DOMINATION OF THE SUPREMUM OF A BOUNDED HARMONIC FUNCTION BY ITS SUPREMUM OVER A COUNTABLE SUBSET

by F. F. BONSALL

(Received 11th April 1986)

1. Introduction

For what sequences $\{a_n\}$ of points of the open unit disc D does there exist a constant κ such that

$$\sup_{z \in D} |f(z)| \leq \kappa \sup_{n \in \mathbb{N}} |f(a_n)| \tag{1}$$

for all bounded harmonic functions f on D?

This question is of interest because these are the sequences such that every integrable function f on the unit circle ∂D is of the form

$$f = \sum_{n=1}^{\infty} \lambda_n p_{a_n} \tag{2}$$

with $\sum_{n=1}^{\infty} |\lambda_n| < \infty$ (see [1]). Here

$$p_a(\zeta) = (1 - |a|^2) |1 - \bar{a}\zeta|^{-2} \quad (\zeta \in \partial D, \ a \in D),$$

that is $p_a(e^{i\theta})$ is the Poisson kernel $P_a(\theta)$.

Brown, Shields and Zeller [2] have proved the closely related result that

$$\sup_{z \in D} |f(z)| = \sup_{n \in \mathbb{N}} |f(a_n)|$$
(3)

for all $f \in H^{\infty}$ (the space of bounded analytic functions on D) if and only if $\{a_n\}$ is nontangentially dense for ∂D , that is if and only if almost every point of ∂D is the nontangential limit of some subsequence of $\{a_n\}$. Our main result, Theorem 2, is a list of equivalent conditions on the sequence $\{a_n\}$ which includes conditions (1) and (3).

In Theorem 3, we establish an elementary property of the harmonic measure $\chi_F(z)$ of a Lebesgue measurable subset F of \mathbb{R} ; namely, $\chi_F(z)$ is arbitrarily small outside the union of certain triangular domains associated with the points of F. This shows that if the inequality (1) holds for all *positive* bounded harmonic functions, then $\{a_n\}$ is non-tangentially dense.

F. F. BONSALL

Theorem 2 describes the sequences $\{a_n\}$ for which the bounded linear mapping T of l^1 into L^1 given by $T\{\lambda_n\} = \sum_{n=1}^{\infty} \lambda_n p_{a_n}$ is surjective. It is an immediate consequence that T is never bijective. When is it injective? This question remains unanswered, but Theorem 6 shows that T has zero kernel and closed range if and only if $\{a_n\}$ is an interpolating sequence for H^{∞} .

I am indebted to W. K. Hayman for asking a question that provoked this work and also for an observation showing that there are no sequences $\{a_n\}$ for which the infimum in Theorem 2(ii) is always attained.

2. Results

In the following elementary lemma, G denotes a simply connected domain in the complex plane, $H^{\infty}(G)$ the space of bounded analytic functions on G, and BH(G) the space of bounded complex valued harmonic functions on G.

Lemma 1. Let A be a subset of G, and let there exist a constant κ such that

$$\sup_{z \in G} |f(z)| \leq \kappa \sup_{z \in A} |f(z)|$$
(4)

for all invertible elements f of $H^{\infty}(G)$. Then

$$\sup_{z \in G} |f(z)| = \sup_{z \in A} |f(z)|$$
(5)

for all $f \in BH(G)$.

Proof. Let u be a non-negative real valued element of BH(G). Since G is simply connected, there exists a function g analytic on G with $\operatorname{Re} g = u$. Let

 $f(z) = \exp g(z) \quad (z \in G).$

Since $|f(z)| = \exp u(z)$, we have $f \in H^{\infty}(G)$, and plainly 1/f is also in $H^{\infty}(G)$. Therefore inequality (4) holds, that is

$$\sup_{z \in G} \exp u(z) \leq \kappa \sup_{z \in A} \exp u(z).$$

Therefore

$$\sup_{z \in G} u(z) \leq \log \kappa + \sup_{z \in A} u(z).$$

This inequality also holds with u replaced by αu with positive α , and so

$$\sup_{z\in G} u(z) \leq \frac{1}{\alpha} \log \kappa + \sup_{z\in A} u(z).$$

Therefore, u satisfies (5). Next, if h is any real valued bounded harmonic function on G, then $M \pm h$ is non-negative for suitable positive M, and so h satisfies (5). Finally, given any complex valued $f \in BH(G)$, and $\theta \in \mathbb{R}$, let $h_{\theta}(z) = \operatorname{Re}(e^{i\theta}f(z))$. Then h_{θ} satisfies (5). We choose z_0 in G with $|f(z_0)|$ close to $\sup_{z \in G} |f(z)|$, and then choose θ so that $h_{\theta}(z_0) = |f(z_0)|$ to complete the proof.

