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Abstract
We prove an asymptotic expansion of the second moment of the central values of the GL(𝑛) × GL(𝑛) Rankin–
Selberg L-functions 𝐿 (1/2, 𝜋 ⊗ 𝜋0) for a fixed cuspidal automorphic representation 𝜋0 over the family of 𝜋 with
analytic conductors bounded by a quantity that is tending to infinity. Our proof uses the integral representations of
the L-functions, period with regularised Eisenstein series and the invariance properties of the analytic newvectors.
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1. Introduction

The asymptotic evaluation of higher moments of the central L-values carries important arithmetic
information: for example, subconvex bounds or nonvanishing results for the central L-values. This
evaluation becomes more and more difficult as the moment, the degrees of the L-functions or the rank
of the underlying group increase.

Obtaining subconvex bounds – that is, proving bounds of the form

𝐿(1/2, 𝜋) � 𝐶 (𝜋)1/4−𝛿 , 𝛿 > 0,

1where 𝐶 (𝜋) is the analytic conductor of an automorphic representation 𝜋, is an extremely difficult
problem with respect to the current technology. A narrow, but important for applications, class of
automorphic representations suffers from yet another major technical difficulty named conductor-drop.
These representations are usually functorially lifted from smaller groups and have unusually small
analytic conductors.

For example, if 𝜋 varies over automorphic representations for PGL2(Q) with 𝐶 (𝜋) being of size T,
then the size of the analytic conductor of the Rankin–Selberg convolution 𝜋 ⊗ �̃� is roughly 𝑇2, where
�̃� is the contragredient of 𝜋, whereas 𝐶 (𝜋 ⊗ 𝜋′) has size 𝑇4 if 𝐶 (𝜋′) is of size 𝑇2 but 𝜋′ is away from
�̃�. That is, the PGL(4)-subfamily of 𝜋 ⊗ �̃� shows the conductor-drop phenomena. Another example of
a family that sees conductor-dropping is the PGL(3)-family of Sym2𝜋, where 𝜋 varies over a PGL(2)
family (the subconvexity problem for this family is directly related to the arithmetic quantum unique
ergodicity problem for SL2(R)). This happens due to one of the Langlands parameters of Sym2𝜋 being
extremely small compared to the others. The families defined by the Plancherel balls with a large radius
(for example, dilated) or high centre often exclude these narrow classes. Thus moment estimates over
these families do not usually become fruitful to yield a subconvex bound of an L-function that has
conductor drop; see, for example, [2, 31, 30].

One naturally interesting and important family of automorphic representations can be given by
representations with growing conductors: for example,

F𝑋 := {𝜋 automorphic representation for PGL𝑛 (Z) | 𝐶 (𝜋) < 𝑋},

with 𝑋 → ∞. The family F𝑋 , unlike the families defined by the Plancherel balls, is indifferent to the
conductor-drop issue. So a Lindelöf-consistent estimate for a high enough moment over the family F𝑋
will likely produce a subconvex estimate even for the L-functions suffering from conductor-drop. Here,
by Lindelöf-consistent (also called Lindelöf on average) estimate for the 2𝑘th moment, we mean the
estimate

EF𝑋 |𝐿(1/2, 𝜋) |2𝑘 �𝜖 𝑋
𝜖 ,

where E denotes the average. On the other hand, a more interesting and difficult question would be to
find an asymptotic formula of (a suitably weighted and smoothened version of) the above average whose
leading term is believed to be a polynomial in log 𝑋 .

However, the family F𝑋 becomes quite large as X tends to infinity. One informally has |F𝑋 | � 𝑋𝑛−1;
see [6] for the corresponding nonarchimedean analogue. This is why, to obtain a subconvex bound of
an L-function attached to an element in F𝑋 , one needs to evaluate quite a high moment asymptotically
or at least estimate in the Lindelöf-consistent manner. For example, we need to estimate an amplified
4(𝑛 − 1)th moment over F𝑋 even to break the convexity barrier. Unfortunately, the current technology
is not advanced enough to tackle such a high moment of these L-functions due to the large size of
the conductors. Hence a natural, informal question arises regarding the race between the sizes of the
conductors of the L-functions and the families: as a function of n, how high of a moment can be
asymptotically evaluated (or estimated in a Lindelöf-consistent manner) over the family F𝑋?

1The generalised Lindelöf hypothesis predicts that any 𝛿 < 1/4 is achievable.
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Such a question has been addressed in the literature for low-rank groups. We may try to guess an
answer to our proposed informal question by looking at the small number of examples in low ranks.
For 𝑛 = 2 in [22], the authors obtained an asymptotic formula of the 4th moment over a family in
the nonarchimedean conductor aspect and restricted only to the holomorphic forms. In [3], the authors
proved a Lindelöf-consistent upper bound of the 6th moment in the nonarchimedean conductor aspect
for 𝑛 = 3. These are the best possible estimates so far for small n, which allows us to wonder whether
the 2𝑛th moment can be asymptotically evaluated over the family F𝑋 . However, if we work on the
GL(𝑛) rather than on the PGL(𝑛) family – that is, if we do an extra central average – we expect that an
asymptotic formula of the 2𝑛 + 2th moment is achievable.

Our primary motivation is to prove an asymptotic formula for the 2𝑛th moment of the central L-
values for PGL(𝑛) with 𝑛 ≥ 3, over the family F𝑋 , using the integral representations of the L-functions
and spectral theory. If 𝜋 is an automorphic representation for PGL(𝑛), then

𝐿(1/2, 𝜋)𝑛 = 𝐿(1/2, 𝜋 ⊗ 𝐸0),

where 𝐸0 is the minimal Eisenstein series for PGL(𝑛) with trivial Langlands parameters and ⊗ denotes
the Rankin–Selberg convolution. Thus evaluating the 2𝑛th moment of 𝐿(1/2, 𝜋) is the same as evaluating
the second moment of 𝐿(1/2, 𝜋 ⊗ 𝐸0). However, the approach of the integral representations and the
spectral decomposition encounters severe analytic difficulties due to the growth of 𝐸0 near the cusp:
for example, 𝐸0 fails to be square integrable in the fundamental domain. To avoid this particular
technical difficulty, we may replace 𝐸0 with a fixed cusp form and try to evaluate their second moment
asymptotically.

Let 𝑛 ≥ 3. In this article, we evaluate the second moment of the central Rankin–Selberg L-values
𝐿(1/2, 𝜋 ⊗ 𝜋0), where 𝜋 varies over a family of automorphic representations for PGL𝑛 (Q) that are
unramified at all the finite places and the archimedean conductors are growing to infinity. Here 𝜋0 is a
fixed cuspidal representation for PGL𝑛 (Q), which is again unramified at all the finite places. Below we
informally describe our main theorem.

Theorem 1.1 (Informal version). Let 𝑛 ≥ 3 and 𝜋0 be a cuspidal automorphic representation for
PGL𝑛 (Z) (i.e., unramified at the finite places), which is tempered at ∞. Let 𝜋 vary over the generic
automorphic representations in F𝑋 . Then we have an asymptotic formula of the following (weighted)
average

E𝜋∈F𝑋
generic

[
|𝐿(1/2, 𝜋 ⊗ 𝜋0) |

2

𝐿(1, 𝜋,Ad)
+ continuous

]
= 𝑛

𝜁 (𝑛/2)2

𝜁 (𝑛)
𝐿(1, 𝜋0,Ad) log 𝑋 +𝑂 𝜋0 (1),

as X tends to infinity.

For the actual formal statement, we refer to Theorem 2.1.

Remark 1.2. In Theorem 1.1, by ‘continuous’, we mean the corresponding terms from the generic
noncuspidal spectrum. In the actual statement – that is, Theorem 2.1 – we do a specific weighted average
over the full generic automorphic spectrum such that the weights are uniformly bounded away from zero
on the cuspidal spectrum with analytic conductors bounded by X. Consequently, we also need to change
the harmonic weight 𝐿(1, 𝜋,Ad) by an equivalent arithmetic factor for the noncuspidal spectrum.

This is the first instance of an asymptotic evaluation of the second moment of a family of L-functions
with arbitrary high degree. In general, for a pair of groups 𝐻 ≤ 𝐺 and their representations 𝜋 and Π,
respectively, it is an interesting question to asymptotically evaluate moments of the central L-values of
the Rankin–Selberg product Π ⊗ 𝜋 (if defined). Previously, in [31], Nelson–Venkatesh asymptotically
evaluated the first moment keeping Π fixed and letting 𝜋 vary over a dilated Plancherel ball when
(𝐺, 𝐻) are Gan–Gross–Prasad pairs and, more interestingly, allowing arbitrary weights in the spectral
side. More recently, in [30], Nelson proved a Lindelöf-consistent upper bound of the first moment for
the groups (𝐺, 𝐻) = (U(𝑛 + 1),U(𝑛)) in the nonsplit case, keeping 𝜋 fixed and letting Π vary over a
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Plancherel ball with high centre. Both [31, 30] assume that the family of 𝐿(𝑠,Π ⊗ 𝜋) does not show
any conductor-dropping. The method in [30] also yields an asymptotic formula with power savings of
a specific weighted first moment over this family. Blomer in [1] obtained a Lindelöf-consistent upper
bound of the second moment for 𝐺 = 𝐻 = GL(𝑛), keeping Π a fixed cuspidal representation and letting
𝜋 vary in a Plancherel ball. On the contrary to [31, 30], he proves a Lindelöf-consistent upper bound
when the family of 𝐿(𝑠,Π ⊗ 𝜋) shows conductor-dropping. However, his method does not yield an
asymptotic formula.

There have been quite a few results for asymptotic formulas and upper bounds on rank ≤ 2 and
degree ≤ 4. In particular, we refer to [4]: the authors prove an asymptotic formula for GL(2) × GL(2)
Rankin–Selberg L-functions, fixing one of the representations but with an extra average over the centre
of GL(2). In [10], an asymptotic formula for the sixth moment of the L-values attached to holomorphic
cusp forms for GL(2) is achieved, but again with an extra average over the centre of GL(2).

1.1. Sketch of the proof

Our point of departure is similar to [1] and [32]. We use the spectral decomposition of PGL(𝑛) and
integral representations of the L-functions. We start by choosing 𝜙0 ∈ 𝜋0 such that the Whittaker function
𝑊0 of 𝜙0 is an analytic newvector; see Section 2.9 for a brief description of the analytic newvectors.
Such 𝑊0 in the Kirillov model of 𝜋0 can be described by a fixed bump function. Let Eis( 𝑓𝑠) be the
maximal Eisenstein series PGL𝑛 (Z) attached to a generalised principal series vector 𝑓𝑠 . Also let X be a
large real number and x be the diagonal element in PGL𝑛 (R) given by diag(𝑋, . . . , 𝑋, 1). We translate
the Eisenstein series by x to obtain Eis( 𝑓𝑠) (.𝑥).

For this subsection, let X := PGL𝑛 (Z)\PGL𝑛 (R) and N be the maximal unipotent of the upper
triangular matrices in PGL𝑛 (R). We start by writing the inner product

〈𝜙0Eis( 𝑓1/2) (.𝑥), 𝜙0Eis( 𝑓1/2) (.𝑥)〉 = 〈|𝜙0 |
2, |Eis( 𝑓1/2) |

2 (.𝑥)〉, (1.1)

where all the inner products above are the usual 𝐿2-inner product on the fundamental domain X. Note
that both of the sides of equation (1.1) are absolutely convergent as 𝜙0 decays rapidly at the cusps.

We use Parseval’s identity on the left-hand side over PGL(𝑛). A typical term corresponding to an
automorphic representation 𝜋 in the spectral sum would look like����∫

X

𝜙0(𝑔)𝜙(𝑔)Eis( 𝑓1/2) (𝑔𝑥)𝑑𝑔

����2 =
|𝐿(1/2, �̃� ⊗ 𝜋0 |

2

𝐿(1, 𝜋,Ad)
|𝑍𝑥 ( 𝑓1/2,𝑊,𝑊0) |

2,

and

𝑍𝑥 ( 𝑓𝑠 ,𝑊,𝑊0) =
∫
𝑁 \PGL𝑟 (R)

𝑊0(𝑔)𝑊 (𝑔) 𝑓𝑠 (𝑔𝑥)𝑑𝑔

is the local zeta integral.

We choose 𝑓𝑠 such that 𝑓1/2

[(
𝐼
𝑐 1

)]
is supported on |𝑐 | < 𝜏 for some 𝜏 > 0 sufficiently small,

so that 𝑊0 𝑓1/2(.𝑥) would mimic a smoothened characteristic function of the archimedean congruence
subgroup 𝐾0(𝑋, 𝜏) (see equation (2.8)). If W is an analytic newvector (see Section 2.9), then the
invariance property of W will yield that 𝑍𝑥 ( 𝑓1/2,𝑊,𝑊0)  1 if 𝐶 (𝜋) < 𝑋 . We use∑

𝑊

|𝑍𝑥 ( 𝑓1/2,𝑊,𝑊0) |
2

as the spectral weights where in the above sum W traverses some orthonormal basis of 𝜋. We point out
on the naive similarities between the spectral weight here and the one used in, for example, [18, Theorem
1]. However, the invariance property that is needed here is a bit stronger than the invariance used in
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[18, Theorem 1]: we only needed invariance at points near the identity in GL𝑛 (R) in [18], whereas here,
we have to gain an invariance that is uniform for all elements in GL𝑛−1(R). The method of using the
approximate invariance of the newvectors is similar to [32] for GL(2), where in the nonarchimedean
aspect, the exact invariance is used. This analysis is done in Section 7.

We now explain how we proceed to give an asymptotic expansion of the right-hand side of equation
(1.1). The heuristic idea, at least to obtain an upper bound, is to make the change of variables in the
period of the right-hand side of equation (1.1) to write it as∫

X

|𝜙0 (𝑔𝑥
−1) |2 |Eis( 𝑓1/2) (𝑔) |

2𝑑𝑔

and then bound this period by

≤ ‖𝜙0‖
2
𝐿∞ (X)

∫
X

|Eis( 𝑓1/2) (𝑔) |
2𝑑𝑔.

But unfortunately, Eis( 𝑓1/2) (barely!) fails to be square integrable on X. That is why we have to
regularise the period. We adopt the regularising techniques of Zagier [34]; see also [27, 29]. First we
deform |Eis( 𝑓1/2) |

2 as Eis( 𝑓1/2+𝑠)Eis( 𝑓1/2) for s lying in some generic position with very small �(𝑠).
From the Fourier expansions of the Eisenstein series, we can pick off the nonintegrable terms in the
product Eis( 𝑓1/2+𝑠)Eis( 𝑓1/2) and call their sum 𝐹𝑠 . Then we construct a regularised Eisenstein series by

�̃� (𝑠, .) := Eis( 𝑓1/2+𝑠)Eis( 𝑓1/2) − Eis(𝐹𝑠).

We will check that �̃� (𝑠, .) lies in 𝐿2 (X). Consequently, we regularise the period as

〈|𝜙0 (.𝑥
−1) |2, |Eis( 𝑓1/2) |

2〉 = lim
𝑠→0

〈|𝜙0 (.𝑥
−1) |2,Eis( 𝑓1/2)Eis( 𝑓1/2+𝑠)〉

= lim
𝑠→0

〈|𝜙0 (.𝑥
−1) |2, �̃� (𝑠, .)〉 + lim

𝑠→0
〈|𝜙0 (.𝑥

−1) |2,Eis(𝐹𝑠)〉.

We call the first summand the regularised term, which, upon rigorous application of the heuristic above,
can be proved to be of bounded size. The second summand is called the degenerate term and yields the
main term.

Up to some nonarchimedean factors involving 𝐿(1, 𝜋0,Ad), the degenerate term is of the form

𝜕𝑠=0𝑍𝑥 ( 𝑓1/2 𝑓1/2+𝑠,𝑊0,𝑊0) − 𝜕𝑠=0𝑍𝑥 (𝑀 𝑓1/2𝑀 𝑓1/2+𝑠 ,𝑊0,𝑊0),

where M is certain intertwining operator that arises in the constant term of a maximal parabolic Eisenstein
series. One main difficulty of the paper is asymptotically evaluating the above two derivatives. The first

one is comparatively easy to understand as one can apply the support condition of 𝑓1/2 𝑓1/2+𝑠

[(
𝐼
𝑐 1

)
𝑥

]
,

which is concentrated on 𝑐 = 𝑂 (1/𝑋) and the approximate invariance of 𝑊0. The second one is more

technical to analyse. The intertwined vector 𝑀 𝑓1/2+𝑠

[(
𝐼
𝑐 1

)
𝑥

]
, which on the matrices

(
𝐼
𝑐 1

)
essentially

mimics a Fourier transform of 𝑓1/2+𝑠 , has support of size 𝑐 = 𝑂 (𝑋). So we cannot get away with just the
invariance properties of𝑊0. In this case, we understand a more detailed shape of the intertwined vectors

via the Iwasawa decomposition on the matrices of the form
(
𝐼
𝑐𝑋 1

)
. This analysis is done in Section 5.

On the other hand, to analyse the regularised term, we understand the growth of the (degenerate)
Fourier terms of Eis( 𝑓𝑠) for s being close to 0, 1/2 or 1. This analysis relies on the analytic properties
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of the intertwining operators attached to various Weyl elements and functional analytic properties of
the Eisenstein series. This analysis is done in Section 6.

Remark 1.3. We remark that our method of proof, which is uniform for 𝑛 ≥ 3, can also be made to
work for 𝑛 = 2 with a slight modification with a modified main term (the statement of our theorem does
not in any way make sense for 𝑛 = 2). The main terms in the asymptotic expansion are the artefacts of
the nonintegrable terms among the product of the constant terms in the Fourier expansion of Eis( 𝑓1/2)
and Eis( 𝑓1/2+𝑠). The constant term of Eis( 𝑓𝑠) looks like

∑
𝑤 𝑀𝑤 𝑓𝑠 , where 𝑀𝑤 are certain intertwining

operators and w runs over a set of Weyl elements attached to the underlying parabolic subgroup (see
Section 3). If 𝑛 ≥ 3, then the nonintegrable terms in the above-mentioned product are of the form
𝑓1/2 𝑓1/2+𝑠 and 𝑀 𝑓1/2𝑀 𝑓1/2+𝑠, where M is the intertwiner attached to the relative long Weyl element. In
particular, the off-diagonal terms of the from 𝑓1/2𝑀 𝑓1/2+𝑠 are integrable. Such a phenomenon does not
happen for 𝑛 = 2. In this case (where the maximal Eisenstein series is also a minimal Eisenstein series),
the off-diagonal terms are also nonintegrable.

