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Abstract

Functional programming languages are informally classified into pure and impure languages.

The precise meaning of this distinction has been a matter of controversy. We therefore

investigate a formal definition of purity. We begin by showing that some proposed definitions

which rely on confluence, soundness of the beta axiom, preservation of pure observational

equivalences and independence of the order of evaluation, do not withstand close scrutiny.

We propose instead a definition based on parameter-passing independence. Intuitively, the

definition implies that functions are pure mappings from arguments to results; the operational

decision of how to pass the arguments is irrelevant. In the context of Haskell, our definition

is consistent with the fact that the traditional call-by-name denotational semantics coincides

with the traditional call-by-need implementation. Furthermore, our definition is compatible

with the stream-based, continuation-based and monad-based integration of computational

effects in Haskell. Finally, we observe that call-by-name reasoning principles are unsound in

compilers for monadic Haskell.

Capsule Review

We quite often see languages like Haskell being described as ‘purely functional’, in contrast

to languages like Standard ML. But what does the term actually mean, and why is such

a distinction useful? This paper reviews some of the most frequently suggested answers to

that question, and, somewhat surprisingly, shows that none of them provide a good fit with

widely held intuitions about the meaning of purity. In their place, the author develops a new

formal characterisation of purely functional languages, and provides some simple case studies

to illustrate its use. In essence, the new definition asserts that a language is purely functional

if it can be implemented using either call-by-value, call-by-need, or call-by-name, with no

observable difference between the different strategies – other than termination properties.

One particularly interesting application of this is to explain how the apparently side-effecting

monadic I/O operations of Haskell can be supported without compromising purity.

While interesting in its own right, this paper would also serve well as an introduction to

the study of evaluators and observational behaviour in programming language semantics.

1 Functional languages and computational effects

Functional programming languages extend pure λ-calculi with a variety of constructs

that are indispensable for programming. Besides simple and functional constants
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2 A. Sabry

like numbers and addition, all realistic languages include some kind of computa-

tional effects. For example, Scheme includes I/O operations, pointers with equality,

assignments and control constructs, SML includes I/O operations, assignments and

exceptions with handlers, and Haskell includes I/O operations.

Despite the presence of computational effects in all realistic functional languages,

Scheme and SML have an intuitively different character from Haskell. Indeed,

Haskell is referred to as a purely functional language (Hudak et al., 1992; Peterson

et al., 1996) to distinguish its treatment of computational effects from the Scheme

and SML treatment. Attempts to explain why Haskell is purer than Scheme and

SML usually lead to confusion and disagreement (as witnessed on the newsgroup

comp.lang.functional). Even in published papers we find varying statements re-

garding the definition of purity that refer to notions like the soundness of the

β-axiom (Odersky et al., 1993), referential transparency (Launchbury and Peyton

Jones, 1995), the confluence of a calculus for the language (Swarup et al., 1991), the

preservation of pure observational equivalences (O’Hearn, 1995), and the indepen-

dence of order of evaluation (Launchbury and Peyton Jones, 1995).

The investigation of a formal definition of purity goes beyond settling some

differences in opinion. It is crucial at this time when a significant amount of current

research aims for efficient realizations of stateful algorithms in functional languages

while maintaining the purity of these functional languages. In the absence of a

formal definition of purity, we cannot judge the correctness of such extensions. In

fact, we cannot even state the correctness properties that need to be proven.

This work is therefore a first step towards reasoning about the imperative exten-

sions of functional languages. Our main point is to propose the following definition

of purity:

A language is purely functional if (i) it includes every simply typed λ-calculus term, and

(ii) its call-by-name, call-by-need, and call-by-value implementations are equivalent (modulo

divergence and errors).

We will formalize this statement in section 4.3.

To get to our main result, we proceed according to the following plan:

1. Since the notion of purity is an informal one, we begin with some assumptions.

First, we assume that a language is functional (pure or not) if it includes the

simply typed λ-calculus. Second, we assume that the following three languages

are purely functional: the language Λ that extends the call-by-name λ-calculus

with numbers and addition, and the languages PCF and PPCF (Plotkin, 1977).

These assumptions may be challenged but they appear to be consistent with

the informal practice.

Finally, two of the informal definitions of purity: referential transparency and

independence of order of evaluation, do not have universally agreed-upon

definitions and are not considered any further. (See, however, the treatment of

referential transparency by Søndergaard and Sestoft (1990).)

2. In section 2, we specify the semantics of our pure (by assumption) languages

and study some of their properties. Any property that holds at this point is

potentially relevant to the formal definition of purity.
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3. In section 3, we eliminate many potential definitions of purity using the

following strategy.

On the one hand, we extend the pure language Λ to Λ! by adding two

expressions, inc and read, that perform side-effects on an implicit global

location that contains a natural number. The language Λ! is reminiscent of

canonical impure languages such as Scheme and SML, with the important

caveat that it has call-by-name semantics rather than call-by-value semantics.

We assume that it should not be classified as purely functional according to

any proposed definition. We conclude that any property of Λ that still holds in

Λ! is insufficient to characterize purity. Two such properties are the soundness

of the β axiom, and the confluence of the associated calculus.

On the other hand, we extend PCF to PPCF by adding one constant por which,

by assumption, preserves the purity of the language. Hence, any property of

PCF that no longer holds in PPCF is insufficient to characterize purity. In

particular, since the addition of por breaks some PCF observational equiva-

lences while retaining purity, we conclude that observational equivalence alone

cannot characterize purity.

