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Estimation of Subject-Specific Heritabilities
From Intra-Individual Variation: iFACE
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A new genetic factor model for multivariate phenotypic time series, iFACE, is presented which allows for
the estimation of subject-specific model parameters of genetic and environmental factors. The iFACE was
applied to multivariate EEG registrations obtained with single dizygotic twin pairs. The results showed
evidence for considerable subject-specificity in heritabilities and environmental effects. The assumption
that the population is homogeneous (i.e., that each case in the population obeys the same parametric
model), does not hold for these psychophysiological data, and its use should be critically reconsidered. We
conclude that the iFACE provides a powerful new methodology to assess heterogeneity (subject-specificity)
based on phenotypic observations.
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Quantitative genetic analysis primarily concerns the anal-
ysis of inter-individual variation. A random sample of ge-
netically informative cases (e.g., twin pairs) is drawn from
a population of interest. Subsequently, the phenotypic vari-
ation between these sampled cases is used to infer the true
state of affairs in the population (generalization from sam-
ple to population). But this use of inter-individual variation
is based on the assumption that the population is homoge-
neous, in particular that each case in the population obeys
the same parametric model. Most quantitative genetic mod-
eling makes this assumption (but see Purcell, 2002, for a
notable exception to this rule). For instance, in the sem-
inal paper on multivariate genetic factor analysis (Martin
& Eaves, 1977), the factor loadings and residual variances
(including measurement error variances) in the genetic fac-
tor model are assumed to be invariant across cases in the
population of interest (or subpopulation of interest, in case
there are, for instance, sex differences). In what follows this
will be referred to as the homogeneity assumption.

Apart from mixture modeling, where it is assumed that
there exists a strictly finite number of homogeneous sub-
populations capturing only a limited aspect of heterogene-
ity, it is not often tested whether the homogeneity assump-
tion holds or is violated. Yet the a priori feasibility of the
homogeneity assumption would seem to be questionable
for a variety of mathematical, biological, and statistical rea-

sons. In Molenaar et al. (1993) it is argued that nonlinear
epigenesis of neural growth yields inter-individual differ-
ences in cortical network architecture that are not due to
genetic or environmental influences, but are an inevitable
outcome of the self-organizing epigenetic processes con-
cerned (cf. also Kan et al., 2010; McLachlan, 1999; Molenaar
2007; Molenaar & Raijmakers, 1999). A review of inbreed-
ing studies presented in Molenaar et al. (1993) indicates
that the amount of inter-individual variation due to devel-
opmental noise (e.g., Jablonka, 2011), can be substantial. It
is indeed a common finding in brain imaging studies that
neural network structures show large inter-individual vari-
ation (e.g., Hillary et al., 2011; Miller & van Horn, 2007;
Miller et al., 2002; Sporns, 2010; but see van Beijsterveldt
et al., 1998b, for high monozygotic intercorrelation of EEG
coherence).

From these brain-imaging results it could be expected
that the observed heterogeneous cortical organization gives
rise to structural variation between subjects in cognitive
information processing, and thus poor fit of models that

RECEIVED 17 November 2011; ACCEPTED 20 March 2012.

ADDRESS FOR CORRESPONDENCE: Dirk J. A. Smit, Biological Psy-
chology, VU University, van der Boechorststraat 1, 1081 BT,
Amsterdam, The Netherlands. E-mail: d.j.a.smit@vu.nl.

393

https://doi.org/10.1017/thg.2012.9 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2012.9


Peter C. M. Molenaar et al.

assume homogeneity. Yet it is commonly found that mod-
els having invariant parameters yield good fits to the data.
This, however, may be explained by the findings from a
series of simulation studies (Molenaar, 2007) that factor
analysis of inter-individual variation is insensitive to the
presence of widespread variation. In this report, data were
simulated by means of subject-specific factor models (each
subject having unique factor loadings and measurement
error variances). Yet, despite this maximum violation of
the homogeneity assumption underlying analysis of inter-
individual variation, standard factor analysis of this sim-
ulated data, made with the assumption of homogeneity,
yielded excellently fitting models. This result was obtained
for cross-sectional, longitudinal, and genetic factor models
(reviewed in Molenaar, 2007). Moreover, the insensitivity
of factor analysis of inter-individual variation to violations
of the homogeneity assumption was proved analytically in
Kelderman & Molenaar (2007).

