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Continued Fractions Associated with
SL3(Z) and Units in Complex Cubic Fields

L. Ya. Vulakh

Abstract. Continued fractions associated with GL3(Z) are introduced and applied to find fundamental

units in a two-parameter family of complex cubic fields.

1 Introduction

Denote by P the symmetric space SL3(R)/ SO3(R) which can be identified with the

set of definite quadratic forms in three real variables with the leading coefficient 1

(see e.g. [9] or [18]). In [21] and [22], a continued fraction algorithm associated

with a discrete group acting in a hyperbolic space was defined. The purpose of this

work is to extend this definition to the case of the group Γ = GL3(Z)/{±1} acting

in P and apply the algorithm to find a fundamental unit of a complex cubic field.

In Section 2, the notion of the height of a point in P is introduced. The set K(w)

in P is defined so that, for every point A ∈ P, the points in the Γ-orbit of A with the

largest height belong to K(w). The images K(gw) of K(w), g ∈ Γ, under the action

of Γ form the K-tessellation of P.

Assume that g ∈ GL3(R) has only one real eigenvalue. The set of points LP ∈ P

fixed by g will be called the axis of g. LP is a geodesic in P (see e.g. [9]). The intervals

R(u) = LP ∩ K(u) 6= ∅ form a tessellation of LP. The corresponding vectors u ∈ Z3

are called the convergents of LP. Let a1, a2, a2 be the eigenvectors of g. In Section 3,

it is shown that if u is a convergent of LP then |(a1, u)(a2, u)2/ det(a1, a2, a2)| is small

(Theorem 4).

In Section 4, Algorithm I is defined. It is similar to Voronoi’s algorithm (see [19]

or e.g. [26]) but it is not the same (see Section 6, Example 2). Algorithm I can be

used to find all the convergents of the axis LP of g ∈ GL3(R) which has only one real

eigenvalue. It can be considered as an extension to group Γ of the algorithm which is

introduced in [21] and [22]. If g ∈ Γ then there are only finitely many intervals R(u)

which are not congruent modulo the action of Γ. Let ΓL denote the torsion free sub-

group of the stabilizer of LP in Γ. The union of non-congruent intervals R(u) form

a fundamental domain of ΓL in LP. Thus, for g ∈ Γ, the continued fraction expan-

sion is periodic (Theorem 7). Review of the multi-dimensional continued fraction

algorithms and their properties known by 1980 can be found in [3].

In Section 5, Diophantine approximation properties of the convergents of the axes

of g and gT are discussed.
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Let ε be an eigenvalue of g. As explained in Section 6, the problem of finding a

unit ε1 in the ring of integers ZF of the field F = Q(ε) such that Z×F /{±1} = 〈ε1〉
is equivalent to the problem of finding a generator of ΓL provided the characteristic

polynomial of g is irreducible. In [25], systems of fundamental units of families of

some totally real fields and quadric fields with signature (2, 1) are found. In [24],

Algorithm I associated with Bianchi groups (see [21] or [22]) is used to find funda-

mental units in families of totally complex quadric fields.

In Example 1, Algorithm I is applied to the well known family of real quadratic

fields Q(
√

t2 + 4) with period length p = 1. In Example 2, we consider two families

of complex cubic fields with period length of the corresponding continued fraction

p = 1. In [26, p. 254], H. Williams applies Voronoi’s algorithm to the same families

of fields. He shows that p = 1 for one family and p = 2 for the other. It follows that

Algorithm I introduced in Section 4 does not coincides with Voronoi’s algorithm.

The following new result is proved in Example 3.

Theorem 1 Let f (x) = x3 − tx2 − ux − 1 where t and u are integers such that t >
u(u + 1)/2 if u is odd and t ≥ u(u + 2)/2 if u is even. Assume that f (x) has only one

real root ε. Let F = Q(ε). Assume that the discriminant of f (x) is square free. Then

{1, ε, ε2} is a basis of the ring of integers ZF of F and Z×F /{±1} = 〈ε〉.

Acknowledgement The author thanks the referee for useful remarks which led to

an improvement of this work.

2 Fundamental Domains and K-Tessellation

Let V3 be the vector space of symmetric 3 × 3 real matrices. The dimension of V3 is

6. The action of g ∈ G = GL3(R) on X ∈ V3 is given by

X 7−→ X[g] = gTXg.

For a subset S of V3, denote S[g] = {X[g] ∈ V3 : X ∈ S}.
The one-dimensional subspaces of V3 form the the five-dimensional real projec-

tive space V , so that, for any fixed nonzero X ∈ V3, all the vectors kX, 0 6= k ∈ R,

represent one point in V . Denote by P ⊂ V the set of (positive) definite elements

of V and by C the boundary of P (C can be identified with non-negative elements of

V of rank less than 3). The group G preserves both P and C as does its arithmetic

subgroup Γ = GL3(Z).