4. The elimination procedure gets rid of most candidate definitions, but it does,

however, leave one reasonable alternative: purity means that the language

semantics is insensitive to the parameter-passing mechanism. This alternative

is explored in section 4.

5. Our proposed definition has a drawback: it requires the existence of a notion of

value, and several evaluation functions (implementations) for the same syntax.

Nevertheless, we demonstrate in Section 5 that it is compatible with several

designs, some widely used and some less so, for including computational effects

in purely functional languages.

Before concluding, we briefly discuss implementations of Haskell with monadic

state and their correctness.

2 A purely functional language

We begin our investigation with a canonical, purely functional, call-by-name lan-

guage Λ.

2.1 Λ and its extensions

The set of Λ-terms extends the language of the λ-calculus (variables, procedures,

and applications) with basic and functional constants. For the sake of presentation,

we consider a representative set of constants that contains numerals and addition.

We do not make any assumptions about the type structure of the language.

Definition 2.1 (Syntax of Λ)

Let x, y, z range over an infinite set of variables Vars, and n range over the natural

numbers:

M,N,L ∈ Term ::= x | λx.M | MN | n | M +N

The language has the following context-sensitive properties. In a procedure (λx.M),
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the variable x is bound in the body M. A variable that is not bound is free. A

term with no free variables is closed. Like Barendregt (1984, Ch. 2, 3), we identify

terms modulo bound variables and we assume that free and bound variables do not

interfere in definitions or theorems. The term M[N/x] is the result of the capture-

free substitution of all free occurrences of x in M by N. A context C is a term with a

hole [ ] in the place of one subterm. The operation of filling the context C with a term

M yields the term C[M], possibly capturing some free variables of M in the process.

The semantics of Λ is a partial function evaln from programs to observables.

Definition 2.2 (Programs and Observables)

A program is a closed term. An observable B is either a number or the tag proc

indicating a procedure. Thus, as usual, the code of a procedure is not observable.

We choose to specify the partial function evaln using a term rewriting machine

since this approach does not require the introduction of many new concepts. The

machine states are simply closed terms. To perform a step 7−→, the machine decom-

poses the current term into an evaluation context E and a redex, and then rewrites

the redex. The full definition follows.

Definition 2.3 (evaln)

The partial function evaln from terms to observables is defined as: evaln(M) = B if

M 7−→∗ A and obs(A) = B, where 7−→∗ is the reflexive transitive closure of 7−→ and:

Answers

A ::= n | λx.M

Evaluation contexts

E ::= [ ] | EM | E +M | n+ E

State transitions

E[(λx.M) N] 7−→ E[M[N/x]]

E[n1 + n2] 7−→ E[n] where n = n1 + n2

Observing answers

obs(n) = n

obs(λx.M) = proc

Example 2.4

The following steps of the machine show that evaln((λx.x + x) (4 + 2)) = 12 and

evaln((λx.xx) (λy.y)) = proc:

(λx.x+ x) (4 + 2) 7−→ (4 + 2) + (4 + 2) 7−→ 6 + (4 + 2) 7−→ 6 + 6 7−→ 12

(λx.xx) (λy.y) 7−→ (λy.y)(λy.y) 7−→ (λy.y)

Sometimes the term rewriting machine gets stuck and can no longer proceed.

Definition 2.5 (Stuck )

A term M where M is an application or an addition is stuck if the term rewriting

machine has no transition from that term.

In the remainder of this paper, we will be study the language Λ and its extensions.
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Definition 2.6 (Conservative Extension (Felleisen, 1991))

A language L1 conservatively extends a language L2 if:

• the set of L1-terms (programs) includes the set of L2-terms (programs),

• the of L1-observables includes the set of L2-observables, and

• the semantics of L1 extends the semantics of L2, i.e., for all L2-programs M,

we have that evalL2
(M) = B if and only if evalL1

(M) = B.

2.2 Observational equivalence

As Example 2.4 shows, our interpreter evaluates the arguments to + from left to

right. Clearly this choice is arbitrary and it would have been possible to define

another interpreter that evaluated the arguments to + from right to left. In general,

one would not expect the two evaluators to define the same function. However, in

the case of Λ, the two evaluators do indeed realize the same function.

Instead of defining a new evaluator and proving its equivalence to the one in

Definition 2.3, we show that M + N is indistinguishable from N + M in any

context. Thus any two interpreters that differ only in their order of evaluation of

the arguments to + would also be indistinguishable. Formally, the notion of being

indistinguishable is called observational equivalence.

Definition 2.7 (Observational Equivalence ∼=)

Two terms M and N are observationally equivalent, M ∼= N, if for all contexts C

such that both C[M] and C[N] are programs:

eval (C[M]) = B iff eval (C[N]) = B

For the case of Λ, both the axiom β of the λ-calculus and the commutativity of

addition are two observational equivalences.

Proposition 2.8

The following are observational equivalences in Λ:

1. (λx.M) N ∼= M[N/x]

2. M +N ∼= N +M

The proofs are tedious but straightforward. The idea is to set up a relation between

machine states containing the left-hand side of the equivalence and machine states

containing the right-hand side. Then it suffices to show that related states rewrite to

related states.