The prime method of identifying violations of the homo-
geneity assumption is analysis of intra-individual variation
(i.e., replicated time-series analysis; Hamaker et al., 2005).
In what follows, whether the two members of a single dizy-
gotic (DZ) twin pair obey the same genetic factor model will
be tested by means of time-series analysis of intra-individual
variation. The label ‘iFACE’ (Molenaar, 2010; Nesselroade
& Molenaar, 2010) is a combination of the idiographic fil-
ter (IF) introduced in Nesselroade et al. (2007), and the
ACE acronym for additive, common, and specific environ-
mental factors. The IF allows factor loadings for different
subjects to be subject-specific, while defining equivalence of
factors across subjects by constraining factor intercorrela-
tions to be invariant across subjects. iFACE (defined below)
is a generalization of the longitudinal genetic factor model
(LGFM), allowing for subject-specific factor loadings and
residual variances. The subject-specificity of model param-
eters in the iFACE is unrestricted, in contrast to approaches
in which such subject-specificity depends upon measured
moderators (Purcell, 2002). The iFACE enables a direct test
of the homogeneity assumption. In the empirical illustra-
tion presented below, it will be fitted to multi-lead event-
related brain potential data.

The Model
The iFACE model used to estimate subject-specific heri-
tabilities from a multivariate time series obtained with a
single DZ twin pair is a straightforward generalization of
the standard LGFM for the analysis of inter-individual vari-
ation. That is, the overall structure of iFACE and LGFM is
the same. In particular, the additive, common and specific
environmental factors obtain their identity/interpretation
in the same way, namely through their respective patterns
of correlations among the two members of a DZ twin pair.
The main difference between the iFACE and the LGFM
is the following. In the LGFM the matrix of factor load-

ings and the covariance matrix of residuals is (a) invariant
across DZ twin pairs, and (b) invariant across the members
of each twin pair (see Neale et al., 2006, for moderation
of these model parameters). In contrast, in the iFACE, the
matrix of factor loadings is subject-specific in that it is not
constrained to be equal for the two members of the given
single DZ twin pair. Because the phenotypic data of only
a single DZ twin pair are analyzed, the homogeneity as-
sumption across twin pairs also does not apply. The iFACE
model combines the idiographic filter (IF) introduced in
Nesselroade et al. (2007), and the ACE model that includes
additive, common, and specific environmental (latent) fac-
tors. The identity/interpretation of factors in the IF is not
based on the pattern of factor loadings (as is the general ap-
proach in factor analysis), but instead is based on the pattern
of intercorrelations among factors. Hence, in applications
of the IF, the matrix of factor loadings is not constrained to
be invariant across cases, as it is in the iFACE.

The formal specification of iFACE for a p-variate vec-
tor of phenotypic values measured at T equidistant time
points is as follows. Let y(t)jm be the m-th phenotypic value
(m = 1,. . .,p) obtained for the j-th member (j = 1,2) at
time t (t = 1,. . .,T); let A(t)j, C(t)j and E(t)j denote, re-
spectively, the additive (A), common environmental (C),
and specific environmental (E), common factor for the j-th
member at time t; and let e(t)jm be the m-th residual for
the j-th member at time t. It is assumed that residuals obey
the conditional independence assumption in that, for all
times t = 1,. . .,T, e(t)jm and e(t)jn are uncorrelated among
the two members for all m,n = 1,. . .,p, and are uncorrelated
within each member for m �= n. Note that this allows for the
possibility that for each member j ∈ {1,2} each univariate
residual process e(t)jm, m = 1,. . .,p, has arbitrary sequential
dependencies.

