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1. Introduction

For what sequences {an} of points of the open unit disc D does there exist a constant
K such that

SUP|/(z)|^KSUp|/(fln)| (1)
zeD »EN

for all bounded harmonic functions / on D?
This question is of interest because these are the sequences such that every integrable

function / on the unit circle 3D is of the form

/ = I KVa, (2)

n = 1

with Xn°°=iK|< oo (see [1]). Here

Pa(C) = ( l - H 2 ) | l - a C | - 2 &e3D, asD),
that is pa(e

ie) is the Poisson kernel Po(0).
Brown, Shields and Zeller [2] have proved the closely related result that

sup|/(z)| = sup|/(an)| (3)
zeD ne\

for all / e / / " (the space of bounded analytic functions on D) if and only if {an} is non-
tangentially dense for 3D, that is if and only if almost every point of 3D is the non-
tangential limit of some subsequence of {an}. Our main result, Theorem 2, is a list of
equivalent conditions on the sequence {an} which includes conditions (1) and (3).

In Theorem 3, we establish an elementary property of the harmonic measure xAz) of
a Lebesgue measurable subset F of U; namely, xAz) is arbitrarily small outside the
union of certain triangular domains associated with the points of F. This shows that if
the inequality (1) holds for all positive bounded harmonic functions, then {an} is non-
tangentially dense.
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Theorem 2 describes the sequences {an} for which the bounded linear mapping T of I1

into L1 given by T{Xn} = Y%= t AnpO|i is surjective. It is an immediate consequence that T is
never bijective. When is it injective? This question remains unanswered, but Theorem 6
shows that T has zero kernel and closed range if and only if {«„} is an interpolating
sequence for ff°°.

I am indebted to W. K. Hayman for asking a question that provoked this work and
also for an observation showing that there are no sequences {an} for which the infimum
in Theorem 2(ii) is always attained.

2. Results

In the following elementary lemma, G denotes a simply connected domain in the
complex plane, //"(G) the space of bounded analytic functions on G, and BH(G) the
space of bounded complex valued harmonic functions on G.

Lemma 1. Let A be a subset of G, and let there exist a constant K such that

| (4)| | |
zeG zeA

for all invertible elements f of HCO(G). Then

sup|/(z)| = sup|/(z)| (5)
zeG zeA

for all f 6 BH(G).

Proof. Let u be a non-negative real valued element of BH{G). Since G is simply
connected, there exists a function g analytic on G with Reg=u. Let

/(z) = expg(z) (zeG).

Since |/(z)|=expu(z), we have /eH0O(G), and plainly 1// is also in H™(G). Therefore
inequality (4) holds, that is

Therefore

sup exp u(z) £ K sup exp M(Z).
zeG ZEA

SUp U(z) ^ log K + SUp U(z).
zeG zeA

This inequality also holds with u replaced by xu with positive a, and so

sup u(z) ̂  - log K + sup u(z).
zeG a zeA
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Therefore, u satisfies (5). Next, if h is any real valued bounded harmonic function on G,
then M±h is non-negative for suitable positive M, and so h satisfies (5). Finally, given
any complex valued feBH(G), and deU, let /ie(z) = Re(ei9/00)- Then he satisfies (5).
We choose z0 in G with | / (zo) | close to supr e G | /(z) | , and then choose 6 so that
V z o) = | /( zo) | t o complete the proof.

In the following theorem, we write L" for If(dD, dO/ln), and Hw for tf°°(Z)).

Theorem 2. Given a sequence {an} of points of D, the following conditions are
equivalent to each other.

(i) Every feL1 is of the form (2) with ££= t |An| < oo.

(ii) Condition (i) holds and also

with the infimum taken over all sequences {Xn} satisfying (2).

(iii) There exists a constant K such that the inequality (1) holds for all feBH(D).

(iv) The equality (3) holds for all feBH(D).

(v) The equality (3) holds for all / e t f ° ° .

(vi) Almost every point of 3D is the non-tangential limit of some subsequence of {an}.

Proof. The order of proof is (i)->(iii)-*(iv)-»(v)-»(vi)-»(ii)->(i).

(i)->(iii). Suppose that (i) holds, and, given A = {An}e/1, let

n = l

Since ||pa||i = l, T is a bounded linear mapping of I1 onto L1. It is therefore an open
mapping, and there exists K > 0 such that the image of the ball in Z1 with centre 0 and
radius K contains the unit ball in L1. Thus (2) holds for all / e l } , and

inf{||A||1:(2) holds}£K| | / | | , . (6)

Now let geL? with g{z) its harmonic extension to D, and let e>0. Since \\g\\m is the
norm of the linear functional on l ! given by g, there exists / e l ? with | | / | | i = l and
|</g>|>||i>||oo —e- By (6), f = Yj?=iKPan with X = {Xn}eli and IJAH^ic + c. Therefore

zeD

l ̂  HAIU sup |«(«J| ^ ( K + e)sup |g(a
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(iii)-(iv)->(v). HmcBH(D) and Lemma 1.

(v)-+(vi). Brown, Shields and Zeller [2].

(vi)->(ii). (See [1]). (ii)->(i). Clear.