2.3 Calculus

A λ-calculus is an equational theory over Λ with a (finite) number of axiom schemas

and inference rules. The inference rules extend the axioms to an equivalence relation

compatible with contexts (a congruence). The set of axioms should be rich enough

to specify the evaluation function but can otherwise include any equalities that are

sound with respect to the observational equivalence relation of the language. We

write ` M = N when M = N is provable in the calculus. By the congruence rules,

if `M = N then ` C[M] = C[N] for all contexts C .
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6 A. Sabry

Definition 2.9 (Axioms for Λ)

A typical calculus for Λ could include the following axioms:

(λx.M) N = M[N/x] (β)

(M +N) + L = M + (N + L) (S)

n+M = M + n (C)

n1 + n2 = n where n = n1 + n2 (A)

The axioms are all sound with respect to the observational equivalence relation.

This guarantees the consistency and correctness of the system. We do not generalize

axiom (C) to N + M = M + N as the future extension of the language with

assignments would make the more general axiom unsound. Furthermore, the current

axioms are sufficient for evaluation.

Lemma 2.10

If eval n(M) = B then `M = A and obs(A) = B.

Proof

The idea is to prove the following statement: If M 7−→N and N is not stuck, then

` M = N. This latter statement follows because the machine’s transitions can be

performed using the axioms β and A given the compatibility of the relation =.

It is sound to non-deterministically apply the axioms to a program until it reaches

an answer: the order of the reductions has no semantic significance. Another way

to state this fact is to reason syntactically about the axioms.

Lemma 2.11

If `M = A1 and `M = A2 then obs(A1) = obs(A2).

Proof Sketch

The statement is an immediate consequence of the Church–Rosser theorem. It is

elementary to check that the Church–Rosser property holds using the following

idea. We direct each axiom from left to right to yield a system of reductions. We

then divide the reductions into three groups. The first group G1 includes C and is

Church–Rosser because the reduction forms an orthogonal combinatory reduction

system (Klop et al., 1993). The second group G2 includes β which is Church–

Rosser (Barendregt, 1984). The third group G3 includes the remaining reductions S

and A and is Church–Rosser because the reflexive closure of the reductions satisfies

the diamond property (Barendregt, 1984, Ch. 3). The result follows by the Hindley–

Rosen Lemma (Barendregt, 1984) since G2 commutes with G3, and the union of G2

and G3 commutes with G1.

3 An imperative extension Λ!

To study the impact of computational effects on the properties of purely functional

languages, we extend our language with expressions whose evaluation performs

global side-effects. Any suggested definition of purity should identify such a language

as not pure.
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Definition 3.1 (Syntax of Λ!)

The set of terms extends the set in Definition 2.1:

M,N,L ∈ Term ::= . . . | inc | read

The two new constructs act on an implicit global location which is initialized to 0.

Informally speaking, the evaluation of inc returns the current value of the global

location and increments it as a side-effect. The evaluation of read returns the current

contents of the global location.

The formal semantics is specified using an extension of the term rewriting machine.

States are now pairs whose first component is the current program, and whose second

component ` is the current value of the global location.

Definition 3.2 (eval !)

The partial function eval ! from terms to observables is defined as: eval !(M) = B if

〈M, 0〉 7−→∗ 〈A, `〉 and obs(A) = B. The definitions of answers, evaluation contexts,

and obs are identical to the ones in Definition 2.3. The state transitions are:

〈E[((λx.M) N)], `〉 7−→ 〈E[M[N/x]], `〉
〈E[n1 + n2], `〉 7−→ 〈E[n], `〉 where n = n1 + n2

〈E[read], `〉 7−→ 〈E[`], `〉
〈E[inc], `〉 7−→ 〈E[`], `+ 1〉

Example 3.3

The following steps of the machine show that evaln((λx.x+ x) inc) = 1:

〈(λx.x+ x) inc, 0〉 7−→ 〈inc + inc, 0〉 7−→ 〈0 + inc, 1〉 7−→ 〈0 + 1, 2〉 7−→ 〈1, 2〉

It is straightforward to verify that Λ! is a conservative extension of Λ. In other

words, the result of evaluating a pure term using eval ! coincides with the result of

evaluating it using evaln.

3.1 Observational equivalence

As Example 3.3 suggests, β is still, despite the imperative extensions, an observational

equivalence of the language.

Proposition 3.4

(λx.M) N ∼=! M[N/x]

The proposition motivates the following statement.

Fact 3.5

Without further information about a language, the soundness of the β axiom does

not guarantee that the language is purely functional.

However, as generally expected from an imperative extension (Felleisen, 1991),

the observational equivalence relation of Λ! differs from the one for Λ.

Proposition 3.6

The observational equivalence relations ∼= and ∼=! are different.
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Proof

From Proposition 2.8, we have x+y ∼= y+x. In Λ!, this equivalence no longer holds

as the terms can be distinguished by the context ((λx.λy.[ ]) inc read):

eval !((λx.λy.x+ y) inc read) = 1

eval !((λx.λy.y + x) inc read) = 0

The relationship between the two observational equivalence relations for Λ and

Λ! may suggest that purity requires that the observational equivalence relation of a

language coincides with that of an underlying purely functional subset. However, we

show that a näıve interpretation of this idea is incorrect. It is possible to break some

observational equivalences of a purely functional language by extending it with a

pure but non-expressible (Felleisen, 1991) construct. The standard illustration of this

situation are the two purely functional languages PCF and PPCF (Plotkin, 1977).

The language PCF extends the simply typed λ-calculus with constants for express-

ing recursion, conditionals, and operations on the natural numbers. The language

PPCF extends PCF with a parallel (but deterministic) operator por. Consider the

PCF terms M(1) and M(2) where Ω is a canonical diverging term:

M(u) = λf.if (f True Ω)

(if (f Ω True)

(if (f False False) Ω u)

Ω)

Ω

It is a standard result that M(1) and M(2) are observationally equivalent in PCF

but not in PPCF (Plotkin, 1977). The way to distinguish the terms in PPCF is to

apply them to por. The latter construct bypasses the first two conditional tests as it

returns True if either of its arguments is True even if the other argument diverges.

