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0. Abstract. An elementary derivation of the asymptotic formula for the number of
cube-full numbers up to x is given. This derivation is used, together with an estimation of
a three dimensional exponential sum, to establish the asymptotic formula for the number
of cube-full numbers in the short interval x < n < x + xV3+e where 140/1123 < 9 < 1/3.

1. Introduction. Let k be a fixed integer greater than 1. A positive integer n is
called a A:-full number if pk divides n whenever p is a prime divisor of n. For x > 1 we
denote by Qk(x) the number of k-fu\l numbers not exceeding x. The investigation of
k-full numbers began in 1935 when Erdos and Szekeres [1] gave an asymptotic formula
for Q2(x). The best known results concerning the error term A^x) associated with the
asymptotic formula for Qk{x) can be found in the more recent papers of Ivic and Shiu [2]
and Kratzel [4].

Concerning the simplest case of the square-full numbers the author [10] (see also [8]
and [3] on further development) gave an asymptotic formula for

Q2(x+xirz+e)-Q2(x), O-1526<0<i;

the significance of the result is that such an asymptotic formula holds for some 9 < 1/6. It
was remarked that the extension of this short interval result to k > 3 can be obtained if
the error term Ak(x) associated with the asymptotic formula for

satisfies

A*(x)«xp as x—*°°, for some p < — — - . (1.1)

This was then known to be the case only for k = 2, but Kratzel [4] has now established it
for k = 3. Consequently an asymptotic formula for

Q3(x+x2n+e)-Q3(x), 90<9<\ (1.2)

holds with 90 = 1/8 (see (2.5) and (2.7)), and the method of [10] can be applied to shorten
the interval concerned by having do< 1/8; but there is some complication in this which we
now explain. As shown in [2], the asymptotic formula for Qk{x) can be obtained by an
analytic method via the use of Dirichlet series. However, the case k = 2 is rather special
in that the generating function for Q2(x) is £(2s)£(3s)/£(6s) which is meromorphic in the
whole 5-plane, in contrast to that for Qk(x), k>3, which is an infinite product of the
Riemann Zeta functions with the line a = 0 as a natural boundary. Thus, although the
elementary derivation of the asymptotic formula for Q2(x) is rather simple we should
expect complications when k ^ 3. Now the method for the short interval result was
adapted from that of Roth [7] for square-free numbers and the method requires an
elementary derivation of the asymptotic formula concerned with a "delicate" error term.
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In Section 2 we give an elementary derivation of the asymptotic formula for Q3(x)
with an error term O(x118). Indeed the new proof of the asymptotic formula also adds
insight to the arithmetical structure of cube-full numbers which is less transparent in the
analytical proof. In Section 3 we state a theorem which implies that there may be no
cube-full numbers between successive cubes; this is a generalization of a result in [9], and
it explains why we need to consider an interval with length greater than x213 in (1.2). In
Section 4 we apply Roth's method to reduce the short interval problem to that of the
estimation of the three dimensional exponential sum (4.6). This sum is dealt with in
Section 5 using the one dimensional exponent pair method, and our estimate leads to the
final result that the asymptotic formula for (1.2) holds when

in other words we can take do= 140/1123 = 0-1246607 . . . < 1/8.
Although (1.1) has yet to be established for k>3 it is clear from Section 2 that the

corresponding development of the short interval method should present no new
difficulties.

2. The asymptotic formula for Q3(x). Since every cube-full integer can be written
uniquely as a3bAc5, where be is squarefree, we have

G3(*)= 2 H2{bc), (2.1)
a3/>4c5sx

where n{n) is the Mobius function. The corresponding unweighted sum

$»(*) = 2 1 (2-2)

has the asymptotic formula (see [2])

S3(x) = A$xm + AtxVA + A*sx
1'5 + AJ(JC), (2.3)

where

2 ( ) r = 3,4,5

and A*(JC) is an error term. Let p* be the infimum of the set of all p such that A*(x) «x"
holds as *-»°°. As we mentioned in the introduction Kratzel [4] proved that

P*^M<i). (2.4)
The asymptotic formula for Q3(x) now takes the form

Q3(x) =A3x
m + A4x

m + A5x
U5 + A3(JC), (2.5)

(2.6)

where

( ) r = 3,4,5,

p

see [2] where it is shown that

A3(x)«xv* (2.7)
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is a consequence of (2.4). Indeed it is pointed out in [2] that A3(x) = o(xm) and that the
exponent 1/8 can be reduced if and only if the supremum of the real parts of the zeros of
£(j) is less than 1. As we already remarked in the introduction, the asymptotic formula
for (1.2) can be derived trivially from (2.7) when 1/8 < 6 < 1/3.