Remarks. The equality | | / | | i=££=i |AB| obviously holds if f=Yj?=i KPan with AB^0
for all n. However there is no sequence {an} such that this equality holds for all fel}.
For let fell with zero essential infimum on dD and | | / | | ,>0. By taking real parts, we
may assume that f=Yj?=i Kvan with all Xn real. If An^0 for all n, then lnpan^.f and so
An = 0, for all n. We may therefore assume that Xt<0. Then, since / ^ 0 almost
everywhere,

n=2

Theorem 2 also holds with the disc replaced by the upper half-plane. In fact, the non-
trivial step (v)->(vi) is easier to prove in that context and then transfer to D by
conformal mapping. See Corollary 5 below.

Notation. Let [7 = {zeC:Imz>0}, let Pz{i) denote the Poisson kernel for U, that is

and let |£| denote the Lebesgue measure of a measurable set E in IR. With 0<(5<l,
0<b^oo, teU, and fC = tan(7r<5/2), let A(t,b,d) denote the triangular domain

A(t, b, d) = {x + yi: K\X -1\ < y < b}.

As usual, the harmonic measure %AZ) of a measurable subset F of IR is the harmonic
extension to U of the characteristic function XF> that is

1 (zeU).

Theorem 3. Let F be a Lebesgue measurable subset of U, let 0<(5<l, and let
n5b^\F\. Then Xf{z)^d for all z in U\[j,eFA{t,b,d).

Proof. As before, we take K = tan(7r<5/2). If J = ( —oo,/TJ with /? real, we have for

1 yHx-f)

j
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Thus

1 S
0<y^ic(x—/?)=>Xj(z)=-arctanK=;v

7C 2

Similarly, if J = [a, oo) with a real, then

Suppose first that F is a closed subset of U, so that U\F is a countable (perhaps finite
or void) union of disjoint open intervals Ik. Let z = x + yie U\\J,eFA(t,b,d) with
0<y<b. Then xelk for some k. If Ik=( — co,d) with d real, we take J = [_d,oo). Since
deF, z£A(d,b,5); and, since y<b, it follows that y^>c(d—x). Since F c J , we therefore
have

The same inequality holds if Ik = (c,oo). If 7k = (c,d) with —oo<c<rf<oo, we take
J=( — oo,c], J' = [d,oo). Since ceF, we have xAz) = ̂ l^\ a nd similarly for x^- Then
since

Finally, if y^b, then Pz(t)^ l/7tb for all real t, and so

and the theorem is proved for closed sets F.
Finally, given any Lebesgue measurable subset F of R, there exists an increasing

sequence {Fn} of closed subsets of F with its union differing from F by a set of measure
zero. We have XFSZ) = $ f°r a^ 2 m ^\[jteFHt,b,8), and the result follows.

Remark. The possibility of a result like Theorem 3 is suggested by the proof in
Brown, Shields and Zeller [2] to which we have referred already.

Corollary 4. Let 0<<5<l and let the sequence {an} of points of U fail to satisfy the
following condition: for almost all teU, A(t,b,8)n {an:neN} is non-empty for every b>0.

Then there exists a positive harmonic function g on U with supzeUg(z)=l but

Proof. Let E = \Jb>0 A(b), with
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Since A(b) =>A(b') when b<b', we have E = [JkeNA(l/k); and, since each A(b) is closed, it
follows that E is measurable. By assumption, we now have |£| > 0, and so we can choose
b=l/k with |yl(b)|>0. We take a closed interval / chosen so that, with F = Ir\A(b), we
have 0<|F|^7rfc. Theorem 3 now provides the required function g=xF.

Corollary 5. Let {an} be a sequence of points of U such that there exists a constant K
with

supg(z)^K:sups(an) (7)
ze(V »eN

for all bounded positive harmonic functions g on U. Then almost every point of U is the
non-tangential limit of some subsequence of {an}.

Proof. Immediate consequence of Corollary 4.

Corollary 5 can be transferred to the disc by conformal mapping. It is of interest,
because it is not obvious that the inequality (7) for bounded positive harmonic functions
g implies the same inequality for all geBH(U), though this implication is obvious if
K = l .

Let \an) be a sequence of points of U, and let T be the bounded linear mapping of I1

into Ll = L1(U) defined by

n = 1

Theorem 2, for U in place of D, tells us that T is surjective if and only if {an} is non-
tangentially dense for R. It is an immediate consequence that T is never bijective, for if
{an} is non-tangentially dense, then so is {an+1} and we have

with Xn°=2 l^n|<0°- 1° these circumstances, it is natural to ask for what sequences {«„}
the mapping T is injective. We do not know the answer to this question, but using an
argument due to J. B. Garnett, it is easy to prove the following result.

Theorem 6. T has zero kernel and closed range if and only if {an} satisfies the
geometric condition for H°° interpolation, that is there exists S>0 such that

i n f . 0 \ak-aj\/\ak-dj\^

Proof. Since TeBUl1,!}), the usual identification of dual spaces gives
T* e BIXU>, /"), and, with g(z) denoting the harmonic extension of geL00 to U, we have
T*g = {g(an)}elc°. If {an} is an interpolation sequence for //°°, then T*LCO = /CO, and, by
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Banach's closed range theorem [3, p. 488], T has closed range and zero kernel. On the
other hand, if T has closed range and zero kernel, then there exists a constant M with

This is the inequality (4.5) in Garnett [4, p. 303] from which it is there deduced that
{an} satisfies the geometric condition for Hx interpolation.
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