It is assumed that all time series in the iFACE model (i.e.,
y(t)jm, A(t)j, C(t)j, E(t)j, e(t)jm) are weakly stationary. Weak
stationarity of a univariate time series implies that its mean
level is a constant (which will be fixed at zero, hence each
time series in the iFACE model is assumed to be centered),
and that its covariance function (the standard measure of
sequential dependencies), depends only upon the relative
distance (lag) between time points. In particular, the co-
variance function of e(t)jm, the univariate residual process
associated with the m-th phenotype of the j-th member, is
defined as ce(u)jm = cov[e(t)jm, e(t-u)jm], where u denotes
the lag (relative time difference). In general ce(u)jm will be
nonzero for u = 0, ±1, . . .

With these definitions in place, the iFACE can be defined
as:

y(t)jm = αjmA(t)j + δjmC(t)j + ϕjmE(t)j + e(t)jm,

A(t)j = βjA(t − 1)j + ζ(t)j,

C(t)j = γjC(t − 1)j + ξ(t)j,

E(t)j = νjE(t − 1)j + χ(t)j.
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Note that the additive genetic (αjm), common environ-
mental (δjm) and specific environmental (ϕjm) factor load-
ings are subject-specific in that they depend upon j and
hence are allowed to differ between the two members of the
DZ twin pair. The final three equations describe the time
evolution of, respectively, the additive genetic, common en-
vironmental, and specific environmental, factor scores. This
time evolution is modeled as a first-order autoregression,
where the autoregressive coefficients (βj, γj, νj) again are
allowed to be subject-specific.

The so-called innovations processes ζ(t)j, ξ(t)j and χ(t)j

lack any sequential dependencies. Moreover, they are mu-
tually uncorrelated: cov[ζ(t)j, ξ(t)j] = cov[ζ(t)j, χ(t)j] =
cov[χ(t)j, ξ(t)j] = 0. The innovation processes associated
with the common environmental factor score evolution of
twin 1 and 2 are the same: cov[ξ(t)1, ξ(t)2] = 1. Conse-
quently, γ1 = γ2. The innovation processes associated with
the specific environmental factor score evolution of twin 1
and 2 are uncorrelated: cov[χ(t)1, χ(t)2] = 0.

The covariance function of the innovations processes as-
sociated with the additive genetic factor scores of twin 1 and
2 is estimated: cov[ζ(t)1, ζ(t)2] = σζ. This is because, for a
given DZ twin pair, the additive genetic correlation is un-
known; it is known only that the average of this correlation
across all DZ twin pairs in the population is .5 (Visscher
et al., 2007).

The description of the evolution of the additive genetic,
common, and specific environmental factor scores by first-
order autoregressions can be replaced by autoregressions of
arbitrary order. The latter, more general, version of iFACE
has been subjected to an alpha-numerical test of parameter
identifiability. That is, the dimension of the null space of the
first-order derivatives of the model with respect to the free
parameters was determined (cf. Bekker et al., 1994), and
found to be zero. The test is based on the block-Toeplitz co-
variance matrix associated with iFACE (see explanation in
next section). The Maple session concerned is documented
as appendix S1. Hence the general version of iFACE, and
therefore also the more specific version described above, is
structurally identifiable. In particular, the covariance func-
tion of the innovations process associated with the additive
genetic factor series of twin 1 and 2 (i.e., β1, β2 and σζ) is
structurally identifiable.

An Illustrative Application to Real Data
The iFACE model requires longitudinal datasets with many
repeated observations measured in DZ twin pairs. There-
fore, we chose to analyze data from electrophysiological
time series.

The participants were selected from a large dataset of
EEG recordings in twins and additional siblings. The par-
ticipant description and experimental setup are more fully
described elsewhere (van Beijsterveldt et al., 1998a; Smit
et al., 2007). The final set consisted of two complete DZ

twin pairs who were randomly selected from the subset of
participants with high quality data (all electrodes provided
good signal), with ages between 20 and 30. These subjects
were one male DZ twin pair age 27, and one female DZ twin
pair age 29. The experiment was approved by the Medical
Ethics Committee of the VU Medical Center. All subjects
gave written informed consent.