As described in the sketch of the proof, eventually we need to deform the principal series vector to
regularise the Eisenstein series. The number of deformations needed in the Langlands parameters of the
associated principal series vector depends on the number of nonintegrable terms in the product of the
constant terms. For 𝑛 ≥ 3, we need to deform only one of the parameters of the principal series vector
to regularise the corresponding maximal parabolic Eisenstein series. However, for 𝑛 = 2, for the reasons
stated above, to regularise the Eisenstein series, we need to deform two (i.e., both) of the parameters.
This modification will produce more degenerate terms, and consequently, a different main term with a
different constant will appear; see [4].

1.2. What’s next?

As we have described above, the motivating question for us is to find an asymptotic expansion of the
2𝑛th moment of the central L-values for PGL(𝑛), and to do that, we need to replace 𝜙0 with a minimal
Eisenstein series 𝐸0 with trivial Langlands parameters. As, in particular, 𝐸0 is not in 𝐿∞, our current
proof obviously fails (see the sketch of the proof), and that is why we need to regularise 𝐸0 as well.
However, this regularisation increases the analytic difficulties manyfold. We need to employ a regularised
version of the spectral decomposition (and Parseval), as in, for example, [29, 27], to follow the same
strategy as in the sketch of the proof of the main theorem. On the other hand, regularising both the
Eisenstein series involved in the period 〈|𝐸0 |

2, |Eis( 𝑓1/2) (.𝑥) |
2〉 will introduce many more degenerate

terms, which will typically have higher-order poles at the critical point. This will likely yield a higher
power of log 𝑋 in the main term. It will be interesting to see if the constant appearing in the main term
is the same as predicted by the random matrix models; see [9]. However, we leave this to future work.

It is natural to speculate what happens for the second moment of the Rankin–Selberg L-functions
for other (GL(𝑛),GL(𝑚)) pairs with 𝑚 ≠ 𝑛 and the GL(𝑚) form being fixed (cuspidal or Eisenstein).
If 𝑚 < 𝑛, we believe that the problems become simpler than the 𝑚 = 𝑛 case as the degrees, and hence
conductors, become lower. Similarly, for 𝑚 > 𝑛, we expect the problems to be much more difficult
for high degree and conductor size. In particular, it will be very interesting to see if we can push the
method in this paper at least to the case 𝑚 = 𝑛 + 1 case. More interestingly, if 𝑛 = 3 and the fixed form
is a minimal Eisenstein series, then we will have a Lindelöf-consistent eighth moment (the convexity
barrier) of L-functions of PGL(3) over the family F𝑋 .

Remark 1.4. We briefly remark that one may try to explicate the constant contribution of the asymptotic
expansion in the main theorem and obtain a power-saving error term as in [4]. One possible way to
obtain finer asymptotics in the regularised part is to spectrally expand the period 〈|𝜙0 |

2, �̃�𝑠 (.𝑥)〉 over
the PGL(𝑛) automorphic spectrum. Then one may use the existence of a spectral gap and explicit decay
of the matrix coefficient for 𝑛 ≥ 3 to obtain that 〈|𝜙0 |

2, 𝜙〉〈𝜙, �̃�𝑠 (.𝑥)〉, at least for a tempered 𝜙, will
decay polynomially in X. However, it is not yet clear to us how to explicate the constant term and get an
error term with polynomial saving in the degenerate part; see Remark 5.4.
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2. Basic notations and preliminaries

2.1. Basic notations

We use adèlic language. Let 𝑟 ≥ 3. For any ring R by 𝐺 (𝑅), we denote the set of points GL𝑟 (𝑅)/𝑅×.
In this paper, R will denote the adèles A over Q or the local fields R,Q𝑝 or rational numbers Q or the
local ring Z𝑝 . We drop the ring R from the notation 𝐺 (𝑅) if the ring is clear from the context.

Let N be the maximal unipotent subgroup of G consisting of upper triangular matrices. For 𝑞 ∈ A𝑟−1,
we define a character of 𝑁 (A) by

𝜓𝑞 (𝑛(𝑥)) = 𝜓0

(
𝑟−1∑
𝑖=1

𝑞𝑖𝑥𝑖,𝑖+1

)
, 𝑛(𝑥) := (𝑥𝑖, 𝑗 )𝑖, 𝑗 ,

where 𝜓0 is an additive character of Q\A. We abbreviate 𝜓 (1,...,1) by 𝜓. We call 𝜓𝑞 nondegenerate if
𝑞𝑖 ≠ 0 for 1 ≤ 𝑖 ≤ 𝑟 − 1; otherwise, we call 𝜓𝑞 degenerate.

Let A be the set of diagonal matrices in G, which we identify with
(
𝐴𝑟−1

1

)
, where 𝐴𝑟−1 is the set of

diagonal matrices in GL(𝑟−1). We parametrise elements of 𝐴𝑟−1 as 𝑎(𝑦) := diag(𝑦1 . . . 𝑦𝑟−1, . . . , 𝑦𝑟−1)
Let 𝐾 :=

∏
𝑝≤∞ 𝐾𝑝 be the standard maximal compact in 𝐺 (A), where 𝐾𝑝 := 𝐺 (Z𝑝) for 𝑝 < ∞ and

𝐾∞ := PO𝑟 (R).
For any factorisable function f on𝐺 (A) by 𝑓𝑝 , we denote the pth component of f, which is a function

on 𝐺 (Q𝑝).

2.2. Domains and measures

We fix Haar measures on G and its subgroups, and a G-invariant measure of 𝑁\𝐺. If the subgroup is
compact, then we normalise the Haar measure to be a probability measure. Let 𝛿 denote the modular
character on A. It is defined by

𝛿(𝑎(𝑦)) :=
𝑟−1∏
𝑗=1

|𝑦 𝑗 |
𝑗 (𝑟−1− 𝑗)

and is trivially extended to 𝑁𝐴.
To integrate over 𝑁 (R)\𝐺 (R), we use two different types of coordinates according to efficiency. The

first one is Bruhat (with respect to the standard maximal parabolic) coordinates. First, note that the set

of elements of the form
(
ℎ 𝑏𝑡

𝑐 0

)
with ℎ ∈ GL𝑟−1(R) and row vectors 𝑏, 𝑐 ∈ R𝑟−1 has zero measure

in GL𝑟 (R) with respect to its Haar measure. Thus while integrating over 𝐺 (R), we integrate over the
points of the form (

ℎ 𝑏𝑡

1

) (
I𝑟−1
𝑐 1

)
, ℎ ∈ GL𝑟−1(R) and 𝑏, 𝑐 ∈ R𝑟−1 row vectors.

Similarly, the set of points of the form

𝑔 =

(
ℎ

1

) (
I𝑟−1
𝑐 1

)
, ℎ ∈ 𝑁𝑟−1(R)\GL𝑟−1(R) and 𝑐 ∈ R𝑟−1 row vector

has full measure in 𝑁 (R)\𝐺 (R). We use these coordinates to integrate over 𝑁 (R)\𝐺 (R) using the
invariant measure

𝑑𝑔 =
𝑑ℎ

| det(ℎ) |
𝑑𝑐,
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where 𝑑𝑐 denotes the Lebesgue measure and 𝑑ℎ is the GL𝑟−1(R)-invariant Haar measure on
𝑁𝑟−1(R)\GL𝑟−1(R). Description of the above invariant measure follows from [23, eq. (5.14)] and dis-
cussion above that. However, there is a more direct way to see this. Let 𝜙 ∈ 𝐶𝑐 (𝐺 (R)) be measurable.
Then it follows from [14, Proposition 1.4.3] that∫

𝐺 (R)

𝜙(𝑔)𝑑𝑔 =
∫
R𝑛

2−1
𝜙

[(
ℎ 𝑏𝑡

𝑐 1

)] ∏
𝑖, 𝑗 𝑑𝐿ℎ𝑖 𝑗

∏
𝑖 𝑑𝐿𝑏𝑖

∏
𝑖 𝑑𝐿𝑐𝑖����det

[(
ℎ 𝑏𝑡

𝑐 1

)] ����𝑛 ,

where 𝑑𝐿𝑥 denotes the Lebesgue measure on R. Noting that(
ℎ 𝑏𝑡

𝑐 1

)
=

(
I𝑟−1 𝑏𝑡

1

) (
ℎ − 𝑏𝑡𝑐

1

) (
I𝑟−1
𝑐 1

)
,

we can write∫
𝐺 (R)

𝜙(𝑔)𝑑𝑔 =
∫
R𝑛

2−1
𝜙

[(
I𝑟−1 𝑏𝑡

1

) (
ℎ − 𝑏𝑡𝑐

1

) (
I𝑟−1
𝑐 1

)] ∏
𝑖, 𝑗 𝑑𝐿ℎ𝑖 𝑗

∏
𝑖 𝑑𝐿𝑏𝑖

∏
𝑖 𝑑𝐿𝑐𝑖

| det(ℎ − 𝑏𝑡𝑐) |𝑛
.

Fixing 𝑏, 𝑐 and changing variables ℎ𝑖 𝑗 ↦→ ℎ𝑖 𝑗 + (𝑏𝑡𝑐)𝑖 𝑗 , we can write the above as∫
𝐺 (R)

𝜙(𝑔)𝑑𝑔 =
∫
R𝑛

2−1
𝜙

[(
I𝑟−1 𝑏𝑡

1

) (
ℎ

1

) (
I𝑟−1
𝑐 1

)] ∏
𝑖, 𝑗 𝑑𝐿ℎ𝑖 𝑗

∏
𝑖 𝑑𝐿𝑏𝑖

∏
𝑖 𝑑𝐿𝑐𝑖

| det(ℎ) |𝑛
.

Noting that
∏

𝑖, 𝑗 𝑑𝐿ℎ𝑖 𝑗

| det(ℎ) |𝑛−1 = 𝑑ℎ and taking the 𝑁 (R)-quotient on the left, we deduce the invariant measure
on 𝑁 (R)\𝐺 (R).

On the other hand, when we integrate on 𝑁𝑟−1(R)\GL𝑟−1(R), we use Iwasawa coordinates. We write

𝑁𝑟−1(R)\GL𝑟−1(R) � ℎ = 𝑎(𝑦)𝑘, 𝑎(𝑦) ∈ 𝐴𝑟−1, 𝑘 ∈ 𝐾𝑟−1,

where 𝐾𝑟−1 is the standard maximal compact in GL𝑟−1, with the measure

𝑑ℎ =
∏
𝑖 𝑑

×𝑦𝑖
𝛿(𝑎(𝑦))

𝑑𝑘,

where 𝑑𝑘 is the probability Haar measure on 𝐾𝑟−1.
Let X := 𝐺 (Q)\𝐺 (A). We fix a fundamental domain X in 𝐺 (A) of the form

𝐷 × 𝐾 𝑓 , 𝐷 ⊆ 𝐺 (R), 𝐾 𝑓 :=
∏
𝑝<∞

𝐾𝑝

that is contained in a Siegel domain of the form S × 𝐾 𝑓 , where

S := {𝐺 (R) � 𝑔 = 𝑛(𝑥)

(
𝑎(𝑦)

1

)
𝑘 | |𝑥𝑖, 𝑗 | < 1, |𝑦𝑖 | > 𝑦0, 𝑘 ∈ 𝐾∞}, (2.1)

where 𝑦0 > 0 is an explicit constant dependent only on the group. The above follows from strong
approximation for GL(𝑛) and [14, §1.3].

We equip X with the 𝐺 (A)-invariant probability measure that in Iwasawa coordinates is given by

X � 𝑔 = 𝑛(𝑥)

(
𝑎(𝑦)

1

)
𝑘, 𝑑𝑔 =

∏
𝑗 ,𝑘

𝑑𝑥 𝑗 ,𝑘

∏
𝑖 𝑑

×𝑦𝑖
𝛿(𝑎(𝑦)) | det(𝑎(𝑦)) |

𝑑𝑘,
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where 𝑛(𝑥) ∈ 𝑁 (R) and 𝑑𝑥𝑖, 𝑗 is the usual Lebesgue measure. Note that 𝛿

(
𝑎(𝑦)

1

)
=

𝛿(𝑎(𝑦)) | det(𝑎(𝑦)) |.

2.3. Automorphic representations

We briefly describe the classes of local and global representations that are relevant in this paper. We
refer to [28], [12, §5] for details.

Let X̂ be the isomorphism class of irreducible unitary automorphic representations that are unramified
at all finite places and appear in the spectral decomposition of 𝐿2 (X). Similarly, by X̂gen, we denote the
subclass of generic representations in X̂: that is, the class of representations that have (unique) Whittaker
models.

We first mention the Langlands description for X̂gen. We take a partition 𝑟 = 𝑟1 + · · · + 𝑟𝑘 . Let 𝜋 𝑗 be
a unitary cuspidal automorphic representation for GL𝑟 𝑗 (Q) (if 𝑟 𝑗 = 1, we take 𝜋 𝑗 to be a unitary Hecke
character). Consider the normalised parabolic induction Π from the Levi GL(𝑟1) × · · · × GL(𝑟𝑘 ) to G
of the tensor product 𝜋1 ⊗ · · · ⊗ 𝜋𝑘 . There exists a unique irreducible constituent of Π, which we denote
by the isobaric sum 𝜋1 � · · · � 𝜋𝑘 . Then the Langlands classification says that every element in X̂gen is
isomorphic to an isobaric sum �𝑘′𝑗=1𝜋

′
𝑗 for some partition 𝑟 =

∑𝑘′
𝑗=1 𝑟

′
𝑗 and some cuspidal representation

𝜋′𝑗 of GL(𝑟 ′𝑗 ).
We recall from [28] that we call 𝜋′ ∈ X̂ a discrete series if 𝜋′ appears discretely in the spectral de-

composition of 𝐿2 (X). The elements of 𝜋′ are square-integrable automorphic forms for𝐺 (Q). Mœglin–
Waldspurger classified the discrete series for 𝐺 (Q) via the iterated residues of generic automorphic
forms; see [28]. The Langlands description of X̂ says that every element in X̂ is isomorphic to an iso-
baric sum �𝑘′𝑗=1𝜋

′
𝑗 for some partition 𝑟 =

∑𝑘′
𝑗=1 𝑟

′
𝑗 and some discrete series representation 𝜋′𝑗 of GL(𝑟 ′𝑗 ).

We fix an automorphic Plancherel measure 𝑑𝜇aut on X̂ compatible with the invariant probability
measure on X. If 𝜋 is a discrete series, then 𝑑𝜇aut (𝜋) is absolutely continuous to the counting measure
at 𝜋. On the other hand, if 𝜋 is an Eisenstein series induced from a twisted discrete series 𝜋′ |.|𝜆, where
𝜋′ is a discrete series on a Levi subgroup M and 𝜆 lies in the purely imaginary dual of the Cartan
subalgebra of M, then 𝑑𝜇aut (𝜋) is absolute continuous to the product of the counting measure at 𝜋′ and
the Lebesgue measure at 𝜆.

For any 𝜋 ∈ X̂, we denote the pth component of 𝜋 by 𝜋𝑝 for 𝑝 ≤ ∞. The generalised Ramanujan
conjecture predicts that if 𝜋 is cuspidal, then 𝜋𝑝 is tempered for all 𝑝 ≤ ∞. In this paper, we assume that
certain cuspidal representations are 𝜗-tempered at the archimedean place, whose definition we recall
below.

First we describe the Langlands description of the generic representations of 𝐺 (R). Let 𝑟 ′ ∈ {1, 2}
and 𝜎 be an essentially square integrable (square integrable mod centre) representation of GL𝑟 ′ (R).
That is, if 𝑟 ′ = 2, then 𝜎 is a discrete series of GL2 (R); and if 𝑟 ′ = 1, then 𝜎 is a unitary character of
GL1(R). By the Langlands classification, we know that any generic unitary irreducible representation
𝜉 of 𝐺 (R) is isomorphic to a normalised parabolic induction of

𝜎1 | det |𝑠1 ⊗ · · · ⊗ 𝜎𝑘 | det |𝑠𝑘 ,

from a Levi subgroup attached to a partition of 𝑟 =
∑𝑘
𝑗=1 𝑟 𝑗 with 𝑟 𝑗 ∈ {1, 2}, where 𝜎𝑗 is an essentially

square integrable representation of GL(𝑟 𝑗 ) and 𝑠 𝑗 ∈ C with
∑𝑘
𝑗=1 𝑟 𝑗 𝑠 𝑗 = 0 and �(𝑠1) ≥ · · · ≥ �(𝑠𝑘 ).

Let 𝜗 ≥ 0. We say that 𝜉 is 𝜗-tempered if all such 𝑠𝑖 have real parts in [−𝜗, 𝜗]. By [26], if 𝜋 is
cuspidal, then 𝜋∞ is 𝜗-tempered with 𝜗 = 1/2 − 1/(1 + 𝑟2).

We denote the analytic conductor of 𝜋 by 𝐶 (𝜋). Note that as 𝜋 ∈ X̂ is unramified at all the finite
places, we have 𝐶 (𝜋) = 𝐶 (𝜋∞). If {𝜇𝑖} ∈ C𝑟 are the Langlands parameters of 𝜋∞, then we define (see
[15]) 𝐶 (𝜋∞) :=

∏𝑟
𝑖=1(1 + |𝜇𝑖 |).
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2.4. Maximal Eisenstein series

Let P be the standard parabolic subgroup in G attached to the 𝑟 = (𝑟 − 1) + 1 partition. We choose a
generalised principal series vector

𝑓𝑠 ∈ I𝑟−1,1(𝑠) := Ind𝐺 (A)

𝑃 (A)
| det |𝑠 � |.|−(𝑟−1)𝑠 , 𝑠 ∈ C,

by

𝑓𝑠 (𝑔) = 𝑓𝑠,Φ(𝑔) :=
∫
A×

Φ(𝑡𝑒𝑟𝑔) | det(𝑡𝑔) |𝑠𝑑×𝑡, (2.2)

where Φ ∈ S(A𝑟 ) is a Schwartz–Bruhat, factorisable function and 𝑒𝑟 = (0, . . . , 0, 1) ∈ A𝑟 . The integral
in equation (2.2) converges for �(𝑠) > 1/𝑟 and then can be extended meromorphically to the whole
complex plane. By Φ̂, we denote Fourier transform of Φ that is defined by

Φ̂(𝑥) :=
∫
A𝑟

Φ(𝑢)𝜓0(𝑥1𝑢1 + · · · + +𝑥𝑟𝑢𝑟 )𝑑𝑢.