The space V3 (and V ) can be also identified with the set of quadratic forms A[x] =

xTAx, A ∈ V3, x ∈ R3. With each point a = (a1, a2, a3)T ∈ R3, we associate the

matrix A = aaT ∈ C and quadratic form

A[x] = (a, x)2
= (a1x1 + a2x2 + a3x3)2(1)

of rank 1. For g ∈ G, we have (ga, x) = aTgTx = (a, gTx).

Denote w = (1, 0, 0)T and W = wwT . Then (w, x)2
= x2

1 and W [g] = U =

uuT ∈ C where u = gTw.
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Denote the stabilizer of W in G (Γ) by G∞ (Γ∞). Then

G∞ = {g ∈ G : gw = w} = {g ∈ G : g1 = w}

where g1 is the first column of g. Thus, g ∈ G∞ iff W [gT] =W .

We shall say that A = (ai j) ∈ V is w-extremal if |A[x]| ≥ |A[w]| = a2
11 for any

x ∈ Zn/(0, 0, 0). Let A3 = {X ∈ V : X[w] 6= 0}. The elements of A3 will be

normalized so that X[w] = 1. Evidently, P ⊂ A3. For X ∈ V , we shall say that

ht(X) = | det(X)|1/3/|X[w]|

is the height of X and, for a subset S of V , we define the height of S as

ht(S) = max ht(X), X ∈ S.

Thus, if X ∈ A3 then ht(X) = | det(X)|1/3. For a fixed g ∈ Γ, the set

p(g) = {X ∈ A3 : |X[gw]| < 1}

is called the g-strip (cf. [23], [20] where this definition is introduced forΓ = GL2(Z)).

It is clear that p(gh) = p(g) and ht(X[h]) = ht(X) for any h ∈ Γ∞. The set

L+(g) = {X ∈ A3 : X[gw] = 1}

is the boundary of the g-strip p(g) which cuts P. The set Rw of all w-extremal points

of V will be called the w-reduction region of Γ. We denote

K(w) = P ∩ Rw.

(In the notation of [2, p. 148], K(w) is the dual core of Kp erf .) Note that K(w) ⊂ A3

is bounded by the planes L+(g). By Margulis’ theorem [15], all the points of Rw − P

are rational.

Let D be any of the fundamental domains of Γ obtained by Minkowski, Korkine

and Zolotarev (see e.g. [17, p. 13]), or Grenier [11]. For X ∈ D, X[w] = inf X[gw],

g ∈ Γ, in any of these cases. Hence
⋃

D[g] = K(w), the union being taken over all

g ∈ Γ∞. Note that the fundamental domain described in [11] coincides with the

domain found by Korkine and Zolotarev in 1873 (see [13] or [17]). In Section 6, to

prove that a point X ∈ P is extremal we shall show that, for some h ∈ Γ∞, X[h] is

Minkowski reduced.

For g ∈ Γ, let

K(gw) = {X ∈ P : X[g] ∈ K(w)}.

If X ∈ K(w), then X[h] ∈ K(w) for any h ∈ Γ∞. Hence if X ∈ K(gw) then

X[gh] ∈ K(w) for any h ∈ Γ∞. Thus, the sets K(gw) are parameterized by the classes

Γ/Γ∞ or by primitive vectors u ∈ Z3/(0, 0, 0) so that ±u represent the same K(u).

The sets K(gw), g ∈ Γ/Γ∞, form a tessellation of P which will be called the K-

tessellation. All the vertices of K(w) are congruent to v = x2
1 +x2

2 +x2
3 +x1x2+x2x3+x3x1

which is called a perfect form (see e.g. [2] or [17]). Thus, the Hermite’s constant

γ3 = 1/ inf ht(X) = 1/ ht(v) = 2−1/3. Here the infimum is taken over all X ∈ K(w).
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3 Axes of Irreducible Elements of Γ

Given a1, α, β ∈ R3. Let P = (a1, a2, a2) be the matrix with columns a1, a2, a2 where

a2 = α + iβ. Denote A1 = a1aT
1 and A2 = αα

T + ββT . Let LP be the interval

in P with endpoints A1,A2 ∈ C . The stabilizer of LP in G consists of g = PHP−1,

H = diag(λ1, λ2, λ2), λ1 ∈ R, λ2 6= λ2 ∈ C, so that gai = λiai , where ai is the fixed

eigenvector of g corresponding to its eigenvalue λi . Assume that (ai ,w) 6= 0, i = 1, 2.