EEG was measured during a so-called oddball task, in
which an infrequent (20%) target stimulus is presented
amongst frequent nontarget stimuli (80%). The stimuli
were white-on-black line drawings of cats and dogs. The
dog stimuli were shown frequently (100/125) and were the
nontargets. The cat stimuli were shown only infrequently
(25/125) and were the targets. Dog and cat stimuli were pre-
sented in an unpredictable order, and trial duration varied
randomly from 1500 to 2000 ms. Stimulus duration was 100
ms. Subjects were instructed to silently count the number
of targets (cats) shown on the computer screen positioned
80 cm in front of them.

The EEG was recorded with tin electrodes in an Elec-
troCap connected to a Nihon Kohden PV-441A polygraph
with time constant 5 s (corresponding to a 0.03 Hz high-
pass filter), and lowpass of 35 Hz, digitized at 250 Hz using
an in-house built 12-bit A/D converter board, and stored for
offline analysis. Leads were Fp1, Fp2, F7, F3, F4, F8, C3, C4,
T5, P3, P4, T6, O1, O2, and bipolar horizontal and vertical
EOG derivations. Electrode impedances were kept below 5
k�. Following the recommendation by Pivik et al. (1991),
tin earlobe electrodes (A1, A2) were fed to separate high-
impedance amplifiers, after which the electrically linked
output signals served as reference to the EEG signals. Sine
waves of 100 μV were used for calibration of the amplifica-
tion/AD conversion before measurement of each subject.

Standard data cleaning procedures were maintained, and
eye-blink artifacts were removed using Independent Com-
ponents Analysis (Jung et al., 2000). The total multi-lead
EEG data set of the twin pair consists of 19 replications of
the brain response to the rare stimulus measured during
1024 ms post-stimulus, amounting to 256 observations per
replication per person. The event-related potential (ERP)
brain responses to these rare stimuli at a representative pari-
etal location are shown in Figure 1 for both DZ twin pairs.

In the first analysis, only the data of the four leads de-
picted in Figure 2A (Cz, Pz, T5 and T6) are analyzed. Hence
p = 4 in the iFACE defined above. These leads correspond
to the topography of the main brain response to rare stim-
uli in an oddball task. A subset of four leads was chosen
in order to ease the model fit. Model fits were carried out
by means of the block-Toeplitz covariance matrix method
described in Molenaar (1985). Let Cy(u) denote the (p,p)-
dimensional covariance matrix of the p-variate phenotypic
series y(t) at lag u, where u ∈ {0, ±1, ±2, . . .} (boldface low-
ercase and uppercase letters denote, respectively, column
vectors and matrices). That is, Cy(u) = cov[y(t), y(t−u)T],
where the superscript T denotes transposition. Notice that
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FIGURE 1

ERP waves of dizygous twin pair A (top) and dizygous twin pair B (bottom) for representative parietal leads. Grey area indicates standard
error based on trial-to-trial variation.

A B

FIGURE 2

Selected electrode locations in the first (A) and second (B) applications of iFACE.

Cy(−u) = Cy(u) T. For a finite maximum lag U define
the (pU+p, pU+p)-dimensional block-Toeplitz covariance
matrix Cy associated with y(t) as having Cy(k-m) as its
(k,m)-th block, k,m = 0, ±1,. . ., ±U. The block-Toeplitz
covariance estimates were calculated for each of the repli-
cations. Table 1 presents the results of applying the block-

Toeplitz method to simulated data, corroborating its fidelity
in that the simple 95% confidence interval around each
parameter estimate includes its true value. The iFACE is
rewritten as a factor model involving extended patterned
parameter matrices, with patterns and dimensions that
are conformable with the block-Toeplitz pattern of Cy.
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TABLE 1

Results of the Analysis of Simulated Event-Related Potential Data

α1m δ1m ϕ1m

true observed true observed true observed

Twin 1
y1 .1 .20 (.08) .3 .22 (.03) .6 .59 (.03)
y2 .7 .73 (.08) .1 .00(.05) .2 .05 (.09)
y3 .2 .30 (.07) .2 .13 (.03) .6 .57 (.04)
y4 .1 .20 (.09) .1 .06 (.03) .8 .76 (.03)

