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1. Introduction. In general, a prime ideal P of a prime Noetherian ring need not be
classically localisable. Since such a localisation, when it does exist, is a striking property;
sufficiency criteria which guarantee it are worthy of careful study. One such condition
which ensures localisation is when P is an invertible ideal [5, Theorem 1.3]. The known
proofs of this result utilise both the left as well as the right invertiblity of P. Such a
requirement is, in practice, somewhat restrictive. There are many occasions such as when
a product of prime ideals is invertible [6] or when a non-idempotent maximal ideal is
known to be projective only on one side [2], when the assumptions lead to invertibilty
also on just one side. Our main purpose here is to show that in the context of Noetherian
prime polynomial identity rings, this one-sided assumption is enough to ensure classical
localisation [Theorem 3.5]. Consequently, if a maximal ideal in such a ring is invertible on
one side then it is invertible on both sides [Proposition 4.1]. This result plays a crucial role
in [2]. As a further application we show that for polynomial identity rings the definition
of a unique factorisation ring is left-right symmetric [Theorem 4.4].

2. Notation and preliminaries. All rings are associative and have identity. Let R be
a ring with a quotient ring Q. Let / be an ideal of R and M a right or left R-module. We
define

<<?(/) = {c € R | c + / regular in R/I}

I* = {qeQ\qI<zR}

\MR\ = Krull dimension of MR

\RM\ = Krull dimension of RM

PI ring = a ring satisfying a polynomial identity

P(n) = the n-th symbolic power of P defined by Goldie [8]

RP = the ring of fractions formed when %(P) is an Ore set

pr(MR) = the reduced rank of MR

pt(RM) = the reduced rank of RM

R is said to be as local ring if R/J is a simple Artinian ring where J is the Jacobson
radical of R. When R is a prime right Noetherian ring and a prime ideal P satisfies the
right Ore condition with respect to ^(P), we may form the right localisation RP which is a
local ring with Jacobson radical PRP. Further, under two sided assumptions the left
localisation coincides with the right localisation. In this case we have PRP = RPP.

The ideal / is said to be left invertible if /*/ = /?, right invertible if llu = R and
invertible if 1*1-R = II**. When / is invertible it is easily seen that /* = /*.
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Let R be a ring with a simple Artinian quotient ring. Let / be a non-zero ideal of R.
The dual basis lemma [4, Proposition 3.1, pl32] shows that IR is projective if and only if
1 e //*. Similarly RI is projective if and only if 1 e / # / .

The ring R is said to be a maximal order if there is no larger order in Q equivalent to
R. A convenient characterisation is as follows: Let R be a prime Noetherian ring. Then R
is a maximal order if and only if for each non-zero ideal 1 of R and qeQ,IqcIz$>qeR
and ql ^I^qeR.

It is easily seen that the property /* = /* also holds in a maximal order.
A prime ideal P is said to have height 1 if P does not properly contain a chain of two

distinct prime ideals. By [11, Proposition 13.8.2] in a Noetherian prime PI ring every
non-zero prime ideal contains a height 1 prime.

R is said to be a Krull symmetric ring if for each /?-/?-bimodule M which is finitely
generated on both sides we have \RM\ = \MR\.

Let M be a module over a semi-prime right Noetherian ring R. We say that M is a
torsion module if given meM there exists c regular in R such that me = 0. The term
torsion-free is defined analogously.

Let P b e a prime ideal of a Noetherian ring R. The symbolic powers P(n) of P that we
require are those described by Goldie [8]. These have the property that

( ) ) for all n > l .

R is said to be a right unique factorisation ring (UFR) if every height 1 prime ideal of R is
principal as a right ideal.

Finally, where relevant, the absence of the adjectives right or left will imply that the
given condition is meant to hold on both sides.

3. The main theorem.

LEMMA 3.1. Let R be a Noetherian prime Krull symmetric ring. Let M be a bimodule
finitely generated on both sides. Then pr{M) = OOpi(Af) = 0.