This result motivates the following statement.

Fact 3.7

Without further information about a language, the non-preservation of pure obser-

vational equivalences does not imply that the language is not purely functional.

3.2 Calculus

As for the pure language, we can also realize the evaluation function for Λ! using

a calculus. Our calculus includes all of the axioms of the pure language and some

additional axioms that manipulate the imperative constructs. To conveniently express

these imperative axioms, we extend the internal syntax of the language with a new

construct (ref ` M). A source program is mapped to the internal term (ref 0 M) and

the axioms apply to that latter term. This trick is only necessary because our source

language is not a realistic language. Had the language been richer, for example, as

rich as Scheme, then all the axioms would be expressible in the source language

itself (Sabry and Field, 1993; Felleisen and Hieb, 1992).

https://doi.org/10.1017/S0956796897002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002943


What is a purely functional language? 9

ref 0 ((inc + read) + (inc + inc))

↓
ref 0 (inc + (read + (inc + inc)))

↓
ref 1 (0 + (read + (inc + inc)))

↙ ↘
ref 1 ((read + (inc + inc)) + 0) ref 1 ((0 + read) + (inc + inc))

↓ ↓
ref 1 (read + ((inc + inc) + 0)) ref 1 ((read + 0) + (inc + inc))

↓ ↓
ref 1 (1 + ((inc + inc) + 0)) ref 1 (read + (0 + (inc + inc)))

↘ ↙
ref 1 (1 + (0 + (inc + inc)))

↙ ↘
ref 1 (1 + ((inc + inc) + 0)) ref 1 ((1 + 0) + (inc + inc))

↓ ↓
ref 1 (((inc + inc) + 0) + 1) ref 1 (1 + (inc + inc))

↓ ↓
ref 1 ((inc + (inc + 0)) + 1) ref 1 ((1 + inc) + inc)

↓ ↓
ref 1 (inc + ((inc + 0) + 1)) ref 1 ((inc + 1) + inc)

↓ ↓
ref 2 (1 + ((inc + 0) + 1)) ref 1 (inc + (1 + inc))

↓ ↓
ref 2 (((inc + 0) + 1) + 1) ref 2 (1 + (1 + inc))

↓ ↓
ref 2 ((inc + (0 + 1)) + 1) ref 2 ((1 + 1) + inc)

↓ ↓
ref 2 (inc + ((0 + 1) + 1)) ref 2 (2 + inc)

↓ ↓
ref 3 (2 + ((0 + 1) + 1)) ref 2 (inc + 2)

↓ ↓
ref 3 (2 + (1 + 1)) ref 3 (2 + 2)

↘ ↙
ref 3 (2 + 2)

↓
ref 3 4

Fig. 1. Rewriting imperative terms.

Definition 3.8 (Axioms for Λ!)

A possible set of axioms includes the axioms in Definition 2.9 and:

ref ` read = ref ` ` (R1)

ref ` (read +M) = ref ` (`+M) (R2)

ref ` inc = ref (`+ 1) ` (I1)

ref ` (inc +M) = ref (`+ 1) (`+M) (I2)

As before the calculus is confluent and the axioms are sufficient for evaluation.

Lemma 3.9

If ` (ref 0 M) = (ref `1 A1) and ` (ref 0 M) = (ref `2 A2) then obs(A1) = obs(A2).
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Lemma 3.10

If eval !(M) = B then ` (ref 0 M) = (ref ` A) and obs(A) = B.

In other words, we can still evaluate a program by non-deterministically applying

the axioms until we reach an answer: the order of reductions does not affect the

relative order of the imperative operations. (See Fig. 1 for four different proofs that

eval !((inc + read) + (inc+ inc)) = 4.)

This result motivates the following fact.

Fact 3.11

Without further information about a language, the confluence of a calculus for the

language does not guarantee that the language is purely functional.

4 Practical implementations of Λ and Λ!

With all the negative results in the previous section, one might suspect that we

have missed some fundamental property of purely functional languages. Indeed, we

have not at all considered their implementations in practice and the connection

between the semantics and the implementation. We therefore examine a practical

implementation of the language Λ.

4.1 Call-by-need

The call-by-need evaluator achieves an efficient realization of evaln by sharing the

evaluation of non-trivial expressions. These expressions are easy to identify from

our semantic specifications: any expression that is reduced when in the hole of an

evaluation context is non-trivial. For example, in the language Λ, both applications

and additions are non-trivial (see Definition 2.3). The other expressions, called

syntactic values, have a trivial evaluation, and are allowed to be duplicated and

hence re-evaluated several times.

Definition 4.1 (Syntactic Value)

In Λ, the following subset of terms are syntactic values (Plotkin, 1975):

V ::= n | λx.M

Definition 4.2

The call-by-need evaluator is defined (Ariola et al., 1995; Ariola and Felleisen, 1996)

as follows: eval z(M) = B if M 7−→∗ A and obs(A) = B, where:

Answers

A ::= V | (λx.A) M

Evaluation contexts

E ::= [ ] | EM | E +M | n+ E | (λx.E) M | (λx.E[x]) E

State transitions

E1[(λx.E2[x]) V ] 7−→ E1[(λx.E2[V ]) V ]

E[n1 + n2] 7−→ E[n] where n = n1 + n2
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E[(λx.A) M N] 7−→ E[(λx.AN) M]

E1[(λx.E2[x]) ((λy.A) M)] 7−→ E1[(λy.(λx.E2[x]) A) M]

Observing answers

obs(n) = n

obs(λx.M) = proc

obs((λx.A) M) = obs(A)

The call-by-need implementation is correct since it defines the same partial func-

tion as the call-by-name implementation (Ariola et al., 1995; Ariola and Felleisen,

1996).