Then we can choose ai so that

(ai ,w) = 1, i = 1, 2.(2)

Assume that (2) holds. The geodesic LP in P fixed by g will be called the axis of g. It

can be identified with the interval q = µA1 + (1 − µ)A2 or with the set of quadratic

forms in A3:

q[x] = µ(x, a1)2 + (1− µ)|(x, a2)|2, 0 ≤ µ ≤ 1.(3)

Since det P = 2i det(a1, β, α) and q[x] = µ(x, a1)2 + (1− µ)
(

(x, α)2 + (x, β)2
)

, we

have

det q = −µ(1− µ)2(det P)2/4.

Hence, | det q| ≤ | det P|2/27 where the equality is attained when µ = 1/3. It follows

that, for any LP, ht(X) = | det(X)|1/3 → 0 as X approaches the boundary of LP, and

the point

qm[x] =
1

3
(x, a1)2 +

2

3
|(x, a2)|2

is the summit of LP that is det(qm) = max det(q), the maximum being taken over all

q ∈ LP and, since qm ∈ A3, ht(LP) = ht(qm) = (det qm)1/3
= | det P|2/3/3. It is clear

that if R = LP ∩K(w) 6= ∅ then qm ∈ R. Note that 3qm[x] is the form size (Mx) from

[5, p. 169].

Let NP(x) = (x, a1)|(x, a2)|2 where (x, ai) = xTai . Define

ν(LP) = inf

∣

∣

∣

∣

NP(gw)

det P

∣

∣

∣

∣

(4)

where the infimum is taken over all g ∈ Γ. Evidently ν(LP) = ν(LMP[h]) for any

h ∈ Γ and M = diag(µ1, µ2, µ2), µ1µ2 6= 0. The projective invariant ν(LP) is well

known in Geometry of Numbers (see e.g. [4]). Since ht(LP) = | det P|2/3/3 when (2)

hold we have obtained the following.

Lemma 2 Let LP be the geodesic in P fixed by g ∈ G and defined by (3) where gai =

λiai . Let P = (a1, a2, a2) be the matrix with columns a1, a2, a2. Then

ht(LP) =
1

3

∣

∣

∣

∣

det P

NP(w)

∣

∣

∣

∣

2/3

and

ν(LP) = inf
(

3 ht(LP[h])
)−3/2

, h ∈ Γ.
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Assume that LP ∩ K(w) = ∅. Let qm be the summit of LP. Since qm /∈ K(w) there

is g ∈ Γ such that ht(LP[g]) ≥ ht(qm[g]) > ht(qm) = ht(LP). We have obtained the

following.

Lemma 3 Let LP be the totally geodesic manifold fixed by g ∈ G and defined by (3)

where gai = λiai . Then

ν(LP) = inf
(

3 ht(LP[hi])
)−3/2

, LP ∩ K(hiw) 6= ∅.

Thus, ν(LP) < (γ3/3)3/2
=
√

2/27 = 0.2722.

It was shown by Davenport (see [8]) that sup ν(LP) = 1/
√

23 = 0.2085 where the

equality holds only if gai = (1, αi , α
2
i ), i = 1, 2, 3, for some g ∈ Γ. Here αi are the

roots of x3 − x − 1 = 0.

Assume that LP∩K(gw) 6= ∅ where g ∈ Γ. Since LP[g]∩K(w) 6= ∅, by Lemma 1,

ht(LP[g]) = ht(LgT P) =
1

3

∣

∣

∣

∣

det P

NgT P(w)

∣

∣

∣

∣

2/3

> 2−1/3.

But NgT P(x) = (x, gTa1)|(x, gTa2)|2 = (gx, a1)|(gx, a2)|2. Hence NgT P(w) =

NP(gw).

The vector gw ∈ Z3 such that LP ∩ K(gw) 6= ∅ will be called a convergent of LP.

We have proved the following.

Theorem 4 If vector u is a convergent of LP, that is if LP ∩ K(u) 6= ∅, then

|NP(u)| <
√

2

27
| det P|.

Hence if LP cuts infinitely many sets K(u) then this inequality has infinitely many solu-

tions in u ∈ Z3.

We shall say that the intervals R(u),R(u ′) ⊂ LP are neighbors if R(u)∩ R(u ′) 6= ∅

in which case the convergents u and ui are neighbors. The following lemma can be

used to find the endpoints of R = LP ∩ K(w) 6= ∅.

Lemma 5 Let LP be the axis of g ∈ G. Assume that R = LP ∩ K(w) 6= ∅. Let

R ′ = LP ∩ K(u ′) be a neighbor of R and R ∩ R
′

= X. Then the point X ∈ L+(u ′) and

X = LP ∩ L+(u ′).