In the following theorem, we write L^p for $L^p(\partial D, d\theta/2\pi)$, and H^{∞} for $H^{\infty}(D)$.

Theorem 2. Given a sequence $\{a_n\}$ of points of D, the following conditions are equivalent to each other.

- (i) Every $f \in L^1$ is of the form (2) with $\sum_{n=1}^{\infty} |\lambda_n| < \infty$.
- (ii) Condition (i) holds and also

$$\|f\|_1 = \inf \sum_{n=1}^{\infty} |\lambda_n|,$$

with the infimum taken over all sequences $\{\lambda_n\}$ satisfying (2).

- (iii) There exists a constant κ such that the inequality (1) holds for all $f \in BH(D)$.
- (iv) The equality (3) holds for all $f \in BH(D)$.
- (v) The equality (3) holds for all $f \in H^{\infty}$.
- (vi) Almost every point of ∂D is the non-tangential limit of some subsequence of $\{a_n\}$.

Proof. The order of proof is $(i) \rightarrow (iii) \rightarrow (iv) \rightarrow (v) \rightarrow (vi) \rightarrow (ii) \rightarrow (i)$.

(i) \rightarrow (iii). Suppose that (i) holds, and, given $\lambda = \{\lambda_n\} \in l^1$, let

$$T\lambda = \sum_{n=1}^{\infty} \lambda_n p_{a_n}.$$

Since $||p_a||_1 = 1$, T is a bounded linear mapping of l^1 onto L^1 . It is therefore an open mapping, and there exists $\kappa > 0$ such that the image of the ball in l^1 with centre 0 and radius κ contains the unit ball in L^1 . Thus (2) holds for all $f \in L^1$, and

$$\inf\left\{\|\lambda\|_{1}:(2) \text{ holds}\right\} \leq \kappa \|f\|_{1}.$$
(6)

Now let $g \in L^{\infty}$ with g(z) its harmonic extension to D, and let $\varepsilon > 0$. Since $||g||_{\infty}$ is the norm of the linear functional on L^1 given by g, there exists $f \in L^1$ with $||f||_1 = 1$ and $|\langle f, g \rangle| > ||g||_{\infty} - \varepsilon$. By (6), $f = \sum_{n=1}^{\infty} \lambda_n p_{a_n}$ with $\lambda = \{\lambda_n\} \in l^1$ and $||\lambda||_1 < \kappa + \varepsilon$. Therefore

$$\sup_{z \in D} |g(z)| - \varepsilon = ||g||_{\infty} - \varepsilon < \sum_{n=1}^{\infty} |\lambda_n| |\langle p_{a_n}, g \rangle|$$
$$= \sum_{n=1}^{\infty} |\lambda_n| |g(a_n)| \le ||\lambda||_1 \sup_n |g(a_n)| \le (\kappa + \varepsilon) \sup_n |g(a_n)|.$$

(iii)→(iv)→(v). $H^{\infty} \subset BH(D)$ and Lemma 1. (v)→(vi). Brown, Shields and Zeller [2]. (vi)→(ii). (See [1]). (ii)→(i). Clear.

Remarks. The equality $||f||_1 = \sum_{n=1}^{\infty} |\lambda_n|$ obviously holds if $f = \sum_{n=1}^{\infty} \lambda_n p_{a_n}$ with $\lambda_n \ge 0$ for all *n*. However there is no sequence $\{a_n\}$ such that this equality holds for all $f \in L^1$. For let $f \in L^1$ with zero essential infimum on ∂D and $||f||_1 > 0$. By taking real parts, we may assume that $f = \sum_{n=1}^{\infty} \lambda_n p_{a_n}$ with all λ_n real. If $\lambda_n \ge 0$ for all *n*, then $\lambda_n p_{a_n} \le f$ and so $\lambda_n = 0$, for all *n*. We may therefore assume that $\lambda_1 < 0$. Then, since $f \ge 0$ almost everywhere,

$$||f||_1 \leq ||f+|\lambda_1|p_{a_1}||_1 = ||\sum_{n=2}^{\infty} \lambda_n p_{a_n}||_1 \leq \sum_{n=2}^{\infty} |\lambda_n|.$$

Theorem 2 also holds with the disc replaced by the upper half-plane. In fact, the nontrivial step $(v) \rightarrow (vi)$ is easier to prove in that context and then transfer to D by conformal mapping. See Corollary 5 below.