Proof. Assume that px{M) = 0. Then RM is a torsion module so by [11, Proposition
6.3.11] we have

\RM\<\RR\. (i)

Suppose that pr(M) =£ 0. Then MR is not a torsion module. By factoring by the torsion
submodule of MR (and observing that this is a subbimodule) we may assume that MR

is torsion-free. Since R is prime, MR must be faithful. Now RM is finitely generated.
Let M = Rmx + . . . + Rmk where m,eM. The map R->M®...®M (k times)
given by r^*{mxr,. . . ,mkr) for reR shows that RR is isomorphic to a submodule of
(M © . . . © M)R. It follows that

\RR\ * \MR\. (ii)

(i) and (ii) conflict with the assumption of Krull symmetry. This contradiction shows that
Pr(M)=0.

LEMMA 3.2. Let I be an ideal of a Noetherian Krull symmetric ring R. Suppose that the
maximal nilpotent ideal N of R is a prime ideal.
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Proof. Suppose that p,(/) = 0.

Consider the chain I^inN^inN2s...^ir\Nk = 0. By addivity of the reduced
rank we have

P I ( / ) = I O P ' ( T ? ^ ^ ) -
Since the reduced rank is a non-negative integer and

/ / n N' \
p,(/) = 0 we have pA 1 = 0 for i = 0,. . . , k - 1.

Now each /+1 is an K/N-module (on both sides). So by Lemma 3.1

1=0 for / = 0,. . . , k - 1.

Since

it follows that pr(/) = 0.

PROPOSITION 3.3. Let P be a prime ideal of a Noetherian Krull symmetric ring. Then
for each n > 1 there exists dn e 9?(P) such that P(n)dn c P".

Proo/. By induction on n. Assume that />(n~"1)dB_, c P""1 where dn_, e <g(P). By [8,
§3 and 4] there exist c,de <g(P) such that cP(n)d c pp^"-x\ Hence

Let pr denote the reduced rank of right modules over the ring RIP" and let p, be the
analogous reduced rank on the left. Consider / = [P(n)ddn_xR + P"]/P" an ideal of R/P".
By (*) we have Pi(/) = 0. It follows by Lemma 3.2 that pr(/) = 0. Since / is finitely
generated as a left ideal it follows that P(n)dn c P" for some dn e

We note that every non-zero ideal of a prime PI ring contains a non-zero central
element [11, Theorem 13.6.4] and when such a ring is Noetherian it satisfies the symmetry
condition on Krull dimension required in Proposition 3.3, [10] or [11, Corollary 13.6.6
and Corollary 6.4.13].

LEMMA 3.4. Let P be a prime ideal of a prime Noetherian PI ring. Suppose that P is

right invertible. Then (i) f l P(n) = 0 and (ii) <<?(P) c <€(0).
n = l

00

Proof, (i) Suppose not. Then p) P(n) contains a non-zero central element—p say. By
n = \

Proposition 3.3 we have pcn e P" for some cn e ^(P). We shall show that p e P" for all
n ^ 1. Assume by induction that p e P"~l. Then p(P#)"~' c R. Now since pcn e P" we
have pc^P*)"'1 c P and so cnp(P#)""' c P. As cB e «(P) and p(P*)"~l <=R, we obtain
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p{P#)n-i
 £ P . Thus {Pu)n~xp<^P. Hence RpcP" which gives peP". So we have

00 00

0¥=p e (~) P" which is a contradiction since (~) P" = 0 by [6, Lemma 3.1].
n=l n=\

(ii) Follows from the above noting the property of symbolic powers that ^(P) =
<<g(P(n)) for all n.

A special case of our next theorem was proved in [6] for maximal ideals under an
extra hypothesis.

Recall that a pri (pli) ring R is a ring in which every right (left) ideal of R is
principal.

THEOREM 3.5. Let R be a prime Noetherian PI ring. Let P be a right invertible prime
ideal of R. Then P is localisable and the localised ring Rpis a pri and pli ring. In particular,
P has height 1.