Proof Assume that K(w) and K(gw) have a common face and that X ∈ K(w) ∩
K(gw). By the definition of K(gw), X[g] ∈ K(w). Hence X[w] = X[gw] = 1 and

X ∈ L+(gw). Thus, the common face of K(w) and K(gw) lies in L+(gw).
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4 Continued Fractions

The axis of h ∈ G is a geodesic L = LP in P. It can be identified with the interval

X(µ) = µ(x, a1)2 + (1− µ)|(x, a2)|2, 0 < µ < 1, where a1 and a2 are eigenvectors of

h corresponding to its real and complex eigenvalues respectively. Denote

Ri = [Xi ,Xi+1] = L ∩ K(ui), Xi = X(µi), ui = giw, gi ∈ Γ.(5)

The intervals Ri form a tessellation of L = LP. We say that this tessellation is periodic

if there are only finitely many non-congruent Ri ’s modulo the action of the stabilizer

ΓL of L in Γ. In that case, the union of all non-congruent Ri ’s is a fundamental

domain of ΓL in L and vol(L/ΓL) < ∞. The number of non-congruent Ri ’s in the

tessellation of L will be called the period length.

The (continued fraction) Algorithm I can be used to find the sequence {gi} ⊂ Γ
such that L ∩ K(ui) 6= ∅ and the sequence of convergents ui = giw of L explicitly.

The corresponding shift operator is defined on the sequences

. . . ,R−1,R0,R1,R2, . . . ,Ri , . . .(6)

and

. . . , u−1,w, u1, u2, . . . , ui , . . . .

Let D be the Minkowski fundamental domain of Γ ′ = Γ/{diag(1,±1,±1)}, that

is

A =





1 x1 x2

x1 a x3

x2 x3 b



(7)

belongs to D iff 1 ≤ a ≤ b, 0 ≤ |x1|, |x2| ≤ 1/2, 0 ≤ |x3| ≤ a/2, 2(|x1|+ |x2|+ |x3|) ≤
1 + a [6, pp. 396–397]. Recall that the floor of D consists of the faces of D which do

not pass through w. Denote

S1 =





0 1 0

1 0 0

0 0 1



 .

Lemma 6 A point A in (7) belongs to the floor of the fundamental domain D of Γ ′ is

Minkowski reduced if and only if

1 = a ≤ b, 0 ≤ |x1|, |x2|, |x3| ≤ 1/2, |x1| + |x2| + |x3| ≤ 1.

Hence the floor of D lies in the boundary L+(S1) of the strip p(S1).
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Proof Let {e1, e2, e3} be the standard basis in Z3. It follows that A[e2] = a ≤ A[e3] =

b, A[e2 ± e3] = a ± 2x3 + b ≥ b ≥ a (similarly, A[ei ± e j] ≥ a, i 6= j), and

A[e1 ± e2 ± e3] = 1 ± 2x1 ± 2x2 + a ± 2x3 + b ≥ b ≥ a. Thus, if A is a boundary

point then A[e2] = a = 1.

By Lemma 6, the floor of D consists of one face φ of D which lies in L+(S1). It is

clear that

φ = D ∩ D[S1].

Since for any orbit z[Γ] of z ∈ P, a point of the largest height in the orbit belongs

to the fundamental domain D, we can confine ourself to the geodesics which pass

through D.

We now introduce the natural orientation of a geodesic L ′ = L[g] (from µ = 0

to µ = 1 so that µi → 0 as i → ∞). The partition of L ′ into intervals R ′i is defined

by (5). It is clear that this partition is invariant under the action of g ∈ Γ, that is

R ′i = Ri[g] for all i.

We shall say that a geodesic L ′ is reduced if it passes through D and the initial point

of R ′ = L ′ ∩ K(w) lies in φ, the floor of D.

Algorithm I

Step 0 If L does not cut K(w) take a point X ∈ L and find h ∈ Γ such that X[h] ∈
K(w). (Any of the reduction algorithms (see e.g. [6] for references) can be used to

find such an h.) Then L[h] cuts K(w). Thus we can assume that [X ′,X ′′] = L∩K(w).

Suppose that X ′ ∈ φ[U0], U0 ∈ Γ∞. Denote L ′0 = L[U−1
0 ]. Clearly, L ′0 cuts the floor

φ of D and it is not reduced.

Step 1 Let X1 ∈ φ be the point of intersection of L ′0 with the floor of D. Denote

g0 = T0 = S1U0, and L1 = L ′0[S1]. Then L = L1[g0] where L1 is reduced.

Assume that the elements T1, . . . ,Ti−1 in Γ are determined. Let gk = Tkgk−1 and

Lk = Lk+1[Tk], k = 1, . . . , i − 1. Then L = Li[Ti−1 · · ·T0].

Step i + 1 Let Ri = [Xi ,Xi+1] = Li ∩ K(w). Let L ′i = Li[U
−1
i ] where Ui ∈ Γ∞

is determined so that Xi+1[U−1
i ] lies in the floor φ of D. Denote Ti = S1Ui , and

Li+1 = L ′i [S1]. Then

gi := Tigi−1

and

Li = Li+1[Ti], L = Li+1[Ti · · ·T0].