We abbreviate 𝑓𝑠,Φ̂ as 𝑓𝑠 . We record the following transformation property of 𝑓𝑠 , which can be seen
from equation (2.2):

𝑓𝑠

[(
ℎ

1

)
𝑔

]
= | det(ℎ) |𝑠 𝑓𝑠 (𝑔), ℎ ∈ GL𝑟−1(A), 𝑔 ∈ 𝐺 (A). (2.3)

Finally, we define the maximal Eisenstein series associated to 𝑓𝑠 by

Eis( 𝑓𝑠) (𝑔) :=
∑

𝛾∈𝑃 (Q)\𝐺 (Q)

𝑓𝑠 (𝛾𝑔).

The above definition is valid for s in a right half plane and then can be extended to all of C by
meromorphic continuation. From [21, §4], [11, §2.3.1], we know that for 𝑓𝑠,Φ ∈ I𝑟−1,1(𝑠) with some
Φ ∈ S(A𝑟 ), the maximal parabolic Eisenstein series Eis( 𝑓𝑠,Φ) has at most simple poles at 𝑠 = 0 and
𝑠 = 1. The residues at these poles are independent of g.

Let �̃� be the maximal parabolic subgroup in G attached to the partition 𝑟 = 1 + (𝑟 − 1) (the associate
parabolic to P). We can similarly construct an associated Eisenstein series from a vector 𝑓𝑠 ∈ I1,𝑟−1(𝑠)
defined analogously. All of the properties of an Eisenstein series associated to P hold analogously for
the same associated to �̃�.

2.5. Genericity and Kirillov model

We briefly review the Whittaker and Kirillov models of a generic representation of G over a local field;
see [16] for details. In this subsection, we only work locally, without mentioning the underlying local
field. Fix a nondegenerate additive character 𝜓 of 𝑁 < 𝐺. Consider the space of Whittaker functions on
G by

W(𝐺) :=

{
𝑊 ∈ 𝐶∞(𝐺)

�����𝑊 (𝑛𝑔) = 𝜓(𝑛)𝑊 (𝑔), 𝑛 ∈ 𝑁, 𝑔 ∈ 𝐺;
𝑊 grows at most polynomially in 𝑔

}
,

on which G acts by right translation.
We call an irreducible representation 𝜋 of G generic if there exists a G-equivariant embedding

𝜋 ↩→ W(𝐺). For generic 𝜋, we identify 𝜋 with its image in W(𝐺), which we call the Whittaker model
of 𝜋 under this embedding.
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It is known (for example, see [16] for the case of an archimedean local field) from the theory of the
Kirillov model that if 𝜋 is an irreducible generic representation of PGL(𝑟), then

𝜋 � 𝑊 ↦→

{
GL(𝑟 − 1) � 𝑔 ↦→ 𝑊

[(
𝑔

1

)]}
is injective and the space of the restricted Whittaker functions in the right-hand side, which is called the
Kirillov model, is isomorphic to 𝜋 as well. It is also known that the space 𝐶∞

𝑐 (𝑁𝑟−1 (R)\GL𝑟−1(R), 𝜓)
is contained in 𝜋 under this realisation; see [16, Proposition 5].

If 𝜋 is also unitary, then we can give a unitary structure on its Whittaker model by the inner product

〈𝑊1,𝑊2〉 :=
∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

𝑊1

[(
ℎ

1

)]
𝑊2

[(
ℎ

1

)]
𝑑ℎ;

that is, we have 〈𝑊1 (.𝑔),𝑊2 (.𝑔)〉 = 〈𝑊1,𝑊2〉 for 𝑔 ∈ 𝐺.

2.6. Zeta integrals

We review the theory of the GL(𝑟) × GL(𝑟) Rankin–Selberg integral. We refer to [11] for details. We
choose 𝜙0 ∈ 𝜋0 with a factorisable Whittaker function 𝑊0 and a maximal Eisenstein series Eis( 𝑓𝑠)
attached to some vector 𝑓𝑠 in the generalised Principal series I𝑟−1,1(𝑠), as defined in Section 2.4. Let
𝜋 ∈ X̂ and 𝜙 ∈ 𝜋 be any automorphic form. One defines the global Rankin–Selberg integral [11, §2.3.2]
of 𝜙0 and 𝜙 by

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) :=
∫
𝐺 (Q)\𝐺 (A)

𝜙0(𝑔)𝜙(𝑔)Eis( 𝑓𝑠) (𝑔)𝑑𝑔,

where 𝑠 ∈ C is such that Eis( 𝑓𝑠) is regular. As 𝜙0 is cuspidal, the above integral converges absolutely.
For s in a right half plane performing a standard unfolding-folding, one gets

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) =
∫
𝑃 (Q)\𝐺 (A)

𝜙0(𝑔)𝜙(𝑔) 𝑓𝑠 (𝑔)𝑑𝑔.

The above integral representation of Ψ( 𝑓𝑠 , 𝜙0, 𝜙) has a meromorphic continuation to all 𝑠 ∈ C. It is
known that if 𝜋 and 𝜋0 are cuspidal, then the only possible poles of Ψ are simple and can occur at
�(𝑠) = 0, 1.

We may choose 𝑓𝑠 to be factorisable, which can be done by choosing Φ ∈ S(A𝑟 ), as in Section 2.4,
to be factorisable. Furthermore, if we assume that 𝜋 is generic and 𝜙 ∈ 𝜋 has a factorisable Whittaker
function𝑊𝜙 , then for all 𝑠 ∈ C, the global zeta integral is Eulerian – that is, factors in local zeta integrals

Ψ( 𝑓𝑠 , 𝜙, 𝜙) = Ψ∞( 𝑓𝑠,∞,𝑊0,∞,𝑊𝜙,∞)
∏
𝑝<∞

Ψ𝑝 ( 𝑓𝑠, 𝑝 ,𝑊0, 𝑝 ,𝑊𝜙,𝑝),

where the local zeta integral Ψ∞ is defined by

Ψ∞( 𝑓𝑠,∞,𝑊0,∞,𝑊𝜙,∞) : =
∫
𝑁 (R)\𝐺 (R)

𝑊0,∞(𝑔)𝑊𝜙,∞(𝑔) 𝑓𝑠,∞(𝑔)𝑑𝑔

=
∫
𝑁 (R)\GL𝑟 (R)

𝑊0,∞(𝑔)𝑊𝜙,∞(𝑔)Φ∞(𝑒𝑟𝑔) | det(𝑔) |𝑠𝑑𝑔,

for s being in some right half plane and then can be meromorphically continued to the whole complex
plane. Similarly, the nonarchimedean zeta integral Ψ𝑝 is defined by replacing ∞ with p and R with Q𝑝 .
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It is known that if 𝜋0, 𝑝 and 𝜋𝑝 are unitary and 𝜗0 and 𝜗 tempered, respectively, then the above integral
representation of Ψ𝑝 is valid for �(𝑠) ≥ 1/2 if 𝜗 + 𝜗0 < 1/2 and 𝑝 ≤ ∞ (this can be seen in the
archimedean case from the bounds of the Whittaker functions in Lemma 7.2).

We record the local functional equation satisfied by Ψ∞. From [11, Theorem 3.2], we have∫
𝑁 (R)\GL𝑟 (R)

�̃�0,∞(𝑔)�̃�𝜙,∞(𝑔)Φ̂∞(𝑒𝑟𝑔) | det(𝑔) |1−𝑠𝑑𝑔

= 𝛾∞(𝑠, 𝜋0,∞ ⊗ 𝜋∞, 𝜓)

∫
𝑁 (R)\GL𝑟 (R)

𝑊0,∞(𝑔)𝑊𝜙,∞(𝑔)Φ∞(𝑒𝑟𝑔) | det(𝑔) |𝑠𝑑𝑔.

Here �̃� denotes the contragredient Whittaker function of W defined by �̃� (𝑔) := 𝑊 (𝑤𝑔−𝑡 ), where w is
the long Weyl element in 𝐺 (R) and 𝛾∞(., ., 𝜓) denotes the local archimedean 𝛾-factor. As the additive
character 𝜓 is fixed throughout the paper, we drop 𝜓 from the notation of 𝛾∞. Folding the above integrals
over R×, we can also rewrite the local functional equation as

Ψ∞( 𝑓1−𝑠,∞, �̃�0,∞, �̃�∞) = 𝛾∞(𝑠, 𝜋0,∞ ⊗ �̄�∞)Ψ∞( 𝑓𝑠,∞,𝑊0,∞,𝑊∞), (2.4)

for any 𝑊∞ ∈ 𝜋∞, and f is related to Φ according to equation (2.2). From the definition of the 𝛾-factors
(see [11, p. 120]), one can check that |𝛾∞(1/2,Π) | = 1 if Π is unitary.

2.7. Plancherel formula

We refer to [27, §2.2] for a more detailed discussion of the Plancherel formula.
Recall the automorphic Plancherel measure 𝑑𝜇aut on X̂ from Section 2.3. Let 𝜙1, 𝜙2 ∈ 𝐶∞(X) with

rapid decay at all cusps. We record a Plancherel formula (i.e., a spectral decomposition) of the inner
product between 𝜙1 and 𝜙2,

〈𝜙1, 𝜙2〉 =
∫
X̂

∑
𝜙∈B(𝜋)

〈𝜙1, 𝜙〉〈𝜙, 𝜙2〉𝑑𝜇aut (𝜋), (2.5)

where B(𝜋) is an orthonormal basis of 𝜋 and

〈 𝑓1, 𝑓2〉 :=
∫
X

𝑓1(𝑔) 𝑓2 (𝑔)𝑑𝑔.

The identity equation (2.5) is independent of choice of B(𝜋).
Rapid decay properties of 𝜙𝑖 imply that all the inner products on the right-hand side of equation

(2.5) converge. One can show by the trace class property in 𝐿2 (X) of some inverse Laplacian that the
right-hand side of equation (2.5) converges absolutely.

2.8. Spectral weights

Let 𝜋, 𝜋0 ∈ X̂gen with 𝑊0,∞ ∈ 𝜋0,∞ and 𝑓𝑠 ∈ I𝑟−1,1(𝑠). We define the spectral weight

𝐽 ( 𝑓𝑠,∞𝑊0,∞, 𝜋∞) :=
∑

𝑊∞∈B(𝜋∞)

|Ψ∞( 𝑓𝑠,∞,𝑊0,∞,𝑊∞)|
2. (2.6)

Here B(𝜋∞) is an orthonormal basis of 𝜋∞. The sum in the right-hand side of equation (2.6) is absolutely
convergent and is independent of choice of B(𝜋∞); see [5, Appendix 4].
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The definition of J involves only the archimedean components of the representations and func-
tions. In fact, one can define J for any irreducible generic unitary representation 𝜎 of 𝐺 (R) and
𝛽 ∈ 𝐶∞(𝑁 (R)\𝐺 (R), 𝜓∞) with sufficient decay at infinity, by

𝐽 (𝛽, 𝜎) :=
∑

𝑊 ∈B(𝜎)

����∫
𝑁 (R)\𝐺 (R)

𝛽(𝑔)𝑊 (𝑔)𝑑𝑔

����2.
Then, using the Whittaker–Plancherel formula (see [33, Chapter 15]), one can obtain that∫

�𝐺 (R)

𝐽 (𝛽, 𝜎)𝑑𝜇loc(𝜎) =
∫
𝑁 (R)\𝐺 (R)

|𝛽(𝑔) |2𝑑𝑔 =: ‖𝛽‖2
𝐿2 (𝑁 (R)\𝐺 (R))

. (2.7)

Here �𝐺 (R) is the tempered unitary dual of 𝐺 (R) equipped with the local Plancherel measure 𝑑𝜇loc
compatible with the chosen Haar measure on 𝐺 (R) (see [6, §4.13.2]).

2.9. Analytic newvectors

Analytic newvectors are certain approximate archimedean analogues of the classical nonarchimedean
newvectors pioneered by Casselman [8] and Jacquet–Piatetski-Shapiro–Shalika [20]. Let 𝐾0(𝑝

𝑁 ) ⊂

PGL𝑟 (Z𝑝) be the subgroup of matrices whose last rows are congruent to (0, . . . , 0, ∗)mod 𝑝𝑁 . Let 𝜎
be a generic irreducible representation of PGL𝑟 (Q𝑝), and let 𝑁0 be the minimal nonnegative integer
such that 𝜎 contains a nonzero vector v that is invariant by 𝐾0(𝑝

𝑁0 ). Let 𝐶 (𝜎) be the conductor of
𝜎, which can be defined in terms of the local gamma factor attached to 𝜎. Then the main theorem of
[8, 20] states that the real number 𝑝𝑁0 is equal to 𝐶 (𝜎). One calls such a v a newvector of 𝜎. In [20],
the authors call newvectors essential vectors; and in some literature, the authors call them newforms.

In [19] the authors produce an approximate analogue of this theorem at the archimedean place. Let
𝑋 > 1 be tending to infinity and 𝜏 > 0 be sufficiently small but fixed. We define an approximate con-
gruence subgroup 𝐾0(𝑋, 𝜏) ⊆ PGL𝑟 (R), which is an archimedean analogue of the subgroup 𝐾0(𝑝

𝑁 ),
in the following way: it is the image in PGL𝑟 (R) of

⎧⎪⎪⎨⎪⎪⎩
(
𝑎 𝑏
𝑐 𝑑

)
∈ GL𝑟 (R)

������𝑎 ∈ GL𝑟−1(R), |𝑎 − 1𝑟−1 | < 𝜏, |𝑏 | < 𝜏,

𝑑 ∈ GL1(R), |𝑐 | <
𝜏

𝑋
, |𝑑 − 1| < 𝜏

⎫⎪⎪⎬⎪⎪⎭. (2.8)

Here, |.| denotes an arbitrary fixed norm on the corresponding spaces of matrices. Fix 0 ≤ 𝜗 < 1/2.
Then in [19, Theorem 1], the authors show that for all 𝜖 > 0, there is a 𝜏 > 0 such that for all generic
irreducible unitary 𝜗-tempered representation 𝜋 of PGL𝑟 (R), there is a unit vector 𝑣 ∈ 𝜋 such that

‖𝜋(𝑔)𝑣 − 𝑣‖𝜋 < 𝜖 for all 𝑔 ∈ 𝐾0(𝐶 (𝜋), 𝜏),

where 𝐶 (𝜋) is the analytic conductor of 𝜋. We call such a vector v an analytic newvector of 𝜋.
The authors also prove that [19, Theorem 7] any unit vector v in the Kirillov model of 𝜋 that can be

given by a function in 𝐶∞
𝑐 (𝑁𝑟−1(R)\GL𝑟−1(R), 𝜓∞)

O𝑟−1 (R) is a newvector. Moreover, v can be chosen
in a way such that if W is the image of v in the corresponding Whittaker model, then also

|𝑊 (𝑔) −𝑊 (1) | < 𝜖

for all 𝑔 ∈ 𝐾0(𝐶 (𝜋), 𝜏) and 𝑊 (1) � 1.
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2.10. Main theorem

Theorem 2.1. Let 𝑟 ≥ 3 and X be tending to infinity. Let 𝜋0 be a fixed cuspidal representation in X̂ such
that 𝜋0,∞ is 𝜗0-tempered for some 0 ≤ 𝜗0 < 1/(𝑟2 + 1). We define a weight function

𝐽𝑋 : X̂gen → R≥0,

as in equation (4.5), which satisfies the following properties:

◦ 𝐽𝑋 (𝜋) only depends on the archimedean component of 𝜋 (with an abuse of notation, we write
𝐽𝑋 (𝜋) = 𝐽𝑋 (𝜋∞)).

◦ If 𝜋∞ is 𝜗-tempered such that 𝜗 + 𝜗0 < 1/2 and 𝐶 (𝜋∞) < 𝑋 , then 𝐽𝑋 (𝜋∞) 𝜋0 1.
◦

∫�𝐺 (R)
𝐽𝑋 (𝜋∞)𝑑𝜇loc(𝜋∞) = 𝑋𝑟−1.

And finally, we have∫
X̂gen

|𝐿(1/2, �̃� ⊗ 𝜋0) |
2

ℓ(𝜋)
𝐽𝑋 (𝜋)𝑑𝜇aut (𝜋) = 𝑋𝑟−1

(
𝑟
𝜁 (𝑟/2)2

𝜁 (𝑟)
𝐿(1, 𝜋0,Ad) log 𝑋 +𝑂 𝜋0 (1)

)
,

where �̃� is the contragredient of 𝜋. Here ℓ(𝜋) is defined as in equation (4.3) and only depends on the
nonarchimedean data of 𝜋.

If 𝜋 is cuspidal, then ℓ(𝜋) � 𝐿(1, 𝜋,Ad) with an absolute implied constant and thus ℓ(𝜋) �𝜖 𝐶 (𝜋) 𝜖 ,
which follows from [25].

We note that if 𝜋 ∈ X̂gen, then 𝜋∞ is 𝜗-tempered for 𝜗 < 1/2 − 1/(𝑟2 + 1), which is a result in [26].
Thus the 𝜗0-temperedness assumption of 𝜋0,∞ in Theorem 2.1 implies that 𝐽𝑋 (𝜋)  1 for all 𝜋 ∈ X̂gen
with 𝐶 (𝜋) < 𝑋 . Moreover, the family

F gen
𝑋 := {generic automorphic representations 𝜋 of PGL𝑟 (Z) with 𝐶 (𝜋) < 𝑋}

has ℓ(𝜋)−1-weighted cardinality � 𝑋𝑟−1. This is essentially contained in the proof of [19, Theorem 9].
Hence, 𝐽𝑋 can be realised as a smoothened characteristic function of the ℓ(𝜋)−1-weighted family F gen

𝑋 .
Consequently, we have an immediate corollary of Theorem 2.1.

