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1. The study of the primitive solutions of the equation

(1) A'=l,

where A = (a,-.,) is an n x n matrix whose elements are rational
integers, was begun a long time ago1. In most cases this equation
occurred incidentally in another theory; for instance Jordan
encountered it in connection with linear differential equations having
algebraic solutions, Minkowski in connection with quadratic forms
and Turnbull in geometry. An important fact about these matrices
is that any unimodular matrix can be represented as the product of
matrices with finite period.

In this note we point out a connection between (1) and algebraic
number fields generated by roots of unity. The methods we adopt
can be applied to the study of a much larger class of matrices. In
§ 2 we summarise those parts of Algebraic Number Theory which we
require2.

2.1. Let a be a root of an irreducible algebraic equation

(2) aox
n + a1x"-1+ + V i « + «»=0

of degree n with rational coefficients. The set of all polynomials of
degree less than n in a, having all their coefficients rational, forms a
field, the algebraic number field R{a), generated by a. This field is
said to have degree n. We can say that JB (a) is an n-dimensional
modul, with rational coefficients and base elements 1, a, . . . . , a""1.
Any set of elements a ,̂ . . . . , a>n obtained from 1, a, a""1 by a
non-singular linear transformation with rational coefficients also
forms a base for this modul. The field R (a) can also be regarded as
a hypercomplex system, over the rational numbers, with base
<*>!, . . . . , u>n, when the " natural " multiplication is introduced. The
regular representation of this hypercomplex system associates with
every element of it a certain n x n matrix all of whose elements are
rational.
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2.2. Let a'2> a'"> denote the other n — 1 roots of (2). These
are called the conjugates of a (= a(1)). Let wfp , CD^> denote the

same functions of a(l) as OJL , wn ( = w™, o^1') are of a (= a(1))
(this for i = 2, . . . . , n). I t is known that

The two sets co®, . . . . . u^ and u>^,.. .., w(j] are said to be conjugate

bases.

2.3. An algebraic number which satisfies an equation of the form (2)
where all the coefficients are integers and where a0 = 1 is called an
integral number. An algebraic number which satisfies an equation of
the form (2), where all the coefficients are integers and where
ao = ± 1. an — ± 1> is called a unit (its reciprocal is also an integral
number). A special case of such units are the roots of unity.

A base o)1( . . . . , ton of a field R (a) is called an integral base if every
u)i is an integral number and if every integral number in R (a) can be
expressed as S&^CUJ where the hi are integers. An integral base exists
for any field. Of any two integral bases for the same field either can
be obtained from the other by a unimodular linear transformation all
of whose coefficients are integers.

2.4. The field generated by a root of unity has the property that
every element satisfies an irreducible algebraic equation, all of whose
roots are contained in the field.

3.1. A connection between the units of a field generated by a root of unity
and the automorphisms of a certain form. Let £ be a primitive rth
root of unity. The degree of the field R (£) generated by £ is <f> (r)
(where <j> (r) is Euler's function, the number of positive integers less
than r and prime to it). We put (f> (r) = n. Let a>j , con be an
integral base for .#(£). Consider the form

(3) / = n (u1j?+ .... +una,?) = nii(u)
i=i

in the n variables uu .. .., un. Let A = (afj-) be an n x n matrix,
| A ' = ± 1, which determines a linear transformation

(4) (M)_>(a') where (u) = (u') A

under which/is invariant (apart from a factor ± I)3- The fact that
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/ is invariant means that the linear factors of / are permuted and
n

subjected to a multiplication by factors pu . . .., pn where II p i = ± l ,
t=i

when they undergo the transformation (4). Suppose, in fact, t h a t
we have

where pt (i = 1, 2, . . . . , n) is a permutation of 1,2, n.

3.2. We shall show t h a t each pt is a unit in R (£). We begin by
writing (5,) in full as

(5<) % u>f + . . . . + Un co<>> = Pi (u[ w[** + . . . . + u ' H w<f <>).