It is clear that Algorithm I enumerates gi ∈ Γ in the same order as L passes through

the sets K(giw), and that there is a 1-1 correspondence between the intervals Ri of L

and Ti ∈ Γ as defined by Algorithm I. The corresponding convergents ui = giw

satisfy the relation ui = Tiui−1.
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Remark Denote

S2 =





0 0 1

1 0 0

0 1 0



 .

In the Voronoi continued fraction algorithm [19], Ti = S2Ui where Ui ∈ Γ∞. Since

S1 = S2τ where τ ∈ Γ∞, in Algorithm I, Ti can be also written in this form. But

these two algorithms do not coincide (see Section 6, Example 2).

Let L be the axis of an irreducible element h ∈ Γwith only one real eigenvalue. Let

Lo be the a fundamental domain of the cyclic group generated by h on L chosen so

that it consists of whole intervals R1, . . . ,Rp. Note that Ri+p = h(Ri) and Li+p = Li

for all i. Thus the sequence Ti , as generated by Algorithm I, is also periodic, Ti+p = Ti

for all i, and h = Tp · · ·T1. We have the following.

Theorem 7 The sequence of intervals (6) of a geodesic L is periodic if and only if L is the

axis of an irreducible element in Γ. (If Ri+p = Ri and h = Tp · · ·T1, then L[h] = L.)

Suppose that L = L0 is reduced. There are only finitely many reduced geodesics

L1, . . . , Lp = L0 in the Γ-orbit of L and Algorithm I can be used to find all of them.

Also,

ν(L) = inf
(

3 ht(Li)
)−3/2

, 1 ≤ i ≤ p,

where L = Li+1[Ti · · ·T0] and the sequence Ti is generated by Algorithm I.

In particular, if the fundamental domain of Stab(L,Γ) on L belongs to K(w) (in

which case p = 1), then ν(L) =
(

3 ht(L)
)−3/2

.

If the tessellation of a geodesic L is periodic and R(u1) ∪ · · · ∪ R(up) = DL, a

fundamental domain of ΓL = 〈h〉, then the set of all convergents of LP is {hnui ,

i = 1, . . . , p, n ∈ Z}.

5 Diophantine Approximations

Let vectors b j ∈ C3 be defined by

(b j , ai) = δi j , i, j = 1, 2, 3.

Here a3 = a2, b3 = b2 and δii = 1, δi j = 0 if i 6= j. Thus, (PT)−1
= P∗ = (b1, b2, b2)

and, assuming (bk,w) 6= 0, k = 1, 2, the axis L∗ = LPT of g∗ = P∗H−1PT can

be identified with the set of positive definite quadratic forms q∗[x] = µ(x, b ′1)2 +

(1 − µ)|(x, b ′2)|2, 0 < µ < 1, where b ′k = bk/(bk,w), k = 1, 2. The rank of the

quadratic form A2[x] = |(x, a2)|2 is two and A2[b1] = 0 since (b1, a2) = 0. It is easily

seen that L∗ can be described as follows.

Lemma 8 Let LP be the axis of g ∈ G. Then

L∗ = {q ∈ P : q−1 ∈ LP}

is the axis of g∗ = (gT)−1.
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Lemma 9 Let Ri = LP ∩ K(ui), ui = giw, gi ∈ Γ. If Ri → A1 then (ui , a1)→ 0, and

if Ri → A2 then ui/(ui ,w)→ b ′1.

Let R∗i = L∗ ∩ K(vi), vi = hiw, hi ∈ Γ. Similarly, if R∗i → B1 then (vi , b1) → 0,

and if R∗i → B2 then vi/(vi ,w)→ a1.

Here B1[x] = (x, b1)2 and B2[x] = |(x, b2)|2.

Proof Let Xi ∈ Ri . Then X ′i = Xi[gi] ∈ K(w). Hence ht(X ′i ) ≥ 2−1/3. Since

ht(Xi) = | det(Xi)|1/3 and ht(X ′i ) = | det(Xi)|1/3/Xi[ui], we have

Xi[ui] = ht(Xi)/ ht(X ′i ) ≤ 21/3 ht(Xi).

Since Xi → A1, ht(Xi) → 0 and therefore Xi[ui] → 0 and A1[ui] = (a1, ui)
2 → 0 as

required.

Similarly the other cases can be considered.