Corollary 2.2. Let 𝜋0 be as in Theorem 2.1. Then∑
𝐶 (𝜋)<𝑋
X̂�𝜋cuspidal

|𝐿(1/2, 𝜋 ⊗ 𝜋0) |
2

𝐿(1, 𝜋,Ad)
�𝜋0 𝑋

𝑟−1 log 𝑋

as X tends to infinity.

This is the sharpest possible (Lindelöf on average) second-moment estimate of the cuspidal Rankin–
Selberg central L-values.

3. The Fourier expansion of maximal Eisenstein series

We recall some useful information about the Fourier expansion of maximal Eisenstein series. The
computation is essentially done in [24], but we extract the relevant computation for completeness.

Let 𝑓𝑠 be a holomorphic section in the generalised principal series I𝑟−1,1(𝑠) such that 𝑓𝑠 is constructed
from a Schwartz–Bruhat function Φ ∈ S(A𝑟 ), as described in Section 2.4. Let Eis( 𝑓𝑠) be the Eisenstein
series attached to 𝑓𝑠 .
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We want to understand the Fourier expansion of Eis( 𝑓𝑠). It is a straightforward calculation using the
Bruhat decomposition. We sketch out the essential details for completeness. Let �(𝑠) be sufficiently
large. We temporarily allow 𝜓 to be a possibly degenerate character of N. Then∫

𝑁 (Q)\𝑁 (A)

Eis( 𝑓𝑠) (𝑛𝑔)𝜓(𝑛)𝑑𝑛 =
∑

𝛾∈𝑃 (Q)\𝐺 (Q)

∫
𝑁 (Q)\𝑁 (A)

𝑓𝑠 (𝛾𝑛𝑔)𝜓(𝑛)𝑑𝑛. (3.1)

We start with the Bruhat decomposition of 𝐺 (Q) with respect to 𝑃(Q). The Bruhat cells are indexed
by a subset of the Weyl group, namely, the subset of Weyl elements w such that 𝑤𝛼 > 0 for all simple
roots 𝛼 other than 𝛼0 that determines P.

Lemma 3.1. We define the Weyl elements

𝑤𝑖 := ���
𝐼𝑖−1

𝐼𝑟−𝑖
1

� !, 1 ≤ 𝑖 ≤ 𝑟.

Also let 𝑁𝑖 be the subgroup of N of the form

𝑁𝑖 :=
⎧⎪⎪⎨⎪⎪⎩𝑛 := ���

𝐼𝑖−1
1 𝑥
𝐼𝑟−𝑖

� ! | 𝑥 := (𝑥1, . . . , 𝑥𝑟−𝑖)

⎫⎪⎪⎬⎪⎪⎭.
Then

𝐺 (Q) =
𝑟⊔
𝑖=1

𝑃(Q)𝑤𝑖𝑁𝑖 (Q),

where the union is disjoint.

Proof. Any 𝛾 ∈ 𝐺 (Q) has the bottom row of the form (0, . . . , 0, 𝑑, ∗, . . . , ∗), where 𝑑 ≠ 0 and occurs
at the ith position for some 1 ≤ 𝑖 ≤ 𝑟 . There exists an element 𝑥 ∈ 𝑁𝑖 such that 𝛾 = 𝑑𝛾′𝑥 with 𝛾′ having
bottom row of the form (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith position. It can readily be checked that
𝛾′𝑤−1

𝑖 ∈ 𝑃(Q). Clearly, the union is disjoint. �

Using Lemma 3.1 and the left-𝑃(Q) invariance of 𝑓𝑠 , we can rewrite the right-hand side of equation
(3.1) as

𝑟∑
𝑖=1

∑
𝛾∈𝑁𝑖 (Q)

∫
𝑁 (Q)\𝑁 (A)

𝑓𝑠 (𝑤𝑖𝛾𝑛𝑔)𝜓(𝑛)𝑑𝑛.

Note that 𝑁𝑖 := 𝑁 ∩ 𝑤−1
𝑖 𝑁 𝑡𝑤𝑖 . Hence, 𝑁 = 𝑁𝑖 �̄�𝑖 , where �̄�𝑖 := 𝑁 ∩ 𝑤−1

𝑖 𝑁𝑤𝑖 . It can be checked that

�̄�𝑖 = {𝑛 ∈ 𝑁 | 𝑒𝑖𝑛 = 𝑒𝑖},

where 𝑒𝑖 = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith place.
We write an element 𝑛 ∈ 𝑁 as 𝑛1𝑛2 with 𝑛1 ∈ 𝑁𝑖 and 𝑛2 ∈ �̄�𝑖 . Unfolding the 𝑁𝑖 (Q) sum, we obtain

that the right-hand side of equation (3.1) is equal to

𝑟∑
𝑖=1

∫
�̄�𝑖 (Q)\�̄�𝑖 (A)

𝜓(𝑛2)

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛1𝑛2𝑔)𝜓(𝑛1)𝑑𝑛1𝑑𝑛2.
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There exist 𝑛′2 ∈ �̄�𝑖 and 𝑛′1 ∈ 𝑁𝑖 such that 𝑛′2𝑛
′
1 = 𝑛1𝑛2 and and 𝑛′′2 ∈ 𝑁 such that 𝑛′′2 𝑤𝑖 = 𝑤𝑖𝑛

′
2.

Appealing to the left-𝑁 (A) invariance of 𝑓𝑠 , we conclude that the above expression is

𝑟∑
𝑖=1

∫
�̄�𝑖 (Q)\�̄�𝑖 (A)

𝜓(𝑛2)

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛
′
1𝑔)𝜓(𝑛1)𝑑𝑛1𝑑𝑛2.

We check that if 𝑒𝑖𝑛1 = (0, 1, 𝑥) for some 𝑥 ∈ A𝑟−𝑖 , then 𝑛′1 = (0, 1, 𝑥𝑢) for some upper triangular
unipotent matrix u in GL𝑟−𝑖 (A). Also, 𝜓(𝑛1) is equal to 𝜓(𝑛′1). Thus, making the change of variables
𝑥𝑢 ↦→ 𝑥, we obtain that∫

𝑁 (Q)\𝑁 (A)

Eis( 𝑓𝑠) (𝑛𝑔)𝜓(𝑛)𝑑𝑛 =
𝑟∑
𝑖=1

∫
�̄�𝑖 (Q)\�̄�𝑖 (A)

𝜓(𝑛′)𝑑𝑛′
∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛𝑔)𝜓(𝑛)𝑑𝑛. (3.2)

Clearly, if 𝜓 is nondegenerate, the above is zero. In particular, if 𝜓 is of the form 𝜓�̃� for some
𝑞 := (𝑞 𝑗 ) 𝑗 ∈ Q

𝑟−1, then the ith summand, for 𝑖 < 𝑟 , on the right-hand side of equation (3.2) does not
identically vanish only if 𝑞 𝑗 = 0 for all 𝑗 ≠ 𝑖. For 𝑖 = 𝑟 , the same happens only if 𝑞 = 0, in which case
the summand is equal to 𝑓𝑠 (𝑔). For 𝑞 ∈ Q, we denote (0, . . . , 0, 𝑞, 0, . . . , 0), where q is at the ith place,
by 𝑖(𝑞).

We define (again on a right half plane, and extend by meromorphic continuation) twisted intertwining
operators on I𝑟−1,1(𝑠) � 𝑓𝑠 attached to the Weyl element 𝑤𝑖 by

𝑀𝑞
𝑖 𝑓𝑠 (𝑔) :=

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑛𝑔)𝜓𝑖 (𝑞) (𝑛)𝑑𝑛. (3.3)

Thus we obtain the following Fourier expansion of Eis( 𝑓𝑠) (𝑔).

Lemma 3.2. Let 𝑓𝑠 and Eis( 𝑓𝑠) (𝑔) be as above. Then

Eis( 𝑓𝑠) (𝑔) = 𝑓𝑠 (𝑔) +
𝑟−1∑
𝑖=1

∑
𝑞∈Q

𝑀𝑞
𝑖 𝑓𝑠 (𝑔).

The terms 𝑓𝑠 and 𝑀0
𝑖 𝑓𝑠 are the constant terms of Eis( 𝑓𝑠) (𝑔).

Let us write 𝑔 ∈ 𝐺 (A) in its Iwasawa coordinates 𝑔 = 𝑛𝑎𝑘 , where 𝑎 :=
(
𝑎(𝑦)

1

)
. Then for 𝑖 < 𝑟 , we

have

𝑀𝑞
𝑖 𝑓𝑠 (𝑔) =

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛
′𝑛𝑎𝑘)𝜓𝑖 (𝑞) (𝑛)𝑑𝑛

′,

which is defined for �(𝑠) large enough and can be meromorphically continued.
We work exactly as before to compute the above integral. We write 𝑛 = 𝑛1𝑛2 with 𝑛1 ∈ 𝑁𝑖 and

𝑛2 ∈ �̄�𝑖 and make the change of variables 𝑛′ ↦→ 𝑛′𝑛−1
1 . Then we write 𝑤𝑖𝑛′𝑛2 = 𝑛′2𝑤𝑖𝑛

′′ for some
𝑛′2 ∈ 𝑁 and 𝑛′′ that is related to 𝑛′ as before, and we make the change of variables 𝑛′′ ↦→ 𝑛′. We use the
left 𝑁 (A)-invariance of 𝑓𝑠 and the fact that 𝜓(𝑛′) = 𝜓(𝑛′′).

Finally, we make the change of variables 𝑛′ ↦→ 𝑎𝑛′𝑎−1 and use the transformation property of 𝑓𝑠 as
in equation (2.3) to obtain

𝑀𝑞
𝑖 𝑓𝑠 (𝑔) = 𝜓𝑖 (𝑞) (𝑛1)

𝑖−1∏
𝑗=1

|𝑦 𝑗 |
𝑠 𝑗
𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 |
(1−𝑠) (𝑟− 𝑗)

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛𝑘)𝜓𝑖 (𝑞) (𝑎𝑛𝑎−1)𝑑𝑛. (3.4)
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We first study the integral on the right-hand side of equation (3.4) for 𝑞 = 0. We use the construction
of 𝑓𝑠 using Φ ∈ S(A𝑟 ) as in Section 2.4. We also parametrise n so that 𝑒𝑖𝑛 = (0, 1, 𝑥) with 𝑥 ∈ A𝑟−𝑖

and make the change of variables 𝑥 ↦→ 𝑥/𝑡 to write the integral as∫
A𝑟−𝑖

∫
A×

(𝑘.Φ) (0, 𝑡, 𝑥) |𝑡 |𝑟𝑠−𝑟+𝑖𝑑×𝑡𝑑𝑥.

Here (𝑘.Φ) (𝑥) := Φ(𝑥𝑘). Using Tate’s functional equation (see [7, Proposition 3.1.6]), we can rewrite
the above as ∫

A×

�(𝑘.Φ)
𝑖
(𝑡𝑒𝑖) |𝑡 |

𝑟−𝑖+1−𝑟𝑠𝑑×𝑡,

where the partial Fourier transform Φ̂𝑖 is defined by

Φ̂𝑖 (𝑥1, . . . , 𝑥𝑟 ) :=
∫
A𝑟−𝑖+1

Φ(𝑥1, . . . , 𝑥𝑖−1, 𝑢1, . . . , 𝑢𝑟−𝑖+1)𝜓(𝑥𝑖𝑢1 + · · · + 𝑥𝑟𝑢𝑟−𝑖+1)𝑑𝑢.

In particular, it can be seen that

𝑀1 𝑓𝑠 (𝑔) = 𝑓1−𝑠,Φ̂(𝑤𝑔
−𝑡 ) =: 𝑓𝑠 (𝑔), (3.5)

where w is the long Weyl element. It can be checked that 𝑓 lies in the principal series I1,𝑟−1(1 − 𝑠)
arising from the associate parabolic �̃�.

Now, for 𝑞 ≠ 0, the integral on the right-hand side of equation (3.4) gives rise to a degenerate
Whittaker function. Parametrising 𝑛 ∈ 𝑁𝑖 (A) as in Lemma 3.1, one can see that 𝜓𝑖 (𝑞) (𝑎𝑛𝑎−1) =
𝜓0 (𝑞𝑦𝑖𝑥1): that is, the value 𝜓𝑖 (𝑞) (𝑎𝑛𝑎−1) depends on a only through 𝑦𝑖 . We define

𝑊 𝑖
𝑓𝑠
(𝑞𝑦𝑖 , 𝑘) :=

∫
𝑁𝑖 (A)

𝑓𝑠 (𝑤𝑖𝑛𝑘)𝜓𝑖 (𝑞) (𝑎𝑛𝑎−1)𝑑𝑛.

Again, the above is defined for �(𝑠) sufficiently large and can be extended analytically to all of C, and
it can be shown that𝑊 𝑖

𝑓𝑠
(𝑡, 𝑘) decays rapidly as 𝑡 → ∞. We prove these claims in Lemma 6.3 (although

these results are implicitly done in [17]). In particular, we have

𝑀𝑞
𝑖 𝑓𝑠 (𝑔) = 𝑊

𝑖
𝑓𝑠
(𝑞𝑦𝑖 , 𝑘)𝜓0(𝑞𝑥𝑖,𝑖+1)

for 𝑞 ≠ 0.
We summarise the above results and rewrite Lemma 3.2 in the following proposition to record the

Fourier expansion of a maximal Eisenstein series.

Proposition 3.3. Let 𝑓𝑠 ∈ I𝑟−1,1(𝑠) be a holomorphic section and Eis( 𝑓𝑠) (𝑔) be the corresponding

maximal Eisenstein series. Let 𝑔 = 𝑛(𝑥)

(
𝑎(𝑦)

1

)
𝑘 be its Iwasawa decomposition. Then

Eis( 𝑓𝑠) (𝑔) = 𝑓𝑠 (𝑔) +
𝑟−1∑
𝑖=1

𝑖−1∏
𝑗=1

|𝑦 𝑗 |
𝑠 𝑗
𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 |
(1−𝑠) (𝑟− 𝑗)

⎡⎢⎢⎢⎢⎣𝑀0
𝑖 𝑓𝑠 (𝑘) +

∑
𝑞∈Q×

𝑊 𝑖
𝑓𝑠
(𝑞𝑦𝑖 , 𝑘)𝜓0(𝑞𝑥𝑖,𝑖+1)

⎤⎥⎥⎥⎥⎦ .
The terms containing 𝑀0

𝑖 are the constant terms of Eis( 𝑓𝑠) (𝑔), and the terms containing 𝑊 𝑖
𝑓𝑠

are
holomorphic in s. The above sum converges absolutely and uniformly on compacta.
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4. Proof of the main theorem

4.1. Choices of the local components

We start by choosing various vectors and auxiliary test functions. Let 𝜋0 ∈ X̂gen be the fixed cuspidal
representation as in Theorem 2.1. Let 𝜙0 ∈ 𝜋0 with Whittaker function 𝑊0 =

⊗
𝑝≤∞𝑊0, 𝑝 , such that

𝑊0, 𝑝 are unramified for 𝑝 < ∞ with 𝑊0, 𝑝 (1) = 1.

Here and elsewhere in the paper, the index set {𝑝 ≤ ∞} denotes the set of places {∞} ∪ {𝑝 prime in Z}.
We choose 𝑊0,∞ ∈ 𝜋0,∞ so that

‖𝑊0,∞‖𝜋0,∞ = 1, and 𝑊0,∞

[(
.

1

)]
∈ 𝐶∞

𝑐 (𝑁𝑟−1(R)\GL𝑟−1(R), 𝜓∞)
O𝑟−1 (R) ,

whose existence is guaranteed by the theory of Kirillov model. We choose S(A𝑟 ) � Φ =
⊗

𝑝≤∞ Φ𝑝
with

Φ𝑝 := char(Z𝑟𝑝) = Φ̂𝑝 for 𝑝 < ∞,

and for 𝜏 > 0 sufficiently small but fixed

Φ∞ ∈ 𝐶∞
𝑐 (𝐵𝜏 (0, . . . , 0, 1)),

such that Φ∞ is nonnegative and has values sufficiently concentrated near 1. Here 𝐵𝜏 denotes the ball
of radius 𝜏. Thus Φ∞ can be thought as a smoothened characteristic function of 𝐵𝜏 (0, . . . , 0, 1).

Let 𝑓𝑠 := 𝑓𝑠,Φ ∈ I𝑟−1,1(𝑠) be associated to Φ according to equation (2.2). The choice of Φ∞ ensures

that there exist sufficiently small 𝜏1, 𝜏2 > 0 (depending on 𝜏 and Φ∞) such that 𝑓1/2,∞

[(
I𝑟−1
𝑐 1

)]
is

supported on |𝑐 | ≤ 𝜏1 and has values � 1 for |𝑐 | ≤ 𝜏2. This implies that∫
R𝑟−1

�� 𝑓1/2,∞
��2 [(I𝑟−1

𝑐 1

)]
𝑑𝑐 � 1,

with an absolute implied constant. We renormalise Φ∞ by an absolute constant so that the above integral
is 1.

4.2. Computation of the spectral side

Let Eis( 𝑓𝑠) := Eis( 𝑓𝑠,Φ) be the maximal Eisenstein series attached to 𝑓𝑠,Φ ∈ I𝑟−1,1(𝑠), which is defined
in Section 4.1. Let 𝑋 > 1 be a large number tending to infinity and

𝐴(A) � 𝑥 := (𝑥𝑝)𝑝 , 𝑥∞ := diag(𝑋, . . . , 𝑋, 1) ∈ 𝐴(R) and 𝑥𝑝 = 1 for all 𝑝 < ∞.