Proof. Let a, c e R with c e ^(P). By Lemma 3.4 we have c e ^(0). Hence cR is an
essential right ideal and so by [1, Theorem 7] or [11, Corollary 13.2.9], cR contains a
non-zero ideal. Thus cR contains a non-zero central element. Let A be a maximal left
invertible ideal contained in cR. Suppose that Ac P. Since c e 'S(P) we have A c cP. So
we have AP# c.cPPtt= cR since P is right invertible. Now clearly APn cA and
PA*APU = PRP# = PPn = R. So AP* is left invertible. By the maximality of A we have
A=AP*. Therefore A*A=A*AP* and so R = P*. Hence P = PR = PP* = R. This is a
contradiction and so A^P. So we may select cleAnc€(P). Now aAcAccR.
Therefore we have aci = cal for some a}e R. Thus the right Ore condition is satisfied with
respect to ^(P) and so R is right localisable at P. By [3, Theorem A] R is also left
localisable at P.

Let 5 and J denote respectively the localised ring RP and its Jacobson radical
PRP = RPP. Since P is right invertible it is easy to see that / / * = 5 where / * is taken with
respect to the ring 5. Let a be a non-zero central element of 5. By [6, Lemma 3.1] we

CO

have (~) J" = 0. So there exists an integer k such that a eJk but a $Jk+l. Since aS cjk we
n = l

have aS(J*)k c 5. Clearly aS(J*)k is an ideal of 5. Suppose that fl5(7#)* c / . Then since a
is central we obtain aS c /* + 1 which is a contradiction. Thus aS(J**)k £J. Since S is a local
ring we must have aS(J**)k = S. Hence aS = Jk. It is clear now that J must be an invertible
ideal of S. It follows by [9, Proposition 1.3] that 5 is a pri and pli ring. It is standard to
show that J has height 1 in S and thus P has height 1 in R.

REMARK. If only the conclusion that P has height 1 is required then a proof
independent of localisation can be given.

4. Applications.

PROPOSITION 4.1. Let R be a Noetherian prime PI ring and let M be a maximal ideal of
R. Then

M is right invertible OM is left invertible (i)

M is a principal right idealOM is a principal left ideal. (ii)

Proof, (i) Suppose that M is right invertible. By Theorem 3.5 the ring RM exists and
is a pri and pli ring. The rest of the proof can proceed as in [6, Lemma 4.1].
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(ii) Follows from the above noting the equality of the left and the right inverses of M
(see the proof of Theorem 4.4).

REMARK. We have no information on the status of Proposition 4.1 when M is a
non-maximal prime ideal.

Our next application is a part of the joint work with A. Braun [2].

PROPOSITION 4.2. Let R be a Noetherian prime PI ring. Let M be a maximal ideal such
that MR is projective. Then M is either idempotent or invertible. In the latter case M has
height 1.

Proof. Since M is a maximal ideal and M c M*M c f i , we have either M*M = M or
M*M = R. Suppose that M*M = M. Since MR is projective we have by the dual basis
lemma 1 € MM*. Therefore M = 1M c MM*M = M2 and M is idempotent. Otherwise we
have M*M = R and then by Proposition 4.1 M is invertible.

In the next lemma the intersection is taken in Q the quotient ring of R.

LEMMA 4.3. Let R be a prime Noetherian PI ring. Suppose that R is a left UFR. Then
R = f)Rp where P runs over the height 1 prime ideals of R. Moreover each RP is a pri and
pli ring. In particular, R is a maximal order.

Proof. Let P be a height 1 prime. Since P is a principal left ideal with a regular
generator, P is a right invertible ideal. So by Theorem 3.5 the localisation RP exists and is
a pri and pli ring. Let q e DRP. Define X = {r e R \qr e R}. Then X is a right ideal of R.
Since R is a prime PI ring, by Posner's theorem [11, Theorem 13.6.5] q = ak"1 where
ae R and A lies in the centre of R. Thus X contains a non-zero ideal of R. Since R is a
prime Noetherian ring, every non-zero ideal of R contains a product of non-zero prime
ideals. Since every non-zero prime ideal of R contains a height 1 prime ideal, there exist
height 1 prime ideals Pu . . . , Pk such that P, . . . Pk c X. Thus qPt . . . P* c R. Since
q e RPk we have q = c~la for some a e R and c e <#(P). Thus aP, . . . Pk-xPk £ cR. Since
c e ^(Pk) it follows that aPt . . . Pk-xPk e cPk. Now Pk = Rpk for some pk e Pk since R is a
left UFR. Thus aPx . . . Pk-XRpkc.cRpk. Since R is a prime ring pk must be a regular
element. Therefore aPx . . . Pfe_1 c cR and so qPx . .. Pk_x <=. R. Proceeding in this way we
obtain q e R. Hence R = CiRP. Now RP being a pri and pli ring is a maximal order by [12,
Corollary 4.6] (or by the criterion mentioned in §2). As an arbitrary ideal of RP is of the
form IRP it is easily seen that R is also a maximal order.