In Lemma 9, when LP is the axis of a primitive h ∈ Γ, the rate of convergence

in (ui , a1) → 0 and (vi , b1) → 0 can be specified. Assume that hak = λkak,

k = 1, 2, where λ1 ∈ R, λ2 = λ3 ∈ C and |λ1| < 1 < |λ2|. Then the se-

quence (6) is periodic. Let R1, . . . ,Rp be a period of this sequence. Let the corre-

sponding convergents be ui , i = 1, . . . , p. Then the convergents of LP are ui+np =

(hT)nui for any integer n and 1 ≤ i ≤ p. Similarly, by Lemma 6, if R∗1 , . . . ,R
∗

s

is a period for L∗ and the corresponding convergents are v j , j = 1, . . . , s, then

the convergents of L∗ are v j+ns = hnv j for any integer n and 1 ≤ j ≤ s. Hence

(a1, ui+np) =
(

a1, (hT)nui

)

= (hna1, ui) = λ
n
1(a1, ui) → 0, 1 ≤ i ≤ p, and

(b1, v j+ns) = (b1, h
nv j) =

(

(hT)nb1, v j

)

= λn
1(b1, v j)→ 0, 1 ≤ j ≤ s, as n→∞.

Let L be a 1-flat defined by X(µ) = µ(x, a1)2 + (1 − µ)|(x, a2)|2 where x =

(x1, x2, x3) ∈ Z3, and let a1 = (1, α, β) and a2 be the eigenvectors of g ∈ G cor-

responding to the real and complex eigenvalues of g respectively so that L[gT ] = L.

Assume that x1 +αx2 +βx3 6= 0 for any (x1, x2, x3) ∈ Z3/(0, 0, 0). The main property

of the constant ν(L) is that the inequality

|NP(x)| = |(x, a1)(x, a2)2| < k| det P|

or

|(x, a1)| = |x1 + αx2 + βx3| < k
| det P|
A2[x]

,(8)

has infinitely many solutions x ∈ Z3 for k ≥ ν(L) and only a finite number of solu-

tions if k < ν(L). Here A2[x] = |(x, a2)|2 is a quadratic form of rank two.

Let b ′1 = (1, α1, β1), a2 = (1, γ1 + iδ1, γ2 + iδ2), and (a2, b
′

1) = 0. Then α1 =

−δ2/∆, β1 = δ1/∆ where ∆ = γ1δ2 − γ2δ1. For y = (0, y2, y3), q2(y2, y3) =

|(y, a2)|2 is a positive definite binary quadratic form with det(q2) = −∆2. If

(x, a2)→ 0 then

|(x, a2)|2 = |(x − x1b ′1, a2)|2 = x2
1q2

(

x2

x1

− α1,
x3

x1

− β1

)

→ 0
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and

x2

x1

− α1 −→ 0,
x3

x1

− β1 −→ 0,

since x−x1b ′1 = (0, x2−x1α1, x3−x1β1). It follows that (x, a1) = x1(1+ x2

x1
α+ x3

x1
β) ≈

x1(1+αα1 +ββ1) = x1(b ′1, a1). Since det P = (−2i)(∆−δ2α+δ1β) = −2i∆(b ′1, a1),

the inequality |NP(x)| = |(x, a1)(x, a2)2| < k| det P| implies

q2

(

x2

x1

− α1,
x3

x1

− β1

)

<
2k

|x1|3
√

| det q2|.(9)

In [7], it is shown that, for any irrational α1, β1, this inequality has infinitely many

solutions in x ∈ Z3 if k ≥ 1/
√

23 and that this constant is exact in the case when

q2(y2, y3) = y2
2 + y2

3 .

As x1 + αx2 + βx3 → 0, we have x1 ≈ −αx2 − βx3 and A2[x] ≈ q1(x) =

|(x, a2 − a1)|2. Here q1 is a binary quadratic form in x2 and x3 with det(q1) =

−(∆ − δ2α + δ1β)2
= −| det P|2/4. Hence | det P| = 2

√

| det q1| and the inequal-

ity (8) can be rewritten as

|x1 + αx2 + βx3| < 2k

√

| det q1|
q1(x)

.(10)

By Theorem 4 and Lemma 9, the inequality (9) holds with k =
√

2/27 for almost

all x = ui such that Ri → A2, and (10) holds with the same constant for almost all

x = ui such that Ri → A1.

In general, if we replace q1(x) by another binary positive quadratic form then det P

and ν(L) can be changed. Thus, to compare diophantine approximation properties

of different vectors (1, α, β) we have to fix the form q1(x). Choose q1(x) = x2
2 + x2

3.

As mentioned above, for this particular q1(x), Davenport and Mahler [7] proved

that sup ν(L) = 1/
√

23 and that the supremum is attained when a1 = (1, φ, φ2)

where φ is the real root of the equation t3 − t − 1 = 0. Since ν(L) = 1/
√

23 when

a2 = (1, θ, θ2), θ being a complex root of t3 − t − 1 = 0, the inequality (10) also

holds for the same a1 with the constant k = 1/
√

23 and q1(x) = |(x, a2 − a1)|2.