Our point of departure is the following period, which we write in two different ways:∫
X

|𝜙0 (𝑔) |
2 |Eis( 𝑓𝑠) (𝑔𝑥) |2𝑑𝑔 = 〈𝜙0Eis( 𝑓𝑠) (.𝑥), 𝜙0Eis( 𝑓𝑠) (.𝑥)〉. (4.1)

We use the Parseval relation in equation (2.5) and the notations in Section 2.6 to write the right-hand
side of equation (4.1) as ∫

X̂

∑
𝜙∈B(𝜋)

|Ψ( 𝑓𝑠 (.𝑥), 𝜙0, 𝜙) |
2𝑑𝜇aut (𝜋), (4.2)

where B(𝜋) is an orthonormal basis of 𝜋.
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Lemma 4.1. Let 𝜋 ∈ X̂ \ X̂gen be a nongeneric representation. Then Ψ( 𝑓𝑠 , 𝜙0, 𝜙) = 0 for all 𝜙 ∈ 𝜋 and
𝑠 ∈ C.

Proof. For �(𝑠) sufficiently large, we have (see Section 2.6)

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) =
∫
𝑃 (Q)\𝐺 (A)

𝜙0(𝑔)𝜙(𝑔) 𝑓𝑠 (𝑔)𝑑𝑔.

We follow the computation of [11, p.104–105]. We use the Fourier expansion

𝜙0(𝑔) =
∑

𝛾∈𝑁 (Q)\𝑃 (Q)

𝑊0(𝛾𝑔)

and the left 𝑃(Q)-invariance of 𝑓𝑠 and unfold over 𝑃(Q) to get

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) =
∫
𝑁 (Q)\𝐺 (A)

𝑊0 (𝑔)𝜙(𝑔) 𝑓𝑠 (𝑔)𝑑𝑔.

We fold the last integral over 𝑁 (A) and use the left N-equivariance of 𝑊0 and the left N-invariance of
𝑓𝑠 to obtain

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) =
∫
𝑁 (A)\𝐺 (A)

𝑊0 (𝑔) 𝑓𝑠 (𝑔)

∫
𝑁 (Q)\𝑁 (A)

𝜙(𝑛𝑔)𝜓(𝑛)𝑑𝑛𝑑𝑔.

By definition, the inner integral vanishes as 𝜙 is nongeneric. Finally, by analytic continuation of Ψ, we
extend the result for all 𝑠 ∈ C. �

Thus Lemma 4.1 allows us to reduce the integral in equation (4.2) only over X̂gen. Once we restrict
to 𝜋 ∈ X̂gen, we can use the Eulerian property of the zeta integral Ψ as in Section 2.6. If 𝜙 ∈ 𝜋 with
‖𝜙‖𝜋 = 1 and Whittaker function 𝑊𝜙 =

⊗
𝑝≤∞𝑊𝑝 such that 𝑊𝑝 is unramified and 𝑊𝑝 (1) = 1 for

𝑝 < ∞, then by Schur’s lemma, we have

‖𝜙‖2
𝜋 = ℓ(𝜋)‖𝑊∞‖2

𝜋∞ , (4.3)

where ℓ(𝜋) only depends on the nonarchimedean data of 𝜋. A standard Rankin–Selberg computation2

yields that ℓ(𝜋) � 𝐿(1, 𝜋,Ad) for a cuspidal 𝜋. In fact, in our case, ℓ(𝜋) is equal to 𝐿(1, 𝜋,Ad) up to a
positive constant dependent only on n.

Another standard computation [11, Theorem 3.3] shows that

Ψ𝑝 ( 𝑓𝑠, 𝑝 ,𝑊0, 𝑝 ,𝑊𝑝) = 𝐿𝑝 (𝑠, 𝜋0 ⊗ �̄�), 𝑝 < ∞, (4.4)

where 𝑓𝑠 is as chosen in Section 4.1 and 𝐿𝑝 (𝑠, .) denotes the unramified p-adic Euler factor of 𝐿(𝑠, .).
Thus by meromorphic continuation, we have

Ψ( 𝑓𝑠 , 𝜙0, 𝜙) = 𝐿(𝑠, 𝜋0 ⊗ �̄�)Ψ∞( 𝑓𝑠,∞,𝑊0,∞,𝑊∞)

for all 𝑠 ∈ C whenever both sides of the above are defined. Using the equation above, and recalling the
harmonic weight in equation (4.3) and the spectral weight in equation (2.6), we obtain that equation
(4.2) is equal to ∫

X̂gen

|𝐿(𝑠, 𝜋0 ⊗ �̄�) |2

ℓ(𝜋)
𝐽 ( 𝑓𝑠,∞(.𝑥∞)𝑊0,∞, 𝜋∞)𝑑𝜇aut(𝜋).

2See [1, eq. (3.11)] and the computation there for the spherical case; the general case follows similarly.
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We appeal to the holomorphicity of the zeta integrals to specify 𝑠 = 1/2 and define a normalised spectral
weight 𝐽𝑋 (𝜋∞) by

𝐽𝑋 (𝜋) := 𝐽𝑋 (𝜋∞) := 𝑋𝑟−1𝐽 ( 𝑓1/2,∞(.𝑥∞)𝑊0,∞, 𝜋∞). (4.5)

Thus we write the main equation of our proof:∫
X̂gen

|𝐿(1/2, 𝜋0 ⊗ �̄�) |2

ℓ(𝜋)
𝐽𝑋 (𝜋)𝑑𝜇aut (𝜋) = 𝑋𝑟−1〈|𝜙0 |

2, |Eis( 𝑓1/2) (.𝑥) |
2〉. (4.6)

4.3. Computation of the period side

Again recall the choices of the local factors in Section 4.1. We write 𝑓𝑠 =
⊗

𝑝≤∞ 𝑓𝑠, 𝑝; then for 𝑘 𝑝 ∈ 𝐾𝑝 ,

𝑓𝑠, 𝑝 (𝑘 𝑝) =
∫
Q×

𝑝

Φ𝑝 (𝑡𝑒𝑟 𝑘 𝑝) | det(𝑡𝑘 𝑝) |𝑠𝑑×𝑡.

Here we fix Haar measures 𝑑×𝑡 on Q×
𝑝 and (respectively, 𝑑𝑡 on Q𝑝) such that vol(Z×𝑝) = 1 (respectively,

vol(Z𝑝) = 1).
First, we record that 𝑓𝑠, 𝑝 is an unramified vector in I𝑟−1,1(𝑠)𝑝 and 𝑓𝑠, 𝑝 is an unramified vector in

I1,𝑟−1(1 − 𝑠)𝑝, which is a generalised principal series attached to the opposite parabolic of P. Note that
𝑡𝑒𝑟 𝑘 𝑝 ∈ Z𝑟𝑝 if and only if 𝑡 ∈ Z𝑝 . Thus

𝑓𝑠, 𝑝 (𝑘 𝑝) =
∞∑
𝑚=0

𝑝−𝑚𝑟𝑠 = (1 − 𝑝−𝑟𝑠)−1,

for �(𝑠) > 0. Similarly, using equation (3.5), we have

𝑓𝑠, 𝑝 (𝑘 𝑝) = 𝑓1−𝑠,Φ̂𝑝
(𝑤𝑘−𝑡𝑝 ) = (1 − 𝑝−𝑟 (1−𝑠) )−1

for �(𝑠) < 1. Thus for g in the fundamental domain of X, we can write

𝑓𝑠 (𝑔) = 𝜁 (𝑟𝑠) 𝑓𝑠,∞(𝑔∞) (4.7)

and

𝑓𝑠 (𝑔) = 𝜁 (𝑟 − 𝑟𝑠) 𝑓𝑠,∞(𝑔∞), (4.8)

for all 𝑠 ∈ C, which can be achieved by meromorphic continuation.
Let �(𝑠) be sufficiently small. From Proposition 3.3, we can see that among the constant terms of

Eis( 𝑓1/2+𝑠) (𝑔), the terms that do not lie in 𝐿2 (X) are 𝑓1/2+𝑠 (𝑔) and 𝑓1/2+𝑠 (𝑔). Similarly, one checks that
the constant terms of

Eis( 𝑓1/2)Eis( 𝑓1/2+𝑠) − 𝑓1/2 𝑓1/2+𝑠 − 𝑓1/2 𝑓1/2+𝑠

are integrable in 𝐿2 (X). Inspired by this, we define a regularised Eisenstein series of the form

�̃�𝑠 := Eis( 𝑓1/2)Eis( 𝑓1/2+𝑠) − Eis( 𝑓1/2 𝑓1/2+𝑠) − Eis( 𝑓1/2 𝑓1/2+𝑠). (4.9)
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Proof of Theorem 2.1. Recall equations (4.6) and (4.9). We write the inner product on the right-hand
side of equation (4.6) as

lim
𝑠→0

〈|𝜙0 |
2, �̃�𝑠 (.𝑥)〉 + lim

𝑠→0

[
〈|𝜙0 |

2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 + 〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉

]
.

The second term is the degenerate term as in equation (5.1). From equation (5.4), Proposition 5.2 and
Lemma 5.1, we obtain that the second term above is

𝑟𝐿(1, 𝜋0,Ad)
𝜁 (𝑟/2)2

𝜁 (𝑟)
log 𝑋 +𝑂 𝜋0 (1).

On the other hand, we write the first term above, which is the regularised term, as

lim
𝑠→0

∫
X

|𝜙0 |
2 (𝑔𝑥−1)�̃�𝑠 (𝑔)𝑑𝑔,

and bound this by

‖𝜙0‖
2
𝐿∞ (X)

∫
X

|𝐸𝑠 (𝑔) |𝑑𝑔.

From Proposition 6.1, we know that the last integral is convergent for s being sufficiently small, and �̃�𝑠
is holomorphic in a sufficiently small neighbourhood of 𝑠 = 0. Thus, using Cauchy’s residue theorem,
we can write the above limit as ∫

|𝑠 |=𝜖

1
𝑠

∫
X

|𝜙0 |
2 (𝑔𝑥−1)�̃�𝑠 (𝑔)𝑑𝑔

𝑑𝑠

2𝜋𝑖

for some arbitrary small but fixed 𝜖 > 0. Applying Proposition 6.1 once again, we confirm the above
integral is 𝑂𝜙0 , 𝜖 (1).

Now nonnegativity and the first property of the spectral weight 𝐽𝑋 (𝜋) follow from the definition in
equation (4.5). The second property follows from Proposition 7.1. Finally, the third property follows
from equation (2.7) and Lemma 5.1. �

5. Analysis of the degenerate terms in the period side

In this section, we analyse the degenerate terms

lim
𝑠→0

[
〈|𝜙0 |

2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 + 〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉

]
. (5.1)

Note that 𝑓1/2 𝑓1/2+𝑠 ∈ I𝑟−1,1(1 + 𝑠) is such that its local component 𝑓1/2, 𝑝 𝑓1/2+𝑠, 𝑝 is unramified for
𝑝 < ∞. Thus by the uniqueness of the spherical vector, 𝑓1/2, 𝑝 𝑓1/2+𝑠, 𝑝 ∈ I𝑟−1,1(1 + 𝑠)𝑝 is a multiple of
the unramified vector

𝑔 ↦→

∫
Q×

𝑝

Φ𝑝 (𝑡𝑒𝑟𝑔) | det(𝑡𝑔) |1+𝑠𝑑×𝑡.

Comparing the values of the functions at the identity as before, we check that the multiple is

(1 − 𝑝−𝑟/2)−1(1 − 𝑝−𝑟/2−𝑟𝑠)−1

(1 − 𝑝−𝑟−𝑟𝑠)−1 for 𝑝 < ∞.
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We compute the first term inside the limit in equation (5.1) for �(𝑠) large. Doing a similar computation
as in Section 2.6 and using equation (4.4), we obtain

〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 =

𝜁 (𝑟/2)𝜁 (𝑟/2 + 𝑟𝑠)

𝜁 (𝑟 + 𝑟𝑠)
𝐿(1 + 𝑠, 𝜋0 ⊗ �̃�0)

Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞). (5.2)

Finally, we meromorphically continue the above to the whole complex plane.
Similarly, we compute the second term inside the limit in equation (5.1). Note that in this case, 𝑓 lies

in I1,𝑟−1 associated to the parabolic �̃�. Working as in Section 2.6, we obtain that

〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 =

∫
�̃� (Q)\𝐺 (A)

|𝜙0 |
2 (𝑔) 𝑓1/2 𝑓1/2+𝑠 (𝑔𝑥)𝑑𝑔.

We recall the definition of 𝑓 in equation (3.5) and make the change of variables 𝑔 ↦→ 𝑤𝑔−𝑡 to obtain
that the above is equal to ∫

𝑃 (Q)\𝐺 (A)

|𝜙0 |
2 (𝑔) 𝑓1/2 𝑓1/2−𝑠 (𝑔𝑥

−1)𝑑𝑔,

where 𝜙0(𝑔) := 𝜙0(𝑤𝑔
−𝑡 ), which lies in the contragredient representation �̃�0. Note that Φ̂𝑝 = Φ𝑝 for

𝑝 < ∞. Thus, doing a calculation similar to that preceding equation (5.2), we obtain

〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 =

𝜁 (𝑟/2)𝜁 (𝑟/2 − 𝑟𝑠)

𝜁 (𝑟 − 𝑟𝑠)
𝐿(1 − 𝑠, 𝜋0 ⊗ �̃�0)

Ψ∞( 𝑓1/2,∞ 𝑓1/2−𝑠,∞(.𝑥−1
∞ ), �̃�0,∞, �̃�0,∞). (5.3)

Recalling the definition of the contragredient �̃�0 and making the change of variables 𝑔∞ → 𝑤𝑔−𝑡∞ in the
definition of the zeta integral Ψ∞, we also have

Ψ∞( 𝑓1/2,∞ 𝑓1/2−𝑠,∞(.𝑥−1
∞ ), �̃�0,∞, �̃�0,∞) = Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞).

In the following Lemma 5.1, we prove the archimedean factors Ψ∞ on the right-hand side of equations
(5.2) and (5.3) are equal for 𝑠 = 0. We first record that

Ψ∞(|ℎ|2,𝑊0,∞,𝑊0,∞) = ‖ℎ𝑊0,∞‖2
𝐿2 (𝑁 (R)\𝐺 (R))

,

where h is either 𝑓1/2,∞(.𝑥∞) or 𝑓1/2,∞(.𝑥∞).

Lemma 5.1. Recall the choices of the local components in Section 4.1. We have

‖𝑊0,∞ 𝑓1/2,∞(.𝑥∞)‖
2 = ‖𝑊0,∞ 𝑓1/2,∞(.𝑥∞)‖

2 = ‖𝑊0,∞ 𝑓1/2,∞‖2 = 1,

where all the norms are taken in 𝐿2 (𝑁 (R)\𝐺 (R)).

Proof. To ease the notations, we drop ∞ from the subscripts in this proof.
First recall that

𝑓1/2(𝑔) = 𝑓1/2(𝑤𝑔
−𝑡 ),
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which implies, by a change of variable 𝑔 ↦→ 𝑤𝑔−𝑡 , that

‖𝑊0 𝑓1/2(.𝑥)‖
2 =

∫
𝑁 (R)\𝐺 (R)

|𝑊0 (𝑔) |
2 | 𝑓1/2 (𝑤𝑔

−𝑡𝑥−1) |2𝑑𝑔 =
∫
𝑁 (R)\𝐺 (R)

|�̃�0 (𝑔) |
2 | 𝑓1/2 (𝑔𝑥

−1) |2𝑑𝑔.

We make the change of variables 𝑔 ↦→ 𝑔𝑥 and then employ the Whittaker–Plancherel formula as in
equation (2.7) to write the above as

‖�̃�0 (𝑥)�̃�0 𝑓1/2‖
2 =

∫
�𝐺 (R)

∑
𝑊 ∈B(𝜎)

|Ψ( 𝑓1/2, �̃�0 (𝑥)�̃�0,𝑊) |2𝑑𝜇loc (𝜎).

We use the GL(𝑟) ×GL(𝑟) local functional equation as in equation (2.4) and the unitarity of the gamma
factor at 1/2 to obtain that

|Ψ( 𝑓1/2, �̃�0 (𝑥)�̃�0,𝑊) |2 = |Ψ( 𝑓1/2, 𝜋0 (𝑥
−1)𝑊0, �̃�) |2.

Consequently, applying the Whittaker–Plancherel again with the orthonormal basis B(𝜎) := {𝜎(𝑥)�̃�},
we obtain

‖𝑊0 𝑓1/2(.𝑥)‖
2 = ‖�̃�0 (𝑥)�̃�0 𝑓1/2‖

2 = ‖𝜋0 (𝑥
−1)𝑊0 𝑓1/2‖

2 = ‖𝑊0 𝑓1/2(.𝑥)‖
2,

which proves the first equality.
Thus now it is enough to prove that

‖𝑊0 𝑓1/2‖
2 = ‖𝑊0 𝑓1/2(.𝑥)‖

2.

We use Bruhat coordinates to write∫
𝑁 (R)\𝐺 (R)

|𝑊0 |
2 (𝑔) | 𝑓1/2 |

2
[
𝑔

(
𝑋I𝑟−1

1

)]
𝑑𝑔

=
∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

∫
R𝑟−1

|𝑊0 |
2
[(
ℎ
𝑐 1

)]
| 𝑓1/2 |

2
[(
ℎ𝑋
𝑐𝑋 1

)]
𝑑𝑐

𝑑ℎ

| det(ℎ) |
.

Using the transformation property of 𝑓1/2 as in equation (2.3) and making the change of variables
𝑐 ↦→ 𝑐/𝑋 , we obtain that the above is equal to∫

R𝑟−1
| 𝑓1/2 |

2
[(

I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(
ℎ

1

) (
I𝑟−1
𝑐/𝑋 1

)]
𝑑ℎ𝑑𝑐.

Using the G-invariance of the inner product in the Whittaker model as in Section 2.5, we conclude that
the inner integral above is equal to∫

𝑁𝑟−1 (R)\GL𝑟−1 (R)
|𝑊0 |

2
[(
ℎ

1

)]
𝑑ℎ =

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(
ℎ

1

) (
I𝑟−1
𝑐 1

)]
𝑑ℎ.