β1 γ 1 ν1

.9 .88 (.06) .9 .82 (.09) .9 .86 (.03)

Twin 2 α2m δ2m ϕ2m

y1 .1 .22 (.08) .5 .47 (.05) .4 .36 (.05)
y2 .1 .23 (.08) .4 .38 (.05) .5 .48 (.05)
y3 .1 .14 (.07) .1 .11 (.07) .8 .78 (.03)
y4 .4 .39 (.07) .1 −.02 (.07) .5 .48 (.05)

β2 γ 2 ν2

.9 .97 (.13) .9 .82 (.09) .9 .88 (.04)

Note: A set of 10 replications of 4-variate phenotypic time series, each of
length 256, have been simulated according to the iFACE model for
a single dizygotic twin pair. The true model parameters have values
resembling those in Table 2, except that the measurement error
series are white noise series having unit variance. To enable direct
comparison between true and estimated parameter values, the model
was fitted to the average block-Toeplitz covariance matrix pooled
across replications. The Lisrel code is presented in appendix S2.
Each entry specifies the true value, its estimate and standard error
within parentheses. The true additive genetic correlation is σ = .5; its
estimate is .56 (.10). The likelihood ratio is 41.52 (df = 97).

Standard SEM software (Jöreskog & Sörbom, 1992) is used
to fit the iFACE to Cy (viz., the average of the block-Toeplitz
covariance estimations across replications) by means of
the quasi-maximum likelihood method. In the present
applications, as well as in the Maple session reported in
Appendix S1, U = 1, which is the minimum value neces-
sary to identify the iFACE. The Lisrel source code used in
fitting the iFACE to the empirical and simulated data is
specified in Appendix S2.

Results
The results of fitting the iFACE to the empirical event-
related brain potential data of the four leads depicted in
Figure 2A are presented in Table 2. In the second analysis,
only the data of the four leads depicted in Figure 2B (C3,
C4, P3 and P4) are analyzed. These leads also correspond to
the topography of the main brain response to rare stimuli
in an oddball task. The results are presented in Table 3. In
both analyses the autoregressive coefficients in the iFACE
are about .9, with standard errors smaller than .11.

The results presented in Tables 2 and 3 were obtained
as follows. The final column shows for each twin and each
phenotype the proportion of the total phenotypic variance
(normalized at 1.0) explained by the residual processes
e(t)jm. For instance, for Twin 1, a proportion of .703 of
the phenotypic variance at Cz is explained by e(t)11. The
remaining proportion, which can be referred to as the com-
monality, is explained by the additive genetic, common and
specific environmental factors. Hence for this twin a pro-

TABLE 2

Variance Components Obtained in the First Application of iFACE
to Event-Related Potentials of Medial and Lateral-Temporal EEG
Leads of a Single Dizygotic Twin Pair

Model parameter

Lead α1m
2 δ1m

2 ϕ1m
2 e(t)1m

2

Twin 1
Cz 0 .016 .980 .703
Pz .736 .039 .226 .063
T5 .285 .005 .710 .052
T6 .022 0 .977 0
Twin 2
Cz .045 .492 .463 .779
Pz .048 .400 .551 .471
T5 .002 .018 .981 .041
T6 .109 .138 .753 .062

Note: The estimated genetic correlation for the dizygotic twin pair cor[A(t)1,
A(t)2] = .40. The phenotypic variance at each EEG electrode
location was standardized at 1.0. The final column e(t).m2 gives the
contribution of the residual process at each electrode location. The
decompositions of the communal part at each electrode location is
(1.0 – e(t).m2) and is given in the first three columns as proportions of
the communal parts.

portion of .297 of the phenotypic variance at Cz is explained
by these three factors together. The first three columns break
down the contribution of each factor to the explanation of
the commonalities.