Notation. Let $U = \{z \in \mathbb{C} : \text{Im } z > 0\}$, let $P_z(t)$ denote the Poisson kernel for U, that is

$$P_{z}(t) = \frac{1}{\pi} \frac{y}{(x-t)^{2} + y^{2}} \qquad (t \in \mathbb{R}, \ z = x + yi \in U),$$

and let |E| denote the Lebesgue measure of a measurable set E in R. With $0 < \delta < 1$, $0 < b \le \infty$, $t \in \mathbb{R}$, and $\kappa = \tan(\pi \delta/2)$, let $\Delta(t, b, \delta)$ denote the triangular domain

$$\Delta(t, b, \delta) = \{x + yi: \kappa | x - t | < y < b\}.$$

As usual, the harmonic measure $\chi_F(z)$ of a measurable subset F of \mathbb{R} is the harmonic extension to U of the characteristic function χ_F , that is

$$\chi_F(z) = \int_{-\infty}^{\infty} \chi_F(t) P_z(t) dt \qquad (z \in U).$$

Theorem 3. Let F be a Lebesgue measurable subset of \mathbb{R} , let $0 < \delta < 1$, and let $\pi \delta b \ge |F|$. Then $\chi_F(z) \le \delta$ for all z in $U \setminus \bigcup_{t \in F} \Delta(t, b, \delta)$.

Proof. As before, we take $\kappa = \tan(\pi \delta/2)$. If $J = (-\infty, \beta]$ with β real, we have for $x > \beta$,

$$\chi_J(z) = \int_{-\infty}^{\beta} P_z(t) \, dt = \frac{1}{\pi} \int_{0}^{y/(x-\beta)} \frac{du}{1+u^2} = \frac{1}{\pi} \arctan \frac{y}{x-\beta}.$$

474

Thus

$$0 < y \leq \kappa(x-\beta) \Rightarrow \chi_J(z) \leq \frac{1}{\pi} \arctan \kappa = \frac{\delta}{2}.$$

Similarly, if $J = [\alpha, \infty)$ with α real, then

$$0 < y \leq \kappa(\alpha - x) \Rightarrow \chi_f(z) \leq \frac{\delta}{2}.$$

Suppose first that F is a closed subset of \mathbb{R} , so that $\mathbb{R}\setminus F$ is a countable (perhaps finite or void) union of disjoint open intervals I_k . Let $z = x + yi \in U \setminus \bigcup_{t \in F} \Delta(t, b, \delta)$ with 0 < y < b. Then $x \in I_k$ for some k. If $I_k = (-\infty, d)$ with d real, we take $J = [d, \infty)$. Since $d \in F$, $z \notin \Delta(d, b, \delta)$; and, since y < b, it follows that $y \le \kappa(d-x)$. Since $F \subset J$, we therefore have

$$\chi_F(z) \leq \chi_J(z) \leq \frac{\delta}{2}.$$

The same inequality holds if $I_k = (c, \infty)$. If $I_k = (c, d)$ with $-\infty < c < d < \infty$, we take $J = (-\infty, c]$, $J' = [d, \infty)$. Since $c \in F$, we have $\chi_J(z) \le \delta/2$; and similarly for $\chi_{J'}$. Then since $F \subset J \cup J'$,

$$\chi_F(z) \leq \chi_J(z) + \chi_{J'}(z) \leq \delta.$$

Finally, if $y \ge b$, then $P_z(t) \le 1/\pi b$ for all real t, and so

$$\chi_F(z) \leq |F|/\pi b \leq \delta,$$

and the theorem is proved for closed sets F.

Finally, given any Lebesgue measurable subset F of \mathbb{R} , there exists an increasing sequence $\{F_n\}$ of closed subsets of F with its union differing from F by a set of measure zero. We have $\chi_{F_n}(z) \leq \delta$ for all z in $U \setminus \bigcup_{t \in F} \Delta(t, b, \delta)$, and the result follows.

Remark. The possibility of a result like Theorem 3 is suggested by the proof in Brown, Shields and Zeller [2] to which we have referred already.

Corollary 4. Let $0 < \delta < 1$ and let the sequence $\{a_n\}$ of points of U fail to satisfy the following condition: for almost all $t \in \mathbb{R}$, $\Delta(t, b, \delta) \cap \{a_n : n \in \mathbb{N}\}$ is non-empty for every b > 0.