Theorem 4.3

If evaln(M) = B1 and eval z(M) = B2 then B1 = B2

Furthermore, the call-by-need evaluation is expected to be much more efficient in

practice.

To define the call-by-need evaluator for Λ!, we must decide whether the new

expressions read and inc are syntactic values or not. Again the answer is evident

from the reductions in Definition 3.2. Both read and inc are reducible when in the

hole of an evaluation context, and hence are not values.

It is now easy to see that a call-by-need evaluator for Λ! would not be observa-

tionally equivalent to the call-by-name one. For example, we have:

eval !((λx.x+ x) inc) = eval !(inc + inc) = 1

But instead attempting to optimize the interpreter eval ! by sharing the evaluation

of the non-value inc would produce 0. Thus the equivalence of call-by-name and

call-by-need that is crucial for the efficient implementation of Λ does not hold

for Λ!. Implementations of Λ! cannot rely on laziness to implement the non-strict

semantics.

This observation suggests that purity manifests itself in practice when we are

trying to combine different parameter-passing mechanisms (in the specification of

the semantics and in the implementation). It is therefore reasonable to conjecture

that purity implies that these different parameter-passing mechanisms are equivalent.

4.2 Call-by-value

Having identified a possible connection between purity and parameter-passing, we

study the rôle of call-by-value in this context. Consider a (malicious?) implementor

who used a call-by-value evaluator to realize the semantic function in Definition 2.3.

What would be wrong?
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Definition 4.4

The call-by-value evaluator is defined as: eval v(M) = B if M 7−→∗A and obs(A) = B.

Answers and obs are identical to the ones in Definition 2.3:

Evaluation contexts

E ::= [ ] | EM | E +M | n+ E | VE

State transitions

E[(λx.M) V ] 7−→ E[M[V/x]]

E[n1 + n2] 7−→ E[n] where n = n1 + n2

The call-by-value evaluator is not correct in the sense that it defines a different

partial function from evaln. But could a user ever observe a difference? If the call-

by-name semantics specifies that a program should terminate with an observable

answer, then the call-by-value evaluator will either:

1. Terminate with the same observable answer.

2. Not terminate.

In the first case, the user observes the same behavior. In the second case, the user

does not observe anything and hence cannot ascertain that the evaluator is incorrect:

maybe it is just slow.

Proposition 4.5

If evaln(M) = B then either:

• eval v(M) = B, or

• eval v(M) is undefined.

Conversely, if eval v(M) = B then evaln(M) = B.

4.3 Thesis

The previous two subsections motivate the following definition.

Definition 4.6 (Weak Equivalence)

Let P be a set of programs, B be a set of observables, and eval1 and eval2 be two

partial functions (implementations) from programs to observables. We say eval1 is

weakly equivalent to eval2 when the following conditions hold:

• If eval1(P ) = B then either eval2(P ) = B or eval2(P ) is undefined.

• If eval2(P ) = B then either eval1(P ) = B or eval1(P ) is undefined.

We can now formulate our thesis precisely.

Definition 4.7 (Purely Functional Language)

A language is purely functional if:

1. It is a conservative extension of the simply typed λ-calculus.
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2. It has well-defined call-by-value, call-by-need and call-by-name evaluation

functions (implementations).

3. All three evaluation functions (implementations) are weakly equivalent.

There are several important points to note:

• The first condition in the definition requires that the language be a conservative

extension of the simply typed λ-calculus. This condition guards against lan-

guages with no functions, and hence that would vacuously satisfy the second

and third conditions.

• Among the many parameter-passing mechanisms we have selected call-by-

value, call-by-name, and call-by-need as the relevant ones for the thesis. This

choice appears to work well as it allows us to verify that the subset of SML

(a call-by-value language) without assignments and exceptions is pure, and

also that Haskell (a language with a call-by-name denotational semantics and

a call-by-need implementation) is pure. It may be the case that the thesis

could be formulated with only two of the parameter-passing mechanisms, for

example by omitting call-by-value entirely. This new thesis would essentially be

about sharing of computations since this is the fundamental difference between

call-by-name and call-by-need. We leave this point as an open problem.

• A drawback of this definition is that it requires the existence of several

evaluation functions (implementations) for the same syntax. Starting from

a call-by-value language like Scheme, it is straightforward to devise a call-

by-need or call-by-name evaluator. However, starting from a call-by-name

language like Λ! or Idealized Algol (Reynolds, 1991; Reynolds, 1981; Reynolds,

1988), the design of the call-by-value or call-by-need variant first requires

setting a notion of syntactic value. This latter decision affects the purity of

the language. Indeed, as we will see in the next section, by varying the notion

of value in Λ!, we can design a new variant of the language that is purely

functional.

• The thesis follows the convention that non-termination and errors are special

kinds of computation whose effects are not observable. Hence expressions that

diverge, or evaluate to a black hole, or an error are all considered equivalent.