Thus, reverse engineering the above manipulation with Bruhat coordinates (that is, taking 𝑋 = 1), we
conclude the proof of the first two equalities.

From the above proof, we also obtain that

‖𝑊0 𝑓1/2‖
2 = ‖𝑊0‖

2
𝜋0

∫
R𝑟−1

�� 𝑓1/2
��2 [(I𝑟−1

𝑐 1

)]
𝑑𝑐.

We deduce the last equality recalling the normalisations of 𝑊0 and 𝑓1/2. �
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It is known that (see [11, Theorem 4.2]) if 𝜋0 is cuspidal, then 𝐿(𝑠, 𝜋0 ⊗ �̃�0) has a simple pole at
𝑠 = 1 with residue 𝐿(1, 𝜋0,Ad). Let us write

𝐿(1 + 𝑠, 𝜋0 ⊗ �̃�0) =
𝐿(1, 𝜋0,Ad)

𝑠
+𝑂 𝜋0 (1),

as 𝑠 → 0. Thus, using equations (5.2) and (5.3) and Lemma 5.1, we can evaluate the limit in equation
(5.1) as

lim
𝑠→0

[
〈|𝜙0 |

2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉 + 〈|𝜙0 |
2,Eis( 𝑓1/2 𝑓1/2+𝑠) (.𝑥)〉

]
=

𝐿(1, 𝜋0,Ad)
𝜁 (𝑟/2)2

𝜁 (𝑟)
Ψ′( 𝑓1/2,∞,𝑊0,∞) +𝑂 𝜋0 ,Φ (1), (5.4)

where Ψ′( 𝑓1/2,∞,𝑊0,∞) is defined as

𝜕𝑠=0

(
Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞) − Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞)

)
.

Here and elsewhere in the paper, we write 𝜕𝑠=0 as an abbreviation of 𝜕
𝜕𝑠

��
𝑠=0.

Proposition 5.2. We have

Ψ′( 𝑓1/2,∞,𝑊0,∞) = 𝑟 log 𝑋 +𝑂𝑊0,∞ ,Φ∞ (1)

as X tends to infinity.

Proposition 5.2 follows immediately from the following Lemma 5.3, Lemma 5.5 and Lemma 5.1.
Again, to ease the notations, we drop ∞ subscripts from the proofs of the next two lemmata.

Lemma 5.3. We have

𝜕𝑠=0Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞) = − log 𝑋 ‖𝑊0,∞ 𝑓1/2,∞‖2 +𝑂𝑊0,∞ ,Φ∞ (1)

as X tends to infinity.

Proof. We start by make the change of variables 𝑔 ↦→ 𝑤𝑔−𝑡 in the zeta integral to write

Ψ( 𝑓1/2 𝑓1/2+𝑠 (.𝑥),𝑊0,𝑊0) = Ψ( 𝑓1/2 𝑓1/2−𝑠 (.𝑥
−1), �̃�0, �̃�0).

We use Bruhat coordinates as in the proof of Lemma 5.1 to write the above zeta integral as∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

∫
R𝑟−1

|�̃�0 |
2
[(
ℎ
𝑐 1

)]
𝑓1/2 𝑓1/2−𝑠

[(
ℎ/𝑋
𝑐/𝑋 1

)]
𝑑𝑐

𝑑ℎ

| det(ℎ) |
.

Again, as in the proof of Lemma 5.1, we use the transformation property of 𝑓1/2 𝑓1/2−𝑠 as in equation
(2.3) and make the change of variables 𝑐 ↦→ 𝑐𝑋 to obtain that the above is equal to

𝑋 (𝑟−1)𝑠
∫
R𝑟−1

𝑓1/2 𝑓1/2−𝑠

[(
I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|�̃�0 |
2
[(
ℎ
𝑐𝑋 1

)]
| det(ℎ) |−𝑠𝑑ℎ𝑑𝑐.
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Differentiating at 𝑠 = 0, we obtain that the above is equal to

(𝑟 − 1) log 𝑋
∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|�̃�0 |
2
[(
ℎ
𝑐𝑋 1

)]
𝑑ℎ𝑑𝑐

+

∫
R𝑟−1

𝑓1/2𝜕𝑠=0 𝑓1/2−𝑠

[(
I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|�̃�0 |
2
[(
ℎ
𝑐𝑋 1

)]
𝑑ℎ𝑑𝑐

−

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|�̃�0 |
2
[(
ℎ
𝑐𝑋 1

)]
log | det(ℎ) |𝑑ℎ𝑑𝑐. (5.5)

The first summand in equation (5.5) is easy to understand. Using the invariance of the unitary product
exactly as in the proof of Lemma 5.1, we can yield that the first summand is equal to

(𝑟 − 1) log 𝑋 ‖�̃�0‖ �̃�0 ‖ 𝑓1/2‖
2.

From the Whittaker–Plancherel expansion in equation (2.7), the GL(𝑟) × GL(𝑟 − 1) local functional
equation (see [11, Proposition 3.2]), and the unitarity of the 𝛾-factor, as in the proof of Lemma 5.1, one
also gets that ‖�̃�0‖ �̃�0 = ‖𝑊0‖𝜋0 .

We claim that the second summand in equation (5.5) is of bounded size. Note that again the invariance
of the unitary inner product implies that the inner integral is equal to ‖�̃�0‖

2
�̃�0

. Thus, using Cauchy’s
integral formula, we can write the second summand as

‖�̃�0‖
2
�̃�0

∫
|𝑠 |=𝜖

1
𝑠2

∫
R𝑟−1

𝑓1/2 𝑓1/2−𝑠

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐
𝑑𝑠

𝜋𝑖

for some sufficiently small 𝜖 > 0. To show that the above integrals converge, we start with the Iwasawa

decomposition of
(
I𝑟−1
𝑐 1

)
. One can check by induction or otherwise that there exists a 𝑧(𝑐) ∈ R× so that

(
I𝑟−1
𝑐 1

)
= 𝑧(𝑐)�̃�(𝑐)

(
�̃�(𝑐)

1

)
�̃� (𝑐); �̃�(𝑐) ∈ 𝑁 (R), �̃� (𝑐) ∈ 𝐾∞,

�̃�(𝑐) := diag(𝑎1 (𝑐), . . . , 𝑎𝑟−1(𝑐)); 𝑎𝑖 (𝑐) :=

√
1 + 𝑐2

1 + · · · + 𝑐2
𝑖−1√

1 + 𝑐2
1 + · · · + 𝑐2

𝑖

√
1 + |𝑐 |2

. (5.6)

Thus, using the transformation property in equation (2.3), we get

𝑓1/2 𝑓1/2−𝑠

[(
I𝑟−1
𝑐 1

)]
≤ (1 + |𝑐 |2)−𝑟/2(1+�(𝑠)) ‖ 𝑓1/2 𝑓1/2−𝑠 ‖𝐿∞ (𝐾∞) .

Thus the second summand of equation (5.5) is bounded by

�𝜖 , 𝑓 ,𝑊0

∫
R𝑟−1

(1 + |𝑐 |2)−𝑟/2(1−𝜖 )𝑑𝑐.

The above integral is convergent for sufficiently small 𝜖 .

https://doi.org/10.1017/fms.2022.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.39


26 Subhajit Jana

We now focus on the third summand in equation (5.5). In the inner integral, we use Iwasawa
coordinates for ℎ = 𝑎𝑘 , move the K-integral outside and make the change of variables 𝑐 ↦→ 𝑐𝑘 to rewrite
it as

−

∫
O𝑟−1 (R)

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐𝑘 1

)]
∫
𝐴𝑟−1 (R)

|�̃�0 |
2
[(
𝑎

1

) (
I𝑟−1
𝑐𝑋 1

) (
𝑘

1

)]
log | det(𝑎) |

𝑑𝑎

𝛿(𝑎)
𝑑𝑐𝑑𝑘.

We use the Iwasawa decomposition of
(
I𝑟−1
𝑐𝑋 1

)
as in equation (5.6) to write it as �̃�(𝑐𝑋)

(
�̃�(𝑐𝑋)

1

)
�̃� (𝑐𝑋).

Then, using the left 𝑁 (R)-invariance of |�̃�0 |
2 and changing variable 𝑎 ↦→ 𝑎 × �̃�(𝑐𝑋)−1, we obtain that

the above quantity is equal to∫
O𝑟−1 (R)

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐𝑘 1

)]
log | det(�̃�(𝑐𝑋)) |𝛿(�̃�(𝑐𝑋))∫

𝐴𝑟−1 (R)
|�̃�0 |

2
[(
𝑎

1

)
�̃� (𝑐𝑋)

(
𝑘

1

)]
𝑑𝑎

𝛿(𝑎)
𝑑𝑐𝑑𝑘

−

∫
O𝑟−1 (R)

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐𝑘 1

)]
𝛿(�̃�(𝑐𝑋))∫

𝐴𝑟−1 (R)
|�̃�0 |

2
[(
𝑎

1

)
�̃� (𝑐𝑋)

(
𝑘

1

)]
log | det(𝑎) |

𝑑𝑎

𝛿(𝑎)
𝑑𝑐𝑑𝑘.

We write the above as 𝐴 − 𝐵, where A denotes the first term and B denotes the second term above. To
analyse A, we reverse-engineer the above process: make the change of variables 𝑎 ↦→ 𝑎 × �̃�(𝑐𝑋), use
the left 𝑁 (R)-invariance of |�̃�0 |

2 and make the change of variables 𝑐 ↦→ 𝑐𝑘−1 to obtain

𝐴 =
∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)] ∫
O𝑟−1 (R)

log | det(𝑎(𝑐𝑘−1𝑋)) |∫
𝐴𝑟−1 (R)

|�̃�0 |
2
[(
𝑎𝑘

1

) (
I𝑟−1
𝑐𝑋 1

)]
𝑑𝑎

𝛿(𝑎)
𝑑𝑘𝑑𝑐.

But det(�̃�(𝑐𝑋)) = (1 + 𝑋2 |𝑐 |2)−𝑟/2 = det(𝑎(𝑐𝑘−1𝑋)) for all 𝑘 ∈ O𝑟−1(R). Using that, we can
move the integral over Or−1(R) to couple with the integral over 𝐴𝑟−1(R) to obtain an integral over
𝑁𝑟−1(R)\GL𝑟−1(R). Then, once again appealing to the invariance of the unitary product, we obtain

𝐴 = ‖�̃�0‖
2
�̃�0

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)]
log | det(�̃�(𝑐𝑋)) |𝑑𝑐.

Note that

log | det(�̃�(𝑐𝑋)) | = −
𝑟

2
log(1 + 𝑋2 |𝑐 |2)

= −
𝑟

2
log(1 + 𝑋2) +𝑂 (log(1 + |𝑐 |2)) = −𝑟 log 𝑋 +𝑂 𝜖 ((1 + |𝑐 |) 𝜖 ).

Using the Iwasawa decomposition and transformation property of 𝑓1/2 as in equation (2.3), similar to
the second case, we obtain
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𝐴 + 𝑟 log 𝑋 ‖�̃�0‖
2
�̃�0

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)]
𝑑𝑐

��̃�0 , 𝜖
‖ 𝑓1/2‖

2
𝐿∞ (𝐾∞)

∫
R𝑟−1

(1 + |𝑐 |2)−𝑟/2+𝜖 𝑑𝑐 �Φ,�̃�0
1.

Working as in the proof of Lemma 5.1, we check that

‖�̃�0‖
2
�̃�0

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)]
𝑑𝑐 = ‖𝑊0 𝑓1/2‖

2.

Thus we obtain

𝐴 = −𝑟 log 𝑋 ‖𝑊0 𝑓1/2‖
2 +𝑂𝑊0 , 𝑓 (1). (5.7)

Now we prove that B is of bounded size. To prove that, we first claim that∫
𝐴𝑟−1 (R)

|�̃�0 |
2
[(
𝑎

1

)
�̃� (𝑐𝑋)

(
𝑘

1

)]
log | det(𝑎) |

𝑑𝑎

𝛿(𝑎)
��̃�0

1

uniformly in c. We assume the claim. Now note that

𝛿(�̃�(𝑐𝑋)) =
(1 + 𝑋2 |𝑐 |2)𝑟/2−1∏𝑟−2

𝑖=1 (1 + 𝑐2
1𝑋

2 + · · · + 𝑐2
𝑖 𝑋

2)
�

𝑋𝑟−2(1 + |𝑐 |2)𝑟/2−1∏𝑟−2
𝑖=1 (1 + 𝑐2

𝑖 𝑋
2)

.

We use the Iwasawa decomposition and work as before. Using transformation of 𝑓1/2 as in equation
(2.3), we thus get

𝐵 �𝑊0 , 𝑓

∫
O𝑟−1 (R)

∫
R𝑟−1

(1 + |𝑐𝑘 |2)−𝑟/2 𝑋
𝑟−2 (1 + |𝑐 |2)𝑟/2−1∏𝑟−2
𝑖=1 (1 + 𝑐2

𝑖 𝑋
2)

𝑑𝑐𝑑𝑘

�

∫
R𝑟−1

𝑟−1∏
𝑖=1

(1 + 𝑐2
𝑖 )

−1𝑑𝑐,

which we obtain by noting that |𝑐𝑘 | = |𝑐 | for 𝑘 ∈ O𝑟−1(R) and making the change of variables 𝑐𝑖 ↦→ 𝑐𝑖/𝑋
for 𝑖 ≤ 𝑟 − 2. It is easy to see that the above integral is convergent, which yields that

𝐵 = 𝑂𝑊0 , 𝑓 (1).

Now, to prove the claim above, let 𝜔 := �̃� (𝑐𝑋)

(
𝑘

1

)
∈ 𝐾∞ implicitly depending on 𝑐𝑋 . Note that

from Lemma 7.2, we get that

�̃�0 (𝜔)�̃�0

[(
𝑎(𝑦)

1

)]
�𝜖 ,𝑀,𝑊0 𝛿

1/2−𝜖 (𝑎(𝑦)) | det(𝑎(𝑦)) |1/2−𝜗0−𝜖
𝑟−1∏
𝑖=1

min(1, |𝑦𝑖 |−𝑀 ).

Thus we obtain∫
𝐴𝑟−1 (R)

|�̃�0 (𝜔)�̃�0 |
2
[(
𝑎

1

)]
log | det(𝑎) |

𝑑𝑎

𝛿(𝑎)

�𝑊0 ,𝜂,𝑀

∫
(R×)𝑟−1

𝑟−1∏
𝑖=1

min(1, |𝑦𝑖 |−𝑀 ) | det(𝑎(𝑦)) |1−2𝜗0−𝜖 (| det(𝑎(𝑦)) | 𝜖 + | det(𝑎(𝑦)) |−𝜖 )
∏
𝑖

𝑑×𝑦𝑖 .
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Employing the bound of 𝜗0 from the statement of Theorem 2.1, we check that the above integral is
convergent for large enough M and sufficiently small 𝜖 > 0, which yields the claim. �

Remark 5.4. In the very last estimate of the proof of Lemma 5.3, we can only prove that the integral of
the Whittaker function is of bounded size. It is not clear to us if or how one can improve the estimate to
be a constant plus a power-saving error term. This would potentially explicate the constant term of the
asymptotic expansion in Theorem 2.1 with a power-saving error term; see Remark 1.4.

Lemma 5.5. We have

𝜕𝑠=0Ψ∞( 𝑓1/2,∞ 𝑓1/2+𝑠,∞(.𝑥∞),𝑊0,∞,𝑊0,∞) = (𝑟 − 1) log 𝑋 ‖𝑊0,∞ 𝑓1/2,∞‖2 +𝑂𝑊0,∞ ,Φ∞ (1)

as X tends to infinity.

Proof. The proof of this lemma is very similar to (and easier than) the proof of Lemma 5.3. We first
write Ψ( 𝑓1/2 𝑓1/2+𝑠 (.𝑥),𝑊0,𝑊0) as

𝑋 (𝑟−1)𝑠
∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

∫
R𝑟−1

|𝑊0 |
2
[(

ℎ
𝑐/𝑋 1

)]
𝑓1/2 𝑓1/2+𝑠

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐 | det(ℎ) |𝑠𝑑ℎ.

Note that the 𝑠 = 0 derivative in the the statement of this lemma can be computed exactly the same as
we did in the calculation of equation (5.5) of Lemma 5.3 and can be seen equal to

(𝑟 − 1) log 𝑋
∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(

ℎ
𝑐/𝑋 1

)]
𝑑ℎ𝑑𝑐

+

∫
R𝑟−1

𝑓1/2𝜕𝑠=0 𝑓1/2+𝑠

[(
I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(

ℎ
𝑐/𝑋 1

)]
𝑑ℎ𝑑𝑐

+

∫
R𝑟−1

| 𝑓1/2 |
2
[(

I𝑟−1
𝑐 1

)] ∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(

ℎ
𝑐/𝑋 1

)]
log | det(ℎ) |𝑑ℎ𝑑𝑐. (5.8)

Exactly as in the proof of Lemma 5.3, we can check (for example, changing 𝑓1/2−𝑠 to 𝑓1/2+𝑠 and �̃�0 to
𝑊0) that the first and second summands in equation (5.8) are

(𝑟 − 1) log 𝑋 ‖𝑊0 𝑓1/2‖
2

and𝑂𝑊0 , 𝑓 (1), respectively. We claim that the third summand in equation (5.8) is also𝑂𝑊0 , 𝑓 (1), which
yields the lemma.

From the relation between f and Φ from equation (2.2), we write

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
=
∫
R×

Φ(𝑡 (𝑐, 1)) |𝑡 |𝑟/2𝑑×𝑡.

Recall the choice of Φ in Section 4.1. Support of Φ being on 𝐵𝜏 (0, . . . , 0, 1) implies that in the above
integral, 𝑡 � 1 and hence 𝑐 � 1. Below, we show that∫

𝑁𝑟−1 (R)\GL𝑟−1 (R)
|𝑊0 |

2
[(

ℎ
𝑐/𝑋 1

)]
log | det(ℎ) |𝑑ℎ �𝑊0 1,

which clearly implies our claim above.
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We write ℎ = 𝑎𝑘 in Iwasawa coordinates and let 𝜔 :=
(
𝑘
𝑐/𝑋 1

)
. Note that as 𝑘 ∈ O𝑟−1(R) and

𝑐/𝑋 � 1, there exists a fixed compact set Ω ∈ 𝐺 (R) such that 𝜔 ∈ Ω for all relevant c and k. Thus it is
enough to show that ∫

𝐴𝑟−1 (R)
|𝜋0 (𝜔)𝑊0 |

2
[(
𝑎

1

)]
log | det(𝑎) |

𝑑𝑎

𝛿(𝑎)
�𝑊0 ,Ω 1.