THEOREM 4.4. Let R be a prime Noetherian PI ring. Then

R is a right UFR OR is a left UFR.

Proof. Suppose that R is a left UFR. Let P be a height 1 prime ideal of R. By
assumption P = Rp for some peP. Hence P**=p~lR. By Lemma 4.3 R is a maximal
order and so we have P*=p~xR. Thus p~lRPc.R and hence P^pR. It follows that
P=pR. Therefore R is a right UFR.

In the context of Proposition 4.1 it is interesting to note that in a ring, a maximal
ideal which is projective on one side need not be projective on the other, even when the
ring is prime and a finitely generated module over its Noetherian centre.
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EXAMPLE 4.5. Consider

R = \k[x'y]

lk[x,y] k[x
where A: is a field and (x, y) is the ideal generated by x and y. Then R is a prime ring and
a finite module over its centre which is isomorphic to A:[JC,_V]. The two maximal ideals

M re*,?) c*,y)
Lfc[x,.y] k[x,

and

(*,y)l
k[x,y]\

by x a
to k[

, y ) l

-k[x,y] (x,
are projective on one side but not the other. Noting that (x, y) is not an invertible ideal of
the domain £[*,>>] we have

.,* \k[x,y] (x,y)l # \k[x,y] k[x,y]l
M =[k[x,y] k[x,y}\ a n d M = lk[x,y] k[x,y]l

It is easily seen that 1 e M**M but 1 $ MM*. Thus M is left projective but not right
projective. Now R is obtained as an idealizer at a semi-maximal right ideal of the full
2 x 2 matrix ring. So by [13, Theorem 2.8] R is a ring of global dimension 2. It follows
that MR has projective dimension 1.

It is easy to see that the ring considered in the above example is not a maximal order.
Indeed, in this case, we can prove the following.

THEOREM 4.6. Let R be a Noetherian prime PI ring which is a maximal order. Let I be
a ideal of R. Then lR projectiveORl projective. Consequently, if either condition holds
then I is an invertible ideal.

Proof. Assume that lR is projective. Then I ell*. Since R is a maximal order
/* = /*. This implies that //* is an ideal of R and so //* = R. Thus / is right invertible.
Note that for each m>\ we have (l*)mlmcR. Moreover [(l*)mrf =
[(I*)mr][(l*)mlm] = (l*)mRlm = (l*)mlm. Thus each (I*)mr is an idempotent ideal of R.
By [14, Theorem 3] R has only a finite number of idempotent ideals. Thus there exist two
integers n and k with k>0 such that (/•)«/» = (/•)»+*/»+* Therefore /"(/•)"/"(/•)" =
/»(/•)»+*/»+*(/•)». Hence R = R(l*)klkR. Thus (/•)*/* = R. It follows easily from this
that / is left invertible and left projective.

REMARKS. It is possible to give a 'first principles' proof of Theorem 3.5 without
reference to Goldie's symbolic powers. The key step is to observe that under the
hypothesis of Lemma 3.2, R has the Ore condition with respect to ^(N). This is proved
by induction on the index of nilpotency of N. The induction hypothesis shows that
T = {x e R | xc = 0 for some c e ^(N)} is an ideal of R. Now pr(T) = 0 and so pi(T) = 0.
Thus for any d e <€(N) we have p{[l{d)] = 0 giving p^R/Rd) = 0. The left Ore condition
with respect to ^(N) now follows.

Finally we note that the symmetry hypothesis on the Krull dimension can be replaced
by a function with similar formal properties.

https://doi.org/10.1017/S0017089500008909 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008909


ONE SIDED INVERTIBILITY AND LOCALISATION 339

NOTE ADDED IN PROOF. We have been able to extend Theorem 3.5 to the case in
which R is a semi-prime ring.
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