Note that the isotropic vector b1 of the quadratic form |(x, a2)|2 is used in [1]

to find the Voronoi-algorithm expansion for units in two families of complex cubic

fields with period length going to infinity introduced by Levesque and Rhim [14]. In

[12], the same approach is applied to a similar family of fields.

6 Units in Complex Cubic Fields

As in [5], we denote by ZF the ring of integers of an algebraic number field F. A

Z-basis of the free Z-module ZF will be called a basis of ZF . If, for some δ ∈ ZF ,

numbers 1, δ, δ2, . . . , δn−1, n = deg(F), form a basis of ZF , it is called a power basis

(cf. [16, p. 64]).

Let F be a complex cubic field. Let {1, ω2, ω3} be a basis of ZF . Denote a1 =

(1, ω2, ω3)T . Let ε1 be a unit in ZF . Then ε1a1 = Ea1 where E ∈ Γ. Hence ε1 is an
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eigenvalue of E and a1 is the eigenvector of E corresponding to ε1. Assume that ε1 is

real. Let σi be the three distinct embeddings of F in C. Let a2 = σ2(a1) = α + iβ,

α, β ∈ R3, a3 = a2 and εi = σi(ε1). Then εiai = Eai and the axis L of E is the interval

X(µ) = µA1 + (1 − µ)A2, 0 ≤ µ ≤ 1, where A1 = a1aT
1 and A2 = αα

T + ββT . On

the other hand, if the characteristic polynomial of h ∈ Γ is irreducible and it has only

one real eigenvalue ε, then ε is a unit in ZF , the maximal order in F = Q(ε). Thus,

the problem of finding a generator of Z×F /{±1}, which is an infinite cyclic group, is

equivalent to the problem of finding a generator of the stabilizer of the axis of h ∈ Γ.

Assume that ZF has the power basis {1, δ, δ2}where p(δ) = δ3 +c2δ
2 +c1δ+c0 = 0,

c0, c1, c2 ∈ Z. Let Ca1 = δa1. Then

C =





0 1 0

0 0 1

−c0 −c1 −c2





is said to be the companion matrix of p(x).

Theorem 10 Let L be the axis of an irreducible element h ∈ Γ with only one real

eigenvalue ε. Assume that the discriminant of the characteristic polynomial of h is square

free. Then Z×F /{±1} = 〈ε〉. Here ZF is the maximal order of the complex cubic field

F = Q(ε).

Proof By assumption, ZF has basis {1, ε, ε2}. Thus, any γ ∈ ZF can be uniquely

represented as γ = p(ε) = c0 + c1ε + c2ε
2, ck ∈ Z. Let C be the companion matrix of

the characteristic polynomial of h. Then γ = p(ε) can be represented by p(C) in the

algebra of 3×3 matrices over Z (cf. [5, p. 160]). Assume that Z×F /{±1} = 〈ε0〉. Then

ε = εn0 for some n ∈ Z. Let ε0 = a0 +a1ε+a2ε
2, ak ∈ Z. Then h0 = a0I +a1C +a2C2 ∈

Γ and h = hn
0 . Since h is irreducible, n = 1 or−1.

Example 1 Let Γ = GL2(Z). Then P is the Klein model of the hyperbolic plane.

Denote

U =

[

1 t

0 1

]

, S =

[

0 1

1 0

]

where t ∈ Z. The characteristic polynomial of ET
0 = SU is f (x) = x2 − tx − 1. Note

that E0 = ET
0 . Let L be the axis of E0. Then I, the identity matrix, is the intersection

of L with L+(E) and the interval
[

I, I[E]
)

is a fundamental domain of ΓL on L. Let ε
be an eigenvalue of E0. Assume that t2 + 4 or t2/4 + 1 is a square free integer. Then

Z×F /{±1} = 〈ε〉. Here ZF is the maximal order of the field F = Q(ε). The period

length of the corresponding continued fraction p = 1. Many other examples related

to this algorithm can be found in [21] and [22].

Example 2 (cf. [26, p. 254]) Let t be a positive integer, δ = (t 3 + η)1/3, η = ±1, and

f (x) = x3 − δ3. Let C be the companion matrix of f (x). Let F = Q(δ). Assume that

{1, δ, δ2} is a basis of ZF . Since ε = δ − t ∈ Z×F , the matrix E = C − tI ∈ Γ. Let
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a1 = (1, δ, δ2)T , a2 =
(

1, δρ, (δρ)2
)T
= a2R + ia2I where ρ = (−1 +

√
−3)/2 and

a2R, a2I ∈ R3. Then Ea1 = εa1 and the interval L with equation X(µ) = µa1aT
1 +

(1 − µ)(a2RaT
2R + a2Ia

T
2I), 0 < µ < 1, is the axis of E. The point of intersection of L

with L+(ET) is B0 = X(µ0), µ0 = 1− (1− ε2)/(3tδ).