Taking notice of the magnitudes of the commonalities,
it appears that for Twin 1, the intra-individual heritability
of Pz is high (see Table 2), while for Twin 2, heritabilities
are high for P3 and P4 (see Table 3). The effects of common
environment are high for leads neighboring the ones with
high intra-individual heritability (P3 and P4 for Twin 1;
Pz for Twin 2). These results are summarized in Figure 3
for twins 1 and 2. The estimated correlation between the
additive genetic factors for this DZ twin pair is about the

TABLE 3

Variance Components Obtained in the Second Application of
iFACE to Event-Related Potentials of Central and Parietal EEG
Leads of a Single Dizygotic Twin Pair

model parameter

lead α1m
2 δ1m

2 ϕ1m
2 e(t)1m

2

Twin 1
C3 .019 .532 .449 .743
P3 .187 .749 .063 .013
C4 .186 .508 .305 .009
P4 .151 .828 .021 .321
Twin 2
C3 .159 .007 .834 .092
P3 .450 .008 .543 .173
C4 .842 .094 .065 .846
P4 .456 .007 .538 .262

Note: The estimated genetic correlation for the dizygous twin pair cor[A(t)1,
A(t)2] = .37. The phenotypic variance at each EEG electrode
location was standardized at 1.0. The final column e(t).m2 gives the
contribution of the residual process at each electrode location. The
decompositions of the communal part at each electrode location is
(1.0 – e(t).m2) and is given in the first three columns as proportions of
the communal parts.
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FIGURE 3

Topographic plots of the main results of iFACE applications for Twin 1 (top) and Twin 2 (bottom).

same for both sets of phenotypes (.40 and .37; see Tables 2A
and 2B).

Discussion
Clearly, in this illustrative application, the homogeneity as-
sumption is shown not to hold. The patterns of factor load-
ings for Twin 1 and Twin 2 differ substantially in both
analyses. Similar results have been obtained with the anal-
yses of other DZ twin pairs. These analyses are in progress
and will be reported in a future publication.

The analysis presented here appears to be the first of its
kind in the published literature. The results obtained should
be considered to be preliminary in several respects. For in-
stance, it is well known that multi-lead EEG is vulnerable to
volume conduction effects (i.e., instantaneous conduction
of the activity of each neural source throughout the brain; cf.
Nunez & Srinivasan, 2005). Volume conduction effects can
be accommodated by various approaches such as basing the

analysis on the current density field (the second-order spa-
tial derivative or Laplacian of the observed potential field;
cf. Nunez & Srinivasan, 2005), or fitting elementary bio-
physical neural source models (e.g., Grasman et al., 2005).
Also, the analysis could be applied to selected components
(e.g., P300) underlying the observed event-related poten-
tials (cf. Regan, 1989). Please note that these qualifications
only pertain to the particular field of application, but do
not involve the iFACE itself.

The iFACE model can be further developed in several
ways. The model fit can be carried out rather straightfor-
wardly in the frequency domain, using the general approach
presented in Molenaar (1987). Also, generalizations of the
iFACE can be considered, in which factor loadings are time-
varying (cf. Molenaar et al., 2009), although this requires
much more complex estimation techniques.

In conclusion, the iFACE (an integration of the idio-
graphic filter and the longitudinal genetic factor model)
constitutes a straightforward generalization of the standard
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LGFM of inter-individual variation. The formal equiva-
lence of the iFACE and the LGFM implies equivalent formal
definitions of the additive genetic, common environmen-
tal, and specific environmental factors in both models. In
which way this equivalence also extends to the interpre-
tation of these factors in the iFACE will be an important
topic for future research. Presently, the main conclusion
is that the iFACE provides a powerful new methodology
to assess heterogeneity (subject-specificity). If the homo-
geneity assumption underlying standard behavior genetic
analysis of inter-individual variation is thus found to be
violated, its use should be critically reconsidered. We do
not foresee that iFACE could provide a subject selection
on an effective basis for, for example, genome-wide as-
sociation studies. However, it is expected that the iFACE
will help achieve a better understanding of the relation-
ships between genetic influences and phenotypes medi-
ated by subject-specific physiological and brain systems.
This, in turn, would help foster a re-emphasis on the fun-
damental unit of analysis for studying behavior — the
individual.
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