is such a group. The corollaries follow.

COROLLARY 1. Let A_1, A_2 , and B be subsets of any subset of Zⁿ which is bounded below. If $(A_1, B) \sim A_1 + B$, $(A_2, B) \sim A_2 + B$, and $A_1 + B = A_2 + B$, then $A_1 = A_2$.

COROLLARY 2. If $(A, B) \sim A + B \subset N^n$, for any positive integer n, then (A, B) is unique.

COROLLARY 3. If $(A, B) \sim A + B \subset Z^n$, for any positive integer n, and if A + B is finite, then (A, B) is unique.

The proof of each of the above results is strongly dependent upon the complementing pairs satisfying conditions 4 and 5 of the basic theorem. The necessity of these conditions is shown by the following subsets of Z. Let m be any positive integer greater than 1. Then defining

$$A = N_m$$
 and $B = \{km | k \in \mathbb{Z}\},\$

we have $(A, B) \sim Z$. However, this pair lacks uniqueness as is easily seen by replacing A by any other complete residue system modulo m.

The author wishes to thank the referee for his helpful suggestions in preparation of this paper.

References

- R. M. McLeod and R. Spira, 'Direct sum decomposition of the non-negative integers', Unpublished, (1966).
- [2] R. T. Hansen, 'Complementing Pairs of Subsets of the Plane', Duke Math. J. 36 (1969), 441-449.

Montana State University