If errors become observable, then not even PCF would be pure (Cartwright

and Felleisen, 1991; Cartwright et al., 1993).

5 Case studies

Using our proposed definition it is straightforward to confirm some common claims.

For example, the subsets of Scheme and SML excluding assignments, pointer equal-

ity, exceptions, and control operators are purely functional, and their extensions

with assignments, call/cc, or eq? are not purely functional. Also Haskell is pure

as long as one observes neither errors nor non-termination (black holes). To show

the applicability of our definition beyond these simple examples, we study several

extended languages in this section.
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5.1 Effects as values

Given our definition of purity, the design of a purely functional variant of Λ!

requires the construction of call-by-value, call-by-need and call-by-name evaluation

functions that behave similarly.

These evaluation functions already differ on simple programs like ((λx.x+ x) inc)

as the program evaluates to 0 using call-by-value or call-by-need but evaluates to 1

using call-by-name. An obvious way of making the evaluation functions agree on

the program is to treat the expressions inc and read as values, which we write as

incM and readM for clarity. This implies that the program would be equivalent to

(incM + incM) using any parameter-passing mechanism.

But this only solves part of the problem. Consider now the term:

(λx.x+ x) (incM + readM)

The argument is not a value and again we are in a situation where the program

evaluates to different results under call-by-value and call-by-name. The solution is

however as simple as before: treat the expression (incM + readM) as a (constructed)

value, which we write as (Plus incM readM) for clarity.

We have thus arranged for the evaluation of ((λx.Plus x x) incM) to produce the

value (Plus incM incM) as its final answer using any parameter-passing mechanism.

The evaluation does not perform any computational effects but just collects the

demands for computational effects and propagates them to the top level of the

program as the final answer. The mapping of answers to observables would need to

perform the computational effects to print the expected answer of 1.

Putting things together the formal syntax and semantics of our language are now

as follows.

Definition 5.1 (Syntax of Λs)

The set of terms is defined as:

M,N,L ∈ Term ::= x | λx.M | MN | n | Plus M N | incM | readM
V ∈ Value ::= n | λx.M | Plus V1 V2 | incM | readM

Definition 5.2 (eval s)

The partial function eval s from terms to observables is defined as: eval s(M) = B if

M 7−→∗ A and obs(A) = B, where:

Answers

A ::= n | λx.M | Plus A1 A2 | incM | readM

Evaluation contexts

E ::= [ ] | EM | Plus E M | Plus V E

State transitions

E[(λx.M) N] 7−→ E[M[N/x]]

The mapping of answers to observables is more complicated than usual since it

needs to perform all the effects. We specify this mapping using an abstract machine

of its own.
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Definition 5.3 (Observing Answers)

We define obs(A) = B if 〈A, 0〉 7−→∗ 〈B, `〉 where:

Evaluation contexts

E ::= [ ] | Plus E A | Plus n E

State transitions

〈E[λx.M], `〉 7−→ 〈E[proc], `〉
〈E[readM], `〉 7−→ 〈E[`], `〉
〈E[incM], `〉 7−→ 〈E[`], `+ 1〉

〈E[Plus n1 n2], `〉 7−→ 〈E[n], `〉 where n = n1 + n2

Example 5.4

We have eval s((λx.λy.Plus (Plus x y) (Plus x x)) incM readM) = 4. For clarity we

use 7−→f for the reduction steps of the main (functional) evaluator and 7−→o for the

reduction steps of the observer:

Functional evaluation

(λx.λy.Plus (Plus x y) (Plus x x)) incM readM

7−→f (λy.Plus (Plus incM y) (Plus incM incM)) readM

7−→f Plus (Plus incM readM) (Plus incM incM)

Observing the answer

〈Plus (Plus incM readM) (Plus incM incM), 0〉
7−→o 〈Plus (Plus 0 readM) (Plus incM incM), 1〉
7−→o 〈Plus (Plus 0 1) (Plus incM incM), 1〉
7−→o 〈Plus 1 (Plus incM incM), 1〉
7−→o 〈Plus 1 (Plus 1 incM), 2〉
7−→o 〈Plus 1 (Plus 1 2), 3〉
7−→o 〈Plus 1 3, 3〉
7−→o 〈4, 3〉

To justify our claim that the above language is purely functional, we should

define a call-by-value and call-by-need evaluation functions and show their weak

equivalence of eval s. Both variants of the semantics are as expected. Much like

the pure call-by-value semantics (Definition 4.4), the call-by-value variant has one

additional kind of evaluation context, VE, and it replaces the state transitions of

Definition 5.2 with:

E[(λx.M) V ] 7−→ E[M[V/x]]

The call-by-need variant is similarly defined following Definition 4.2. It is almost

evident that both variants of the semantics are weakly equivalent to eval s. Indeed,

ignoring the mapping from answers to observables which does not involve any

procedure calls (and hence does not depend on our notion of parameter-passing), the

language is just an applied λ-calculus that includes simple constants and datatypes.

The call-by-value, call-by-need, and call-by-name evaluation functions are known to

be weakly equivalent for this language.
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Proposition 5.5

The language Λs is purely functional.

In summary, the idea of the language Λs is to treat all expressions that perform

effects as values, collect these expressions in some data structure as part of the answer,

and perform the effects by a conceptually separate evaluator after all functions have

disappeared. This idea originates with the design of Idealized Algol (Reynolds,

1988; Reynolds, 1991; Reynolds, 1981) where the evaluation proceeds as follows: In

a first phase, perform all β-steps producing an imperative program, and in a second

phase performs all the imperative operations. The only catch is that the imperative

program resulting from an Idealized Algol program may be infinite, so this view is

only conceptual (Weeks and Felleisen, 1993). In practice the two evaluators would

be implemented as coroutines. It is interesting to note that O’Hearn (1995) shows

that the observational equivalence of the full Idealized Algol language conservatively

extends the observational equivalence of the functional sublanguage, which might

be interpreted as evidence for the purity of Idealized Algol.