Since the set co^Pi), . . . . , co -̂' is also an integral base in the field

R (£) we have, for a certain matrix JSf = (b^) all of whose elements are

integers and for which ! B{ | = ± 1, that4

(6r) cô > = 6«)w«>
—this for i = 1, 2, .. .. ,n.

Substituting from (4) and (6) in (5) we find

aika>fu' =Pib<$a>fu'f

from which, on equating the coefficients of u'j, we have

(7,-) fe-ft^)^ = C

It follows from (7{), since the ai[j'are not all zero, that pt is a root of
the determinantal equation

(8) \ajt -xb$\ = 0.

Because the coefficient of xn and the constant term in (8) are ^ |6jj.'j and
\cijk\ respectively (and therefore each is ± 1) it follows (the remaining
coefficients being integers) from the theorem of Gauss5 that pt is a
unit in a certain algebraic field. We can express pt rationally in
terms of the w^, . . . ., o^1 by using any one of the equations (7,)..
Hence p; is a unit in R (£).

3.3. Consider now any field of degree n with base a ,̂ . . . . , coH and a
special case of the transformation (4) in which each lt is transformed
into itself, apart from the factor p(. This means that each Pi — i and
that each matrix Bt is the unit nxn matrix so that each pt satisfies
the same algebraic equation

(9) \ajk-hitx\ = 0

which must be a power of the irreducible equation which they satisfy.
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The equation (7;), in the special case under consideration, can be
written as

(10,) K>, . . . ., o«>) A = Pi (a»« ««>),

from which it is clear that if A is of finite period6 (say q) then pi is of
finite period (rt^ q).

Since the p(- are conjugates all the rt are equal, say to r. We
show that r = g.

It follows from (10,-) that

(1 lf) K ° , • • • •, "«) A' = (««> , w«))

which means that the reduced characteristic function7 of 4 with respect
to each of the n vectors (o;(i)), (1 = 1,2, n), is a divisor of Ar— 1.
These n vectors are linearly independent because [ o^1'| =f= 0. Hence
the reduced characteristic function of A is a divisor of Ar — 1. Thus
we have q^r . Hence q = r.

We have therefore established the following result:—

I. An n X n matrix which determines an automorphism (of the special
type in question) of the form (3) can only have such periods as are
possessed by the roots of unity contained in the field.

3.4. All the possibilities allowed by I can be realised. We shall
establish:

II. Let R (a) be a field of degree n. Let r be the order of a root of
unity contained in R (a). Then there exists an n x n matrix with
period r.

Proof. Let -r\ be a primitive r-th root of unity contained in R (a).
Let a>lt .. .., ton be an integral base for R(a). Since each TJOJJ is an
integral number there is a matrix C = (Cjk), all of whose elements are-
integers, such that

TjlOj = Cjk U>t

which we may write in the form

7] (wU , O)n) = (OJU U>,,) C.

From this it follows that

This last result is also true when we replace (OJ)(= (to(1))) by any of its
conjugates (OJ(I)). Using the method of proof of I and the fact that rf
is a primitive root we conclude that C has period r.
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Au alternative proof of II depending on the regular representa-
tion of the field can be given. We observe that if we do not take the
regular representation relative to an integral base we must use the
following lemma which is, however, of interest independently8.

LEMMA. Every matrix with finite period, all of whose elements are
rational, is similar to a matrix all of whose elements are integers.

4. The matrices we have considered do not exhaust the class of
matrices with finite period. In fact the characteristic polynomial
of such a matrix is not, in general, the power of an irreducible
polynomial (cf. 11 below). We shall now consider the general form
of such matrices.

If A is an n X n matrix with period r then it is known9 that the
characteristic equation of A is of the form

n/d ; (n) = 0,

where fd. (n) = 0 is the irreducible equation of which the dtth root of

unity is a root and where the dt are divisors of r. Hence

n — T,<j) (di).

From this it follows that

III. Corresponding to an assigned n only a finite number of values of r
are possible.

We shall now establish

IV. Let A be an n x n matrix, irreducible in the rational field, and of
period r. Then <f> (r) = n.

This implies that the only possible periods of irreducible n x n
matrices are those which occur among the orders of the roots of unity
generating fields of degree n.