First let t be even. Denote

h =





1 −t −t2/2
0 1 −t/2
0 0 1



 .

Then B0[h] = X0 = (xi j) is Minkowski reduced and x11 = x22 = 1, x33 ∼ 3
4
t2,

x12 ∼ −1/(2t), x13 ∼ −1/4, x23 ∼ −η/(6t2) as t → ∞. Therefore B0 and X0 are

extremal. Denote B1 = B0[ET ]. The interval [B0,B1) is a fundamental domain of ΓL

on L. Hence Z×F /{±1} = 〈ε〉.
Now let t be odd. Denote

h =





1 −t −(t2 − t)/2
0 1 −(t − η)/2
0 0 1



 .

Then B0[h] = X0 = (xi j) is Minkowski reduced and x11 = x22 = 1, x33 ∼ 3
4
t2 + 1

4
,

x12 ∼ −1/(2t), x13 ∼ −1/4, x23 ∼ η
(

1/2 − 1/(6t2)
)

as t → ∞. Therefore B0 and

X0 are extremal. Denote B1 = B0[ET]. The interval [B0,B1) is a fundamental domain

of ΓL on L. Hence Z×F /{±1} = 〈ε〉.
Denote E0 = hTEh∗. Let X1 = B1[h]. Let

U =





1 −3t/2 −3t2/4
0 0 η
0 1 −3t/2



 or





1 −3t/2− η/2 −3t2/4− 1/4
0 0 η
0 1 −3t/2 + η/2





for d even or odd respectively. Then ET
0 = S1U and X1 = X0[ET

0 ]. Thus, L0 = L[h] is

reduced, the interval [X0,X1] = L0 ∩K(w), and the period length of the correspond-

ing continued fraction p = 1. Note that, for the Voronoi continued fraction, p = 1 if

η = 1 and p = 2 if η = −1 (see [26, p. 254]). Thus, Algorithm I does not coincides

with Voronoi’s algorithm.

Example 3 Let f (x) = x3 − tx2 − ux − 1. The discriminant of f (x) is DL =

−27− 18ut + u2t2 + 4u3 − 4t3. (Note that the particular case of u = 0 is considered

in [10, p. 202].) Assume that f (x) has only one real root ε. The other two roots of f

are ε1,2 =
(

t − ε ±
(

(t + ε)2 − 4ε2 + 4u
) 1/2
)

/2. Let F = Q(ε). Assume that DL is

square free. Then {1, ε, ε2} is a basis of ZF .

Let E be the companion matrix of f (x). Let L be the axis of E. Denote by B0 the

intersection of L with L+(E). Let Ea = εa, Eai = εiai , i = 1, 2. Then the equation of

L is X(µ) = µa1aT
1 +(1−µ)(a2RaT

2R +a2Ia
T
2I), 0 < µ < 1, and B0 = X

(

1/(ε2 +ε+1)
)

.

Let v = [u/2],

h =





1 0 −v

0 1 1− t

0 0 1




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and X0 = (xi j) = B0[h].

Let first u = 2v. Then

x11 = x22 = 1,

x12 = −(v − 1)/ε− µ(3ε− 2v + 3)/(2ε),

x13 = −(v − 1/2)/ε− µ(2vε− 3ε + 2v)/(2ε),

x23 = (v2 + v)/ε + µ
(

(v + 4)ε2

−(2v2 − v − 1)ε + 1
)

/(2ε2),

x33 = t − v2 + v + 1 + (2v2 + 3v − 1)/ε + µ(2v2 + v + 6)

−µ
(

(2v2 − 4v − 3)ε− 3
)

/ε2.

Let now u = 2v + 1. Then

x11 = x22 = 1,

x12 = −(v − 1/2)/ε− µ(3ε− 2v + 2)/(2ε),

x13 = 1/2− v/ε + µ(2vε− 2ε + 2v − 1)/(2ε),

x23 = (2v2 + 3v + 2)/(2ε) + µ
(

(v + 3)ε2 − 2vε + 1
)

/(2ε2),

x33 = t − v2 − v − 1 + (2v2 + 4v + 1)/ε + µ(2v2 + 4v + 6)

−µ
(

(2v2 − 3v − 5)ε− 3
)

/ε2.

Assume that t ≥ 2v2 + 2v for u = 2v, and t ≥ 2v2 + 3v + 2 for u = 2v + 1.

Then B1 = B0[ET] is Minkowski reduced (see e.g. [6, p. 397]). Hence B0 is extremal

and the interval [B0,B1] = L ∩ K(w) is a fundamental domain of ΓL on L. Thus,

Z×F /{±1} = 〈ε〉.
Let E0 = hTEh∗. As in the preceding example, L0 = L[h] is reduced, ET

0 fixes L0,

and S1ET
0 = U ∈ Γ∞. Thus, p = 1.
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