The idea is also reminiscent of the stream I/O model in Haskell (Hudak et al.,

1992) where for example, instead of having side-effecting expressions like writeFile,

we have a datatype of Request that includes a data constructor (i.e., a value)

WriteFile. These values that refer to I/O operations are accumulated in a stream

and performed at the top level. Again the number of I/O operations in the stream

is unbounded, so the phase separation is only conceptual.

5.2 Effects as monadic operations

One of the fundamental properties of Continuation-Passing Style (CPS) terms is that

they are independent of the parameter-passing technique (Plotkin, 1975; Reynolds,

1972). This suggests a way to embed computational effects in a purely functional

language: force all the imperative parts of the program to be written in CPS

or the closely related effect-passing style (EPS) based on monads (Filinski, 1994;

Filinski, 1996; Wadler, 1990). Intuitively, both CPS and EPS require programmers

to explicitly sequence the imperative operations, and hence remove any ambiguity

associated with the parameter-passing mechanism.

A näıve implementation of this idea would simply restrict all parts of a program

(pure and impure) to be written in EPS. Unfortunately, this would not yield a

conservative extension of the simply typed λ-calculus (see Definition 2.6). What we

need instead is the ability to write the imperative parts of the program in EPS, and

the pure parts as before. To implement this idea correctly, we use the state monad to

explicitly sequence the imperative operations, leaving the pure sublanguage alone.

For example, consider the Λ! term ((λx.x+ x) inc), where the increment operation

is performed once or twice depending on the semantics of function application. This

term is now illegal. Instead we extend our language with return and >>=: the unit

and bind operations of the state monad. If we call incM the variant of inc acting on

https://doi.org/10.1017/S0956796897002943 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002943


What is a purely functional language? 17

monadic state, then we might write the term as:

incM >>= λv1.incM >>= λv2.return (v1 + v2), or

incM >>= λv.return (v + v)

depending on our interpretation. Note that the evaluation of each of the latter two

terms is insensitive to the parameter-passing mechanism.

To formulate the evaluation function, we need an additional construct (run M)

that marks the top level of a program. The reason for this additional construct is

that monadic operations on the state are only performed at top level. Like in the

previous section, imperative operations embedded deep inside the program are not

performed there but are propagated to the top level using the monadic combinator

>>=, and only performed during a conceptually second phase of evaluation. This

intuition is made precise in the definitions of evaluation contexts and standard

reductions below.

Definition 5.6 (Syntax of Λm)

The set of terms is defined as:

T ∈ TopTerm ::= M | run M
M,N,L ∈ Term ::= x | λx.M | MN | n | M +N

| return M | M >>= N | readM | incM
V ∈ Value ::= n | λx.M | return M | M >>= N | readM | incM

As explained above, if the construct run occurs in a term, it must occur at the top

level. The (implicit) monadic state is just the value of the global location manipulated

by readM and incM.

Definition 5.7 (evalm)

The partial function evalm from terms to observables is defined as: evalm(T ) = B if

T 7−→∗ A and obs(A) = B, where:

Answers

A ::= V | run W
V ::= n | λx.M | return M | M >>= N | readM | incM
W ::= readM | incM | return I | W >>= λx.W

I ::= n | x | I + I

Evaluation contexts

G ::= E | run F
E ::= [ ] | EM | E +M | I + E

F ::= E | return E | F >>= M | W >>= E | W >>= λx.F

State transitions

G[(λx.M)N] 7−→ [M[N/x]]

G[n1 + n2] 7−→ G[n] where n = n1 + n2

As in the previous case, the mapping of answers to observables is complicated

since it performs all the effects. We specify this mapping using an abstract machine

of its own.
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Definition 5.8 (Observing answers)

We define obs(A) = B if 〈A, 0〉 7−→∗ 〈B, `〉 where:

Evaluation contexts

E ::= [ ] | E +M | n+ E

State transitions

〈λx.M, `〉 7−→ 〈proc, `〉
〈return M, `〉 7−→ 〈proc, `〉
〈M >>= N, `〉 7−→ 〈proc, `〉
〈readM, `〉 7−→ 〈proc, `〉
〈incM, `〉 7−→ 〈proc, `〉

〈run readM, `〉 7−→ 〈`, `〉
〈run incM, `〉 7−→ 〈`, `+ 1〉

〈run (return n), `〉 7−→ 〈n, `〉

〈run (return E[n1 + n2]), `〉 7−→ 〈run (return E[n]), `〉
where n = n1 + n2

〈run (readM >>= λx.W ), `〉 7−→ 〈run (W [x := `]), `〉
〈run (incM >>= λx.W ), `〉 7−→ 〈run (W [x := `]), `+ 1〉

〈run ((return n) >>= λx.W ), `〉 7−→ 〈run (W [x := n]), `〉
〈run ((return E[n1 + n2]) >>= λx.W ), `〉 7−→ 〈run ((return E[n]) >>= λx.

W ),

`〉
where n = n1 + n2

〈run ((W >>= λx.W1) >>= λy.W2), `〉 7−→ 〈run (W >>= λx.