For the non-trivial range of 0 < 1/8 we first give an elementary proof of the formula
(2.5) in which (2.7) holds so that Roth's method can be applied. Crudely speaking the
complication in the derivation of (2.5) is due to the fact that the Mobius function is not
completely multiplicative. We have, from (2.1),

<23«= 2 I*\b)n2(c)= 2 M2(0 2 tid)
o364c5sx OWSJ: md2=b

) (2.8)

(bd,c)=l

where
H(x,d)= 2 Ac); (2.9)

a3b4css.x
(bd,c) = l

and it becomes necessary to relate H(x, d) to S3(x) so that the asymptotic formula (2.3)
can be applied. We have

H(x,d)= 2 /i2(c)2/*(0
a2b*c5^x t\b
(c,d) = l l\c

= 2 n2(dM0= 2 A
a3b'c5Psx aWc'Psx
(ct,d)=l (c,l,d)=l

= 2 til) 2 tin)= 2
aWcVsx mn2=c a3b4csf>nl0sx
(c,/,rf) = l (cn,/,<O=l

= 2 tiDtin) 2 2
(l,n,d) = l k\dl

= 2 tiDtin) 2
3 1 0

and substituting (2.3) into here yields

. * i/r v< f*v)P\"j YtiOti")

where

E{x,d)= 2 tiOtin) 2
(J,n,d)=\

Returning to (2.8) we now have

Q3(x) = 2 A*rx
llrQ,{x, r) + AUx), (2.12)

r=3
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where

and

We proceed to show that, for 3 ^ r s 5,

(2.13)

(2.14)

We shall make use of the identity

i /(«> = n
n = l p + d p\d p

(n,d)=l

for the multiplicative function f(n) with f(p') = 0 for j > 2 and it will also be convenient
to write v =p~llr. We first evaluate lim Q3(x, r), which is given by

00 00 n(k)
Z / Z ( /J8;9\l /r Zy 1,5/r Z / 10/r
d=l /=i I." ' j *|<« f n = l n

(l,d)=l (n,dl)=\

/ Z ( / j8/9\ l / r Z / .5/r
l /=1 I," * ) k\dl K

k\d K p\d

p\dl p

p\d

In view of (2.6) we have proved that lim Q3(x, r) = J3(l/r). In order to obtain an error

term we note that

and if r = 5, then the left-hand side is at most 1. Therefore

1 M . 1 / r

and the formula (2.14) is proved.
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From (2.11) and (2.13) we have

A3
+W= 2

k\di

Now let p* <p< 1/8, and e = (1 - 8p)/8. Using Kratzel's estimate Af (*)«x" together
with

we find that

The required result (2.7) now follows from (2.12) and (2.14).

3. Cube-full numbers between successive cubes. Before we proceed to establish an
interval result for Q3(x) we should mention that there may be no cube-full numbers
between successive cubes. In fact we have the following result.

THEOREM 1. Let f(n) denote the number of cube-full integers in the interval
n3<q<(n + I)3 and let

Fm = {n:f{n) = m) (m = 0,1, 2,. . .).

Then each Fm has positive asymptotic density dm given by

m ,fo
v ' mill m+"

where
1/3

here the prime ' denotes the summation over integers f, of the form tt = b4c5 with b, c
coprime and squarefree.

We omit the proof of this theorem which is a straightforward generalization of that
for square-full numbers given in [9]. Similarly to the square-full case, if qm is the mth
cube-full number we can deduce from the theorem that

lim sup m+l . = — . (3.1)
m^J 3m2 A3

 v

However, the value of

\iminf(qm+i-qm)

has yet to be determined; indeed we cannot even prove that it is finite. This is in contrast
to the square-full case where it is easily seen to have the value 1 by appealing to Pell's
equation.

https://doi.org/10.1017/S0017089500008351 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008351


292 P. SHIU

4. A short interval theorem. We shall now be concerned with the number of
cube-full numbers in the interval x <n^x + h. From Theorem 1 we see that this interval
may contain no cube-full number at all if h < xm. We therefore write

/ i=jcM + e , O < 0 < i (4.1)

It follows at once from (2.5) and (2.7) that if 1/8 < 9 < 1/3, then

Q3(x + h)-Q3(x)~^A3x
8 as x^°°. (4.2)

We now prove the following result.