Proof. A being irreducible the characteristic polynomial of A must
be the power of an irreducible polynomial10. Every latent root p of A
is a root of unity and all these have the same order. This order
must be r. For, if we had ps— 1, where s is a proper divisor of r,
then the matrix A would satisfy the equation A* = 1 because the
reduced characteristic equation of which A is a root must be a divisor
of the characteristic equation. Hence the irreducible polynomial in
question is of degree cf> (r) and so (f> (r)/n. To show that <f>(r) = n it
is enough to show that the characteristic polynomial of A is itself
irreducible. This follows from the fact10 that an irreducible matrix
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has its characteristic polynomial and its reduced characteristic poly-
nomial identical, and the fact that the matrix A satisfies xr —1 = 0.
which has no multiple roots11.

5.1. Applications. By using the regular representation of an
associative hypercomplex system with a unit, with integers as
coefficients, and having n base elements it follows from III that if r
is a period of a unit in any such system then r <L K = K (n), a con-
stant depending only on n. In particular we have12. .
If r is the order of a unit in a group-ring (the group being of order n and
the ring that of the integers) then r <L K = K (n), a constant depending
only on n.

5.2. The result III, established for matrices whose elements are
rational integers, can be extended. In fact this result is true for
matrices with elements in an (associative) hypercomplex system S
with integers as coefficients and having/ base elements. To see this
we use the regular representation of the elements of S as fxf matrices
and we observe that every n x n matrix with elements in S having
period r gives rise to an/n x fn matrix13, whose elements are integers,
which has the same period r—and the number of these periods is
finite by III .

Particular cases of S which are of interest are the complex
integers and the quaternion integers (in the sense of Dickson). Some
of these will be discussed in another paper.
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• 2 . Proofs of the results stated in § 2 will be found in any account of Algebraic Number
Theory, e.g. in D. Hilbert, Gesammelte Abhandlungen, 1 (Berlin, 1932), 63-363 or in a
forthcoming book by one of us (O. T.): Algebraic Numbers (Oxford, 1940).

3 . It is interesting to observe that it is always possible to find a form of degree n in n
variables which is invariant under the transformation determined by an assigned n x n
matrix .4 with \A\ — ± 1. To see this denote the latent roots of A by pv , pnand
denote by (.»']*', , a{j') a non-trivial solution of the system of equations

Pi(4°. .^ ' ) = (4i). -afM-
"Then the form

in the n variables iii, , «,(is easily shown to be invariant under the transformation

determined by A.

4 . Here and elsewhere we find it convenient to use the summation convention.

5 . See e.g. A. A. Albert, Modern Higher Algebra (Chicago-Cambridge, 1937), 37.
6 . When we say that A has period r we understand that Ar = 1 and that A' 4= 1 for

any s = 1, 2, ,r-l.

7. See 'e.g. H. W. Turnbull and A. C. Aitken, The Theory of Canonical Matrices
(London-Glasgow, 1932), Ch. 5.

8 . See e.g. the book of Speiser referred to in 1, §67 or W. Burnside, Proc. London
Math. Soc. (2), 7 (1909), 8-13.

9 . See the papers of Vaidyanathaswamy referred to in 1. The case r = n corresponds
to the cyclic permutation of n elements; in this case we have to use the well-known
relation

din

1 0 . See the book of Albert referred to in 5 , Ch. 4, § 5.

1 1 . Similarly it can be seen that an n x n matrix of period r, whose characteristic
polynomial is the power of an irreducible polynomial, must be the direct sum of
irreducible matrices each of which has its characteristic function of degree <f> (?•). Such
a matrix can always be obtained as the regular representation of a root of unity
contained in an algebraic number field of degree n. Of. Olga Taussky and John Todd,
Proc. Royal Irish Academy, 46A (1940), 1-11.

1 2 . This result is in accordance with a result established by Higman, Proc. London
Math. Soc. (2), 46 (L940), 231-248. Here it is shown that the only units of finite order
in the group-ring of an abelian group are the elements of the group itself.

1 3 . See e.g. the book of Turnbull and Aitken referred to in 7, Ch. 1, §6.
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