This can be done similarly as we did at the end of the proof of Lemma 5.3. �

6. Analysis of the regularised term in the period side

Let 𝑠 ∈ C with sufficiently small �(𝑠). Recall the regularised Eisenstein series �̃�𝑠 from equation (4.9).
The main proposition of this section is the following.

Proposition 6.1. �̃�𝑠 is holomorphic in a sufficiently small neighbourhood of 𝑠 = 0 and is integrable
on X.

Note from the definition in equation (4.9) that �̃�𝑠 is holomorphic in a punctured neighbourhood
of 𝑠 = 0. Thus it is enough to prove that �̃�𝑠 is holomorphic at 𝑠 = 0. Recall the description of the
poles of the maximal Eisenstein series in Section 2.4. We know, in particular, Eis( 𝑓1/2)Eis( 𝑓1/2+𝑠) is
holomorphic at 𝑠 = 0, and we thus only need to show the following.

Lemma 6.2. For fixed 𝑔 ∈ X,

Eis( 𝑓1/2 𝑓1/2+𝑠) (𝑔) + Eis( 𝑓1/2 𝑓1/2+𝑠) (𝑔)

is holomorphic at 𝑠 = 0.

Proof. Our argument is to show that the residues R and �̃� (which are independent of g) at the simple
poles at 𝑠 = 0 of Eis( 𝑓1/2 𝑓1/2+𝑠) and Eis( 𝑓1/2 𝑓1/2+𝑠), respectively, cancel each other.

Let 𝜙0 be the cusp form as we have chosen in Section 4.1. From equation (5.2), we get

𝑅‖𝜙0‖
2
2 = Res𝑠=0〈|𝜙0 |

2,Eis( 𝑓1/2 𝑓1/2+𝑠)〉

=
𝜁 (𝑟/2)2

𝜁 (𝑟)
𝐿(1, 𝜋0,Ad)Ψ∞(| 𝑓1/2,∞|

2,𝑊0,∞,𝑊0,∞).

Similarly, from equation (5.3), we get

�̃�‖𝜙0‖
2
2 = Res𝑠=0〈|𝜙0 |

2,Eis( 𝑓1/2 𝑓1/2+𝑠)〉

= −
𝜁 (𝑟/2)2

𝜁 (𝑟)
𝐿(1, 𝜋0,Ad)Ψ∞(| 𝑓1/2,∞|

2,𝑊0,∞,𝑊0,∞).

From Lemma 5.1 with 𝑥∞ = 1 (and the equation preceding Lemma 5.1), we conclude that the Ψ∞ factors
in the above expressions of R and �̃� are equal. �

Now we prove some preparatory lemmata to prove the integrability of �̃�𝑠 on X. We actually show
that �̃�𝑠 is integrable in the Siegel domain S as in equation (2.1), which contains X. Let 𝑔 ∈ S with 𝑔 =

(𝑔∞, 𝑘 𝑓 ), where 𝑔∞ = 𝑛∞

(
𝑎(𝑦∞)

1

)
𝑘∞ ∈ 𝐺 (R) in Iwasawa coordinates and 𝑘 𝑓 ∈ 𝐾 𝑓 :=

∏
𝑝<∞ 𝐾𝑝 .

As 𝑔 ∈ S, we have 𝑦 𝑗 ,∞  1. We recall the quantities in Proposition 3.3 from Section 3.
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Lemma 6.3. Suppose that 𝑖 < 𝑟 . Let 𝑠 ∈ C be away from a pole of 𝑀0
𝑖 𝑓𝑠 with |�(𝑠) | < 2. Then

‖𝑀0
𝑖 𝑓𝑠 ‖𝐿∞ (𝐾 ) � 1.

Further, let R× × 𝐾 𝑓 � (𝑦∞, 1) =: 𝑦. Then for all 𝑘 ∈ 𝐾 and s with |�(𝑠) | < 2,∑
𝑞∈Q×

𝑊 𝑖
𝑓𝑠
(𝑞𝑦, 𝑘) �𝑁 |𝑦∞|

−𝑁 ,

where the sum in the left-hand side converges absolutely.

Proof. In this proof, we assume that Φ ∈ S(A𝑟 ) is an arbitrary Schwartz function. We get that for 𝑘 ∈ 𝐾 ,

𝑀0
𝑖 𝑓𝑠 (𝑘) =

∫
A𝑟−𝑖

∫
A×

(𝑘.Φ) (0, 𝑡, 𝑥) |𝑡 |𝑟𝑠−𝑟+𝑖𝑑×𝑡 �
∫
|𝑥 |, |𝑡 |�1

|𝑡 |𝑟𝑠−𝑟+𝑖𝑑×𝑡𝑑𝑥 �𝐾,�(𝑠) 1,

if �(𝑠) is sufficiently large. On the other hand, using the Tate functional equation and working similarly,
we obtain

𝑀0
𝑖 𝑓𝑠 (𝑘) =

∫
A×

�(𝑘.Φ)
𝑖
(𝑡𝑒𝑖) |𝑡 |

𝑟−𝑖+1−𝑟𝑠 �𝐾,�(𝑠) 1,

if �(𝑠) is sufficiently negative. Using the Phragmén–Lindelöf convexity principle and the compactness
of K, we deduce the first claim.

Let 𝑧 ∈ A and 𝑘 ∈ 𝐾 . Following a similar computation after equation (3.4) in Section 3, we get that

𝑊 𝑖
𝑓𝑠
(𝑧, 𝑘) =

∫
A𝑟−𝑖

∫
A×

(𝑘.Φ) (0, 𝑡, 𝑥)𝜓0(𝑧𝑥1/𝑡) |𝑡 |
𝑟𝑠−𝑟+𝑖𝑑×𝑡𝑑𝑥.

This converges absolutely if �(𝑠) is sufficiently large.
We first concentrate on the 𝑥1 integral. In the archimedean component of this integral, we integrate

by parts with respect to the 𝑥1,∞ variable. This yields that the archimedean integral is bounded by
�𝑁 |𝑧∞|

−𝑁 |𝑡∞|
𝑁 for all large N.

In the p-adic component, we note that compact support of Φ𝑝 forces 𝑥1, 𝑝 to vary over a compact
space. This implies that the p-adic integral vanishes unless |𝑧𝑝/𝑡𝑝 | � 1. However, the support condition
of Φ𝑝 ensures that |𝑡𝑝 | � 1, which in turn restricts 𝑧𝑝 to be of bounded size.

Thus we can analytically continue the integral representation of 𝑊 𝑖
𝑓𝑠

to �(𝑠) sufficiently negative,
but fixed. Altogether, estimating the integrals as before, we obtain if �(𝑠) ≥ −2; then for sufficiently
large N, we have

𝑊 𝑖
𝑓𝑠
(𝑧, 𝑘) �𝐾,𝑁 |𝑧∞|

−𝑁
∏
𝑝<∞

char |𝑧𝑝 |�1.

Thus for 𝑞 ∈ Q× and y as in the statement of this lemma, we have

𝑊 𝑖
𝑓𝑠
(𝑞𝑦, 𝑘) �𝐾,𝑁 |𝑦∞𝑞∞|

−𝑁 ,

if the denominator of q is bounded; otherwise, the above is zero. Thus the sum over 𝑞 ∈ Q× is absolutely
convergent for sufficiently large N. We conclude using the compactness of K. �

Lemma 6.4. Let 𝑔 ∈ S and 𝑠 ∈ C with sufficiently small �(𝑠). Then

Eis( 𝑓1/2) (𝑔)Eis( 𝑓1/2+𝑠) (𝑔) − 𝑓1/2(𝑔) 𝑓1/2+𝑠 (𝑔) − 𝑓1/2(𝑔) 𝑓1/2+𝑠 (𝑔) � 𝛿1−𝜂
[(
𝑎(𝑦∞)

1

)]
for some 𝜂 > 0.
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Proof. Recall that

𝛿

[(
𝑎(𝑦∞)

1

)]
=
𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
𝑗 (𝑟− 𝑗) .

Note that 𝑦 𝑗 ,∞  1 as 𝑔 ∈ S. Thus it is enough the show that the exponents of |𝑦 𝑗 ,∞| arising in the
left-hand side in the expression in the lemma are less than 𝑗 (𝑟 − 𝑗).

We recall equation (3.4) and for 1 < 𝑖 < 𝑟 write

𝐻𝑖𝑠 (𝑔) : =
∑
𝑞∈Q

𝑀𝑞
𝑖 𝑓1/2+𝑠 (𝑔)

= 𝑀0
𝑖 𝑓1/2+𝑠 (𝑔) +

∑
𝑞∈Q×

𝜓𝑖 (𝑞) (𝑛1)

𝑖−1∏
𝑗=1

|𝑦 𝑗 |
(1/2+𝑠) 𝑗

𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 |
(1/2−𝑠) (𝑟− 𝑗)𝑊 𝑖

𝑓1/2+𝑠
(𝑞𝑦𝑖 , 𝑘),

where 𝑛1 is a unipotent element as in Section 2.4. Using Lemma 6.3, we obtain that

𝐻𝑖𝑠 (𝑔) �
𝑖−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1/2+�(𝑠)) 𝑗

𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 ,∞|
(1/2−�(𝑠)) (𝑟− 𝑗) .

On the other hand, we similarly obtain

𝐻1
𝑠 (𝑔) :=

∑
𝑞∈Q×

𝑀𝑞
1 𝑓1/2+𝑠 (𝑔) �𝐾,𝑁

𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1/2−�(𝑠)) (𝑟− 𝑗)−𝑁 𝛿 𝑗=1 .

We also record that

𝑓1/2+𝑠 (𝑔) �
𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1/2+�(𝑠)) 𝑗

and

𝑓1/2+𝑠 (𝑔) �
𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1/2−�(𝑠)) (𝑟− 𝑗) .

We use Lemma 3.2 to rewrite

Eis( 𝑓1/2+𝑠) (𝑔) = 𝑓1/2+𝑠 (𝑔) + 𝑓1/2+𝑠 (𝑔) + 𝐻
1
𝑠 (𝑔) +

∑
1<𝑖<𝑟

𝐻𝑖𝑠 (𝑔).

After multiplying Eis( 𝑓1/2) and Eis( 𝑓1/2+𝑠) using the above expression and subtracting the terms
𝑓1/2 𝑓1/2+𝑠, and 𝑓1/2 𝑓1/2+𝑠, we are left with the following type of terms whose bounds are given below:

𝑓1/2 𝑓1/2+𝑠 (𝑔) �
𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
𝑟/2−(𝑟− 𝑗)�(𝑠) .

If we replace the left-hand side above with 𝑓1/2 𝑓1/2+𝑠 (𝑔), then a similar inequality holds, with the
exponent in the right-hand side being 𝑟/2 + 𝑗�(𝑠). In any case, for sufficiently small �(𝑠) and 𝑟 ≥ 3,
we have

𝑟/2 + 𝑟 |�(𝑠) | < 𝑗 (𝑟 − 𝑗), 1 ≤ 𝑗 < 𝑟.
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A similar estimate can be done for 𝑓1/2𝐻
1
𝑠 (𝑔). Next we check that

𝐻1
0 (𝑔) 𝑓1/2+𝑠 �

𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1−�(𝑠)) (𝑟− 𝑗)−𝑁 𝛿 𝑗=1 .

A similar estimate can be obtained if we replace 𝑓1/2+𝑠 by 𝐻1
𝑠 on the left-hand side above. Clearly, for

sufficiently small �(𝑠), we have

(1 −�(𝑠)) (𝑟 − 𝑗) − 𝑁𝛿 𝑗=1 < 𝑗 (𝑟 − 𝑗).

Finally, for 1 < 𝑖 < 𝑟 , the exponent of 𝑦 𝑗 ,∞ of 𝐻𝑖0 is ≤ (𝑟 − 2)/2. On the other hand, the same of 𝐺𝑠 is
≤ (1/2 + |�(𝑠) |) (𝑟 − 1) for 𝐺𝑠 being one of 𝑓1/2+𝑠 , 𝑓1/2+𝑠, or 𝐻𝑖𝑠 with 𝑖 < 𝑟 . So the exponent of 𝑦 𝑗 ,∞
of the product 𝐻𝑖0𝐺𝑠 for 1 < 𝑖 < 𝑟 is

≤ (𝑟 − 2 + 𝑟 − 1)/2 + (𝑟 − 1) |�(𝑠) | < 𝑗 (𝑟 − 𝑗)

for sufficiently small �(𝑠).
Similarly, one estimates remaining terms of the form 𝐻1

0 𝑓1/2+𝑠, 𝐺0𝐻
𝑖
𝑠 and 𝑓1/2𝐻

1
𝑠 , which we leave

for the reader. Hence we conclude the proof. �

Lemma 6.5. Let 𝑔 ∈ S and 𝑠 ∈ C with sufficiently small �(𝑠). Then

Eis( 𝑓1/2 𝑓1/2+𝑠) (𝑔) − 𝑓1/2(𝑔) 𝑓1/2+𝑠 (𝑔) � 𝛿1−𝜂
[(
𝑎(𝑦∞)

1

)]
and also

Eis( 𝑓1/2 𝑓1/2+𝑠) (𝑔) − 𝑓1/2(𝑔) 𝑓1/2+𝑠 (𝑔) � 𝛿1−𝜂
[(
𝑎(𝑦∞)

1

)]
for some 𝜂 > 0.

Proof. We take a very similar path as in the proof of Lemma 6.4. Let 𝑠 ∈ C be away from the poles of
the relevant Eisenstein series and �(𝑠) be sufficiently small.

First note that 𝑓1/2 𝑓1/2+𝑠 ∈ I1,𝑟−1(1− 𝑠). We use the functional equation of the Eisenstein series [11,
Proposition 2.1]: there exists �̃�𝑠 ∈ I𝑟−1,1(𝑠) such that

Eis( 𝑓1/2 𝑓1/2+𝑠) = Eis(�̃�𝑠).

In fact, �̃�𝑠 is the preimage of 𝑓1/2 𝑓1/2+𝑠 under the standard intertwiner from I1,𝑟−1(1 − 𝑠) to I𝑟−1,1(𝑠):
that is,

𝑓1/2 𝑓1/2+𝑠 = 𝑀0
1 �̃�𝑠 ,

and in particular, �̃�𝑠 is holomorphic in a sufficiently small neighbourhood of 𝑠 = 0.
From Lemma 3.2, we get that

Eis( 𝑓1/2 𝑓1/2+𝑠) − 𝑓1/2(𝑔) 𝑓1/2+𝑠 (𝑔) = Eis(�̃�𝑠) (𝑔) − 𝑀0
1 �̃�𝑠 (𝑔)

= �̃�𝑠 (𝑔) +
∑
𝑞∈Q×

𝑀𝑞
1 �̃�𝑠 (𝑔) +

∑
1<𝑖<𝑟

∑
𝑞∈Q

𝑀𝑞
𝑖 �̃�𝑠 (𝑔).
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We now bound each summand above similarly to the proof of Lemma 6.4. As �̃�𝑠 ∈ I𝑟−1,1(𝑠), we obtain
that

�̃�𝑠 (𝑔) �

�����̃�𝑠 [(𝑎(𝑦∞) 1

)] ���� � 𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
𝑗�(𝑠) .

Here we applied ‖�̃�𝑠 ‖𝐿∞ (𝐾 ) � 1, which can be deduced similarly to the proof of Lemma 6.3 and
applying holomorphicity of �̃�𝑠 for small s.

On the other hand, once again recalling equation (3.4), we obtain for 1 < 𝑖 < 𝑟 that∑
𝑞∈Q

𝑀𝑞
𝑖 �̃�𝑠 (𝑔) � 𝑀0

𝑖 �̃�𝑠

[(
𝑎(𝑦∞)

1

)]
+

𝑖−1∏
𝑗=1

|𝑦 𝑗 ,∞|
𝑗�(𝑠)

𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 ,∞|
(1−�(𝑠)) (𝑟− 𝑗)

∑
𝑞∈Q×

‖𝑊 𝑖
�̃�𝑠
(𝑞𝑦𝑖 , .)‖𝐿∞ (𝐾 )

�

𝑖−1∏
𝑗=1

|𝑦 𝑗 ,∞|
𝑗�(𝑠)

𝑟−1∏
𝑗=𝑖

|𝑦 𝑗 ,∞|
(1−�(𝑠)) (𝑟− 𝑗) .

In the last estimate above, we used that∑
𝑞∈Q×

‖𝑊 𝑖
�̃�𝑠
(𝑞𝑦𝑖 , .)‖𝐿∞ (𝐾 ) �𝑁 |𝑦𝑖,∞|

−𝑁 ,

which can be deduced similarly to the proof of Lemma 6.3. Similarly, we deduce that∑
𝑞∈Q×

𝑀𝑞
1 �̃�𝑠 (𝑔) �𝑁

𝑟−1∏
𝑗=1

|𝑦 𝑗 ,∞|
(1−�(𝑠)) (𝑟− 𝑗)−𝑁 𝛿 𝑗=1 .

In each case, the exponent of 𝑦 𝑗 ,∞ is strictly smaller than 𝑗 (𝑟 − 𝑗), which concludes the proof for
the second assertion for sufficiently small �(𝑠). The first assertion can be proved similarly (and more
easily), which we leave for the reader. �

Proof of Proposition 6.1. In Lemma 6.2, we have already proved the holomorphicity of �̃�𝑠 at 𝑠 = 0.
From Lemma 6.4 and Lemma 6.5, we conclude by the triangle inequality that for sufficiently small
�(𝑠) and 𝑔 ∈ S,

�̃�𝑠 (𝑔) � 𝛿1−𝜂
[(
𝑎(𝑦∞)

1

)]
for some 𝜂 > 0. Thus ∫

X

|𝐸𝑠 | (𝑔)𝑑𝑔 �

∫
𝑦 𝑗,∞1

𝛿−𝜂
[(
𝑎(𝑦∞)

1

)] ∏
𝑗

𝑑×𝑦 𝑗 ,∞.