W1 >>= λy.W2)),

`〉

Example 5.9

For example, the term (run (incM >>= λv1.incM >>= λv2.return (v1 + v2))) evaluates

to 1. The functional evaluation terminates immediately and all the computation

happens during the observation part:

〈run (incM >>= λv1.incM >>= λv2.return (v1 + v2)), 0〉
7−→ 〈run (incM >>= λv2.return (0 + v2)), 1〉
7−→ 〈run (return (0 + 1)), 2〉
7−→ 〈run (return 1), 2〉
7−→ 〈1, 2〉

Why is the above language purely functional? The argument is similar to the

one in the previous section. The evaluation is clearly divided into two separate

phases. In the mapping from answers to observables, all substitutions involve values

(and hence are valid in call-by-value, call-by-need, and call-by-name semantics).

Abstracting from the way answers are observed, the language is just an applied λ-

calculus in which answers are trees. Changing the evaluation contexts and standard
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reductions in Definition 5.7 to either call-by-value or call-by-need will either produce

the same tree as the call-by-name semantics or diverge. The analogy to the previous

case is not surprising since Peyton Jones and Wadler (1993) demonstrate that there is

a close relationship among the stream-based, monad-based and continuation-based

integration of computational effects in Haskell.

Proposition 5.10

The language Λm is purely functional.

The language Λm is a miniature version of the State in Haskell language (Launch-

bury and Peyton Jones, 1995), which Launchbury and Peyton Jones informally argue

is pure:

A formal proof would necessarily involve some operational semantics, and a proof that no

evaluation order could change the behaviour of the program. We have not yet undertaken

such a proof (Launchbury and Peyton Jones, 1995, p. 322).

We have already developed a call-by-name operational semantics for the full State

in Haskell (Launchbury and Sabry, 1997) language. To prove that the language is

pure according to our definition, it remains to develop call-by-value and call-by-need

variants of the semantics and show their weak equivalence.

5.3 Implementation

The language Λm can by implemented with the same tradeoffs as the language of

State in Haskell (Launchbury and Peyton Jones, 1995). We describe two possible

implementations: a functional one and an imperative one. The first phase of both

implementations translates the source programs by expressing return, >>=, and

run in store-passing style. For convenience, the target language of this translation

includes, like Haskell, pairs, let-expressions and pattern-matching with the usual

semantics.

Definition 5.11

The translation of Λm is defined as follows:

x∗ = x

(λx.M)∗ = λx.M∗

(MN)∗ = M∗ N∗

n∗ = n

(M +N)∗ = M∗ +N∗

(return M)∗ = λ`.〈M∗, `〉
(M >>= N)∗ = λ`.let 〈x, `′〉 = M∗`

in N∗x`′

(run M)∗ = fst (M∗ 0)

readM∗ = λ`.readM `

incM∗ = λ`.incM `

The second phases of the two implementations differ as follows: the functional

implementation treats the operations incM and readM as state transformers, i.e.,

functions that take an input store as one of their arguments and return an output

store as part of their result:

readM = λ`.〈`, `〉
incM = λ`.〈`, `+ 1〉
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This implementation is close to the semantics of the language but would be rather

inefficient in practice as it implements updates by copying (parts of) the store data

structure. The intermediate language of the functional implementation is clearly

pure but not interesting as the basis for a compiler.

The imperative implementation generates code for incM and readM that ignores the

store argument and performs destructive updates that operate on a global location.

This is clearly more efficient but is not evidently correct. Indeed, we show that if

the semantics of the intermediate language is call-by-name then the implementation

strategy based on destructive updates is incorrect. Consider the following term:

run (incM >>= λx.return (x+ x))

whose value according to the semantics is 0. The translation of the term into the

intermediate language produces:

fst (λ`.(let 〈a, `〉 = incM ` in (λx.λ`.〈(x+ x), `〉) a `) 0)

which, if the intermediate language has call-by-name semantics could be simplified

as follows:

= fst (let 〈a, `〉 = incM 0 in 〈(a+ a), `〉)
= fst (let p = incM 0 in 〈(fst p+ fst p), snd p〉)
= fst 〈(fst (incM 0) + fst (incM 0)), snd (incM 0)〉
= (fst (incM 0) + fst (incM 0))

If incM is implemented as an expression that ignores its state argument and instead

performs a global side effect, then the above term evaluates to 1 instead of 0.

Launchbury and Peyton Jones (1995) informally argue that the above evaluation

strategy as realized in the Glasgow Haskell compiler (ghc) is correct. Clearly, as

we demonstrate above, ghc cannot use arbitrary β-reductions on the intermediate

representation of the program. Fortunately, even before the monadic extensions,

ghc was careful not to duplicate work and hence refrained from using β steps for

performance reasons (Ariola et al., 1995). Consequently, the addition of assignments

to the back end did not cause any immediate problems. The correctness of the

destructive implementation of monadic state is however still an open problem.

6 Conclusion

The paper proposes a framework for reasoning about purely functional languages

and their extensions with computational effects. We have put forward the thesis

that purity can be determined by the (weak) equivalence of call-by-name, call-by-

value, and call-by-need. This definition of purity naturally motivates and explains

the various strategies used to integrate computational effects with purely functional

languages.

Building on the thesis, we propose a way to formally reason about the correct-

ness of the destructive implementation of monadic operations. We also reveal the

unsoundness of call-by-name reasoning principles in compilers for monadic Haskell
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and hence the importance of call-by-need theories that are rich enough to express

imperative operations.
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