Then there exists a positive harmonic function g on U with $\sup_{z \in U} g(z) = 1$ but $\sup_{n \in \mathbb{N}} g(a_n) < \delta$.

Proof. Let $E = \bigcup_{b>0} A(b)$, with

$$A(b) = \{t \in \mathbb{R} : \Delta(t, b, \delta) \cap \{a_n : n \in \mathbb{N}\} = \emptyset\}.$$

Since $A(b) \supset A(b')$ when b < b', we have $E = \bigcup_{k \in \mathbb{N}} A(1/k)$; and, since each A(b) is closed, it follows that E is measurable. By assumption, we now have |E| > 0, and so we can choose b = 1/k with |A(b)| > 0. We take a closed interval I chosen so that, with $F = I \cap A(b)$, we have $0 < |F| \le \delta \pi b$. Theorem 3 now provides the required function $g = \chi_F$.

Corollary 5. Let $\{a_n\}$ be a sequence of points of U such that there exists a constant κ with

$$\sup_{z \in U} g(z) \le \kappa \sup_{n \in \mathbb{N}} g(a_n) \tag{7}$$

for all bounded positive harmonic functions g on U. Then almost every point of \mathbb{R} is the non-tangential limit of some subsequence of $\{a_n\}$.

Proof. Immediate consequence of Corollary 4.

Corollary 5 can be transferred to the disc by conformal mapping. It is of interest, because it is not obvious that the inequality (7) for bounded positive harmonic functions g implies the same inequality for all $g \in BH(U)$, though this implication is obvious if $\kappa = 1$.

Let $\{a_n\}$ be a sequence of points of U, and let T be the bounded linear mapping of l^1 into $L^1 = L^1(\mathbb{R})$ defined by

$$T\lambda = \sum_{n=1}^{\infty} \lambda_n P_{a_n} \qquad (\lambda = \{\lambda_n\} \in l^1).$$

Theorem 2, for U in place of D, tells us that T is surjective if and only if $\{a_n\}$ is non-tangentially dense for \mathbb{R} . It is an immediate consequence that T is never bijective, for if $\{a_n\}$ is non-tangentially dense, then so is $\{a_{n+1}\}$ and we have

$$P_{a_1} = \sum_{n=2}^{\infty} \lambda_n P_{a_n}$$

with $\sum_{n=2}^{\infty} |\lambda_n| < \infty$. In these circumstances, it is natural to ask for what sequences $\{a_n\}$ the mapping T is injective. We do not know the answer to this question, but using an argument due to J. B. Garnett, it is easy to prove the following result.

Theorem 6. T has zero kernel and closed range if and only if $\{a_n\}$ satisfies the geometric condition for H^{∞} interpolation, that is there exists $\delta > 0$ such that

$$\inf_{k} \prod_{j,j\neq k} |a_{k}-a_{j}|/|a_{k}-\bar{a}_{j}| \geq \delta.$$

Proof. Since $T \in BL(l^1, L^1)$, the usual identification of dual spaces gives $T^* \in BL(L^{\infty}, l^{\infty})$, and, with g(z) denoting the harmonic extension of $g \in L^{\infty}$ to U, we have $T^*g = \{g(a_n)\} \in l^{\infty}$. If $\{a_n\}$ is an interpolation sequence for H^{∞} , then $T^*L^{\infty} = l^{\infty}$, and, by

476

Banach's closed range theorem [3, p. 488], T has closed range and zero kernel. On the other hand, if T has closed range and zero kernel, then there exists a constant M with

$$\|\lambda\|_1 \leq M \left\| \sum_{n=1}^{\infty} \lambda_n P_{a_n} \right\|_1 \qquad (\lambda = \{\lambda_n\} \in l^1).$$

This is the inequality (4.5) in Garnett [4, p. 303] from which it is there deduced that $\{a_n\}$ satisfies the geometric condition for H^{∞} interpolation.

REFERENCES

1. F. F. BONSALL, Decompositions of functions as sums of elementary functions, Quart, J. Math. Oxford (2), 37 (1986), 129-136.

2. L. BROWN, A. SHIELDS and K. ZELLER, On absolutely convergent exponential sums, Trans. Amer. Math. Soc. 96 (1960), 162-183.

3. N. DUNFORD and J. T. SCHWARTZ, *Linear Operators Part I* (Interscience Publishers, New York, 1958).

4. J. B. GARNETT, Bounded Analytic Functions (Academic Press, New York, 1981).

School of Mathematics University of Leeds Leeds LS2 9JT