The last integral is convergent, and we conclude. �

7. Analysis of the spectral side

Recall the spectral weight 𝐽𝑋 (𝜋∞) from equation (4.5), the choices of the local components from
Section 4.1, and the 𝜗0-temperedness assumption on 𝜋0,∞ from the statement of Theorem 2.1. In this
section, we prove the remaining second property of the spectral weight as described in Theorem 2.1. That
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is, we show that 𝐽𝑋 (𝜋∞) is uniformly bounded away from zero if 𝜋∞ is 𝜗-tempered with 𝜗 + 𝜗0 < 1/2
and 𝐶 (𝜋∞) < 𝑋 .

Proposition 7.1. Let 𝜋 ∈ X̂gen be such that 𝜋∞ is 𝜗-tempered with 𝜗 + 𝜗0 < 1/2. Let 𝜋0 be the cuspidal
automorphic representation as in Theorem 2.1. Then

𝐽𝑋 (𝜋∞)  1, if 𝐶 (𝜋∞) < 𝑋,

where the implied constant possibly depends on 𝑊0,∞,Φ∞.

For the rest of this section, to ease notations, we drop the ∞-subscript everywhere.
We recall the notations and definition of the Sobolev norm S𝑑 as in [27, §2.3.2], [19, §3.9]. Let {𝐻}

be a basis of Lie(𝐺 (R)). We define a Laplacian on 𝐺 (R) by

D := 1 −
∑
𝐻

𝐻2, (7.1)

which is positive definite and self-adjoint on any unitary representation 𝜉 of 𝐺 (R). For any 𝑣 ∈ 𝜉, we
define the dth Sobolev norm of v by

S𝑑 (𝑣) := ‖D𝑑𝑣‖𝜉 .

We refer to [27, §2.4] for a collection of useful properties of the Sobolev norm.
Let 𝑊 ∈ 𝜋 be a unit vector such that in the Kirillov model W is given by

𝑊

[(
𝑔

1

)]
:= 𝑊0

[(
𝑔

1

)]
. (7.2)

Note that such a choice is valid due to the choice of 𝑊0 in Section 4.1. In fact, 𝑊 ∈ 𝜋 is an analytic
newvector in the sense of Section 2.9.

Lemma 7.2. Let 𝑊0 be as in Section 4.1. Let 𝐴𝑟−1(R)O𝑟−1(R) � ℎ = 𝑎𝑘 as before. If 𝑐 � 1, then

𝑊0

[(
ℎ
𝑐/𝑋 1

)]
�𝜂,𝜋0 | det(𝑎) |−𝜗0𝛿1/2−𝜂

[(
𝑎

1

)]
min(1, 𝑎−𝑀𝑟−1 )

𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 )

for any 𝜂 > 0.

This lemma is proved in [19, Lemma 5.2] for 𝜋0 being a tempered representation. Here we modify
the proof to accommodate the 𝜗0-tempered case.

Proof. Let 𝑊 ′
0 := 𝜋0

[(
𝑘
𝑐/𝑋 1

)]
𝑊0. Note that 𝑘 ∈ O𝑟−1(R) and |𝑐 | � 1 vary over compact sets. Hence

it is enough to show that

𝑊 ′
0

[(
𝑎

1

)]
�𝜂,𝑀,𝜋0 | det(𝑎) |−𝜗0𝛿1/2−𝜂

[(
𝑎

1

)]
min(1, 𝑎−𝑀𝑟−1 )

𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 ).

We take a very similar path as in the proof of [19, Lemma 5.2].
We define 𝑊1 := 𝑑𝜋0 (𝑌

𝑀 ) (𝑊 ′
0), where Y is a Lie algebra element such that

𝑑𝜋0 (𝑌 )𝑊
′
0

[(
𝑎

1

)]
= 𝑎𝑟−1𝑊

′
0

[(
𝑎

1

)]
.
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Thus it is enough to prove that

𝑊1

[(
𝑎

1

)]
�𝜂,𝑀,𝜋0 | det(𝑎) |−𝜗0𝛿1/2−𝜂

[(
𝑎

1

)] 𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 ). (7.3)

We use the Dixmier–Malliavin Lemma (see [13]) to find finitely many 𝛼𝑖 ∈ 𝐶∞
𝑐 (𝐺 (R)) and 𝑊𝑖 ∈ 𝜋∞0

such that

𝑊1 =
∑
𝑖

𝜋0 (𝛼𝑖)𝑊𝑖 .

Thus to prove equation (7.3), it is enough to show equation (7.3) with 𝑊1 replaced by 𝜋0 (𝛼𝑖)𝑊𝑖 =: 𝑊2
for each i.

Let 𝜎 ∈ R. We use the Whittaker–Plancherel formula to expand

| det(𝑎) |−𝜎𝑊2

[(
𝑎

1

)]
=
∫

0GL𝑟−1 (R)

∑
𝑊 ′ ∈B(𝜋′)

𝑊 ′(𝑎)𝑍𝑊2 ,𝜎 (𝑊
′)𝑑𝜇loc(𝜋

′), (7.4)

which is valid for 𝜎 in some left half plane. Here

𝑍𝑊2 ,𝜎 (𝑊
′) :=

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

𝑊2

[(
ℎ

1

)]
𝑊 ′(ℎ) | det(ℎ) |−𝜎𝑑ℎ

= 𝛾(1/2 − 𝜎, 𝜋0 ⊗ 𝜋′)−1𝜔𝜋′ (−1)𝑟−1
∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

�̃�2

[(
ℎ

1

)]
�̃� ′(ℎ) | det(ℎ) |𝜎𝑑ℎ.

In the last line, we have used the GL(𝑟) × GL(𝑟 − 1) local functional equation. Here 𝛾(.) denotes the
local gamma factor and 𝜔𝜋′ denotes the central character of 𝜋′. Finally, �̃� denotes the contragredient
of W defined by �̃� (𝑔) := 𝑊 (𝑤𝑔−𝑡 ), where w is the long Weyl element of the respective group.

Let �̃�𝑖 (𝑔) := 𝛼𝑖 (𝑔
−𝑡 ). Let 𝑁∗ be the unipotent radical of upper triangular matrices attached to the

partition 𝑟 = (𝑟 − 1) + 1. Recalling that 𝑊2 = 𝜋0 (𝛼𝑖)𝑊𝑖 , we can write

�̃�2

[(
ℎ

1

)]
=
∫
𝐺 (R)

�̃�𝑖 (𝑔)�̃�𝑖

[(
ℎ

1

)
𝑔

]
𝑑𝑔

=
∫
𝑁 ∗\𝐺 (R)

�̃�𝑖

[(
ℎ

1

)
𝑔

] ∫
𝑁 ∗

�̃�𝑖 (𝑛
∗𝑔)𝜓𝑒𝑟−1ℎ (𝑛

∗)𝑑𝑛∗𝑑𝑔,

where 𝑒𝑟−1 is the row vector (0, . . . , 0, 1). Then we have that

𝑍𝑊2 ,𝜎 (𝑊
′) = 𝛾(1/2 − 𝜎, 𝜋0 ⊗ 𝜋′)−1𝜔𝜋′ (−1)𝑟−1∫

𝑁 ∗\𝐺 (R)

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

�̃�𝑖

[(
ℎ

1

)
𝑔

] ∫
𝑁 ∗

�̃�𝑖 (𝑛
∗𝑔)𝜓𝑒𝑟−1ℎ (𝑛

∗)𝑑𝑛∗�̃� ′(ℎ) | det(ℎ) |𝜎𝑑ℎ𝑑𝑔.

We choose an orthonormal basis B(𝜋′) consisting of eigenfunctions of the Laplacian D′ on GL𝑟−1(R),
as defined in equation (7.1), and integrate by parts the h-integral L times with respect to D′. We note that
𝑊 ′ ⊗ | det |𝜎 is also an eigenfunction of D′. We recall a bound of the gamma factor from [19, Lemma
3.1]:

𝛾(1/2 − 𝜎, 𝜋0 ⊗ 𝜋′) �𝜎,𝜋0 𝐶 (𝜋′)𝑟 𝜎 .
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We apply the Cauchy–Schwarz on the above h integral. Then we use the above bound of the gamma
factor and unitarity of 𝜋0 to obtain that

𝑍𝑊2 ,𝜎 (𝑊
′) � 𝐶 (𝜋′)𝑟 𝜎𝜆−𝐿

�̃� ′

∫
𝑁 ∗\𝐺 (R)

(∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

����D′𝐿

(∫
𝑁 ∗

𝛼𝑖 (𝑛
∗𝑔)𝜓𝑒𝑟−1ℎ (𝑛

∗)𝑑𝑛∗
)

�̃� ′(ℎ) | det(ℎ) |𝜎
����2𝑑ℎ)1/2

𝑑𝑔,

where 𝜆�̃� ′ is the D′-eigenvalue of �̃� ′. The above 𝑁∗-integral gives rise to a Schwartz function in 𝑒𝑟−1ℎ,
which can be seen integrating by parts several times in the 𝑁∗-integral. Thus

D′𝐿

(∫
𝑁 ∗

𝛼𝑖 (𝑛
∗𝑔)𝜓𝑒𝑟−1ℎ (𝑛

∗)𝑑𝑛∗
)
� min(1, |𝑒𝑟−1ℎ|

−𝑁 ).

Noting that g varies over a compact set in 𝐺 (R) modulo 𝑁∗, we obtain that

𝑍𝑊2 ,𝜎 (𝑊
′) � 𝐶 (𝜋′)𝑟 𝜎𝜆−𝐿

�̃� ′

(∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

min(1, |𝑒𝑟−1ℎ|
−𝑁 ) |�̃� ′(ℎ) |2 | det(ℎ) |2𝜎𝑑ℎ

)1/2
.

We use [19, Lemma 5.2] on �̃� ′ (which is in the tempered representation �̃�′) to check that the above
integral is absolutely convergent for any 𝜎 > 0. In particular, from the location of the first pole of
𝛾(1/2 − 𝜎, 𝜋0 ⊗ 𝜋′)−1, we may conclude that one can choose 𝜎 in (0, 1/2 − 𝜗0) in the definition of
𝑍𝑊2 ,𝜎 (𝑊

′).
Again, we use [19, Lemma 5.2] to estimate 𝑊 ′(𝑎) in equation (7.4) by

� 𝛿1/2−𝜂 (𝑎)
𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 )𝜆𝑑𝑊 ′ ,

where d only depends on M. We choose 𝜎 = 1/2 − 𝜗0 − 𝜂 to obtain that

𝑊2

[(
𝑎

1

)]
�𝜂,𝑀,𝜋0 | det(𝑎) |−𝜗0𝛿1/2−𝜂

[(
𝑎

1

)]
𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 )

∫
0GL𝑟−1 (R)

𝐶 (𝜋′)𝑟 𝜎
∑

𝑊 ′ ∈B(𝜋′)

𝜆𝑑−𝐿𝑊 ′ 𝑑𝜇loc (𝜋
′).

We make L sufficiently large and invoke [19, Lemma 3.3] to conclude that the above sum and integral
are absolutely convergent. �

Lemma 7.3. Let W be as in equation (7.2) and𝑊0 be as in Section 4.1. Let V be W or𝑊0 and 𝜉 be 𝜋 or
𝜋0, respectively. Also let 𝐴𝑟−1(R)O𝑟−1(R) � ℎ = 𝑎𝑘 , where 𝑎 = diag(𝑎1, . . . , 𝑎𝑟−1) and |𝑐 | � 1. Then
for any sufficiently small 𝜂 > 0,

𝑉

[(
ℎ
𝑐/𝑋 1

)]
−𝑉

[(
ℎ

1

)]
�𝜂 | det(𝑎) |−𝜃𝛿1/2−𝜂

[(
𝑎

1

)]
𝐶 (𝜉) |𝑐 |

𝑋
.

Here 𝜃 is 𝜗 or 𝜗0 depending on whether 𝜉 is 𝜋 or 𝜋0, respectively.

This is essentially the main result of analytic newvectors, proved in [19, Proposition 4.1], but in a
more quantitative form. We need to only modify the proof of [19, Proposition 4.1], and we describe that
here.
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Proof. Let 𝜎 ∈ R be in some left half plane. As in the proof of [19, Proposition 4.1], we write the
difference in the lemma as∫

0GL𝑟−1 (R)
𝜔 �̄�′ ( (−1)𝑟−1𝐶 (𝜉)−1)𝐶 (𝜉) (𝑟−1)𝜎𝛾(1/2 − 𝜎, 𝜉 ⊗ �̄�′)−1

∑
𝑊 ′ ∈B(𝜋′)

𝑊 ′(ℎ) | det(ℎ) |𝜎∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

(𝑒(𝑐𝑤′𝑡−1𝑒1𝐶 (𝜉)/𝑋) − 1)𝑉
[(
𝐶 (𝜉)

𝑡

)
𝑤

]
𝑊 ′(𝑡𝑤′) | det(𝑡) |−𝜎𝑑𝑡𝑑𝜇loc(𝜋

′),

where 𝑤′ is the long Weyl element of GL(𝑟 − 1). Note that 𝜋′ is tempered. We now use [19, Lemma
5.2] for tempered representations to estimate

𝑊 ′(ℎ) � 𝛿1/2−𝜂 (𝑎)𝑆𝑑 (𝑊
′)

for any 𝜂 > 0 and some 𝑑 > 0. We choose 𝜎 = 1/2 − 𝜃 − 𝜂 (which is admissible) and proceed as in the
proof of [19, Proposition 4.1] to conclude. �

Proof of Proposition 7.1. Recall the definition of 𝐽𝑋 from equations (4.5) and (2.6). In the expression
of equation (2.6), we choose a basis B(𝜋) containing an analytic newvector W as in equation (7.2). To
show the required lower bound of 𝐽𝑋 , it is enough to drop all but the term containing W from the sum
in equation (2.6) by positivity and show that

𝑋𝑟−1 |Ψ( 𝑓1/2(.𝑥),𝑊0,𝑊) |2  1

if 𝐶 (𝜋) < 𝑋 .
First, using equation (2.2) and the choices of the local components as in Section 4.1, we get

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
=
∫
R×

Φ(𝑡 (𝑐, 1)) |𝑡 |𝑟/2𝑑×𝑡 ≥ 0.

The support condition of Φ in Section 4.1 implies that the above vanishes unless |𝑐 | < 𝜏. We use Bruhat
coordinates and make the change of variables to write 𝑋 𝑟−1

2 Ψ( 𝑓1/2(.𝑥),𝑊0,𝑊) as

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

∫
R𝑟−1

𝑊0

[(
ℎ
𝑐/𝑋 1

)]
𝑊

[(
ℎ
𝑐/𝑋 1

)]
𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐

𝑑ℎ

| det(ℎ) |1/2 .

We use Lemma 7.3 for W, noting that |𝑐 | < 𝜏 and 𝐶 (𝜋) < 𝑋 , to obtain that the above integral is

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

𝑊

[(
ℎ

1

)] ∫
R𝑟−1

𝑊0

[(
ℎ
𝑐/𝑋 1

)]
𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐

𝑑ℎ

| det(ℎ) |1/2

+𝑂𝜂

(
𝜏

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

𝛿1/2−𝜂
[(
ℎ

1

)] ∫
R𝑟−1

����𝑊0

[(
ℎ
𝑐/𝑋 1

)]
𝑓1/2

[(
I𝑟−1
𝑐 1

)] ����𝑑𝑐 𝑑ℎ

| det(ℎ) |1/2+𝜗

)
.

(7.5)

We use Lemma 7.3 for 𝑊0 and the definition of W in the Kirillov model as in equation (7.2) to obtain
that the main term of equation (7.5) is equal to
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𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(
ℎ

1

)]
𝑑ℎ

| det(ℎ) |1/2

∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐

+𝑂 𝜋0

(
1
𝑋

∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |

[(
ℎ

1

)]
𝛿1/2−𝜂

[(
ℎ

1

)]
𝑑ℎ

| det(ℎ) |1/2+𝜗0∫
R𝑟−1

| 𝑓1/2 |

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐

)
. (7.6)

From the choice of Φ in Section 4.1, we obtain that

0 ≤

∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐 � 1.

Also, the choice of 𝑊0 in Section 4.1 ensures that∫
𝑁𝑟−1 (R)\GL𝑟−1 (R)

|𝑊0 |
2
[(
ℎ

1

)]
𝑑ℎ

| det(ℎ) |1/2 �𝜋0 1.

So the main term of equation (7.6) is

�𝜋0

∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐.

On the other hand, the error term in equation (7.6) is trivially �𝜋0 ,𝜏 𝑋−1, which follows from the
support condition of𝑊0 as in Section 4.1. In total, we obtain that equation (7.6), which is the main term
of equation (7.5), is

�𝜋0

∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐 +𝑂 𝜋0 ,𝜏 (1/𝑋).

Now we focus on the error term of equation (7.5). We use Iwasawa coordinates in the integral and use
Lemma 7.2 to estimate the error term by

�𝑀 𝜏

∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐

∫
𝐴𝑟−1 (R)

| det(𝑎) |1/2−𝜗−𝜗0𝛿−2𝜂
[(
ℎ

1

)]
min(1, 𝑎−𝑀𝑟−1 )

𝑟−2∏
𝑖=1

min(1, (𝑎𝑖/𝑎𝑖+1)
−𝑀 )𝑑×𝑎.

We recall the assumption that 𝜗+𝜗0 < 1/2. Hence, the inner integral is convergent for sufficiently small
𝜂 and large enough M. Thus we obtain that equation (7.5) is

�𝜋0 (1 + 𝜏𝑂 𝜋0 (1))
∫
R𝑟−1

𝑓1/2

[(
I𝑟−1
𝑐 1

)]
𝑑𝑐 +𝑂 𝜋0 ,𝜏 (1/𝑋).

We conclude that the above is  1 by making 𝜏 sufficiently small but fixed. �
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