THEOREM 2. Let 60 be the infimum of the set of all 6 such that (4.2) holds. Then

We remark that the right-hand side of (4.3) is less than 1/8 if and only if p* < 1/8,
and that the required result (1.3) follows from Kratzel's estimate of p* in (2.4). As in [10]
we apply Roth's method to investigate Q3(x + h) - Q3(x). Let

p*<p< | , logx<t<x118. (4.4)

From (2.8) we have

Q3(x + h)-Q3(x)= 2 J«2(c)/x(d)
x<a3bVdssx+h

(bd,c) = l

and we divide this sum into 2 t and 22 to which the extra conditions of d < t and d > t
respectively are attached. Thus

where H(x, d) is given by (2.9). From (2.10), (2.11) together with

(x + h)m - xm = ̂ xe + O(x26-m)

(x + h)m-xw«xe-yi2

{x+h)V5-xV5«xe-m5

and

it now follows that

Zj = &43 + O(l))xe + 0{xptx-*p).

Using the trivial estimate

|22| ^ 2

https://doi.org/10.1017/S0017089500008351 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008351


THE DISTRIBUTION OF CUBE-FULL NUMBERS 293

and applying the argument in [10] we now find that

\Q3(x + h)- Q3(x) - (\A3 + o(l))xe\ < \U3(x + h,t)- U3(x, t)\ + O{xptx-*p) (4.5)

where
/ / x \ 1/8\

u,(x,t)= 2 V'ff-iro) (4-6)
oVc'sxr' \\a b c / I

and, as usual, ij>(x) = x — [x] — 1/2. This three dimensional exponential sum has the trivial
estimate

t)\^ 2 l = SJ(Jcr8)«je1/3r8°. (4.7)

However, for our sharper result we need the following non-trivial estimate, the proof of
which is given in the next section. As x—»°° we have

{/3(x,0«*1/3r19/6 uniformly in l<f<jc"1 4. (4.8)

From (4.5) we now have

Q3(x + h)- Q3(x) = &43 + o(l))xe + O(xmr19'6) + O(x»tl-%p) (4.9)

provided that t^x1'14. We set t = xa, where a is so chosen that the last two error terms
are of the same order; that is

1 /3-p 2 - 6 p

19/6 + l - 8 p 25 - 48p

We remark that this is an admissible choice because, by a classical lattice point theorem
of Landau [5], p* has the lower bound 1/12 so that, by (4.4), a < 1/14. We now have
xi/3rl9/6 = xptl-8p = xY, where

25 - 48p
and (4.9) becomes

Q3(x + h)- Q3(x) = (§A3 + o(l))xe + O(Xy).

Consequently if y < 6, then the asymptotic formula (4.2) holds. Therefore the number d0

in the theorem satisfies

u 25-48p

for every p satisfying (4.4). The theorem is established subject to the proof of the
estimate (4.8).

We remark that if we use the trivial estimate (4.7) instead of (4.8) then we still have
the non-trivial result of
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5. The estimation of U3(x,t). A proper three dimensional method of dealing with
the sum U3(x, t) is exceedingly difficult. In fact there is, at the moment, still not a suitable
two dimensional procedure similar to the one dimensional exponent pair method that can
be applied with the same flexibility and ease to two dimensional sums. We confine
ourselves to the one dimensional method by writing the three dimensional sum (4.6) as

U3(x,t)= 2 u(-$-5,t), (5.1)

where

U(x,t)= 2 ^((4)1/8)- (5-2)

In [6] Richert introduced the notation

where a, j8 and y are positive constants, and he used the theory of exponent pairs to
establish that, as x—>°°,

R(x; a,P, y)«x«-»«OJ-««v) + JC«-+O'-«n')*'*+i (5.3)

whenever (k, 1) is an exponent pair satisfying / > yk. We set

so that our sum U(x,t) in (5.2) becomes R(x; a, /3, 7), and that the estimate (5.3) is
applicable since every exponent pair satisfies 8/>3&. The first exponent for x in (5.3) is
now (2-19r/)/6 and, with the exponent pair ( i , ! ) , the second exponent for x is
(4 — 29t])/2\. In other words we have the estimate

U(x,t) «x1 / 3r ( 1 9 / 6 ) + JC**,-*2*21*. (5.4)

Observe that the first error term here dominates over the second error term when t^x2125

and that the estimate is no better than the trivial estimate of O((xt~s)U3) when
,t1/9<f <JC1/8. By convexity we may replace the second error term in (5.4) with (xt~8)°,
where a satisfies

1 19 2 / 8 x 2

that is a - 2/9. We therefore have the estimate

(16/9\ as
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uniformly in 1</<* 1 / 8 . Substituting this into our original sum in (5.1), we now have

/ 1 \ 2

U3(x, t) «*1/3r(19/6) + jcMr(uw> 2 (-r-s)
bVsxt-* \b C /

1/3,-09/6) . 2/9,-(l«9) V *
' T - * ' Z> L8/9

4 S D

2/9

" 3 r ( 1 9 / 6 )

> L8
,-S D

Since the first term on the right-hand side dominates over the second term when t <jt1/14

the required estimate (4.8) is established.
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