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TAX PROBLEMS IN THE
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Abstract

The aim of this paper is to evaluate the performance of the optimal policy (the Gittins
index policy) for open tax problems of the type considered by Klimov in the undiscounted
limit. In this limit, the state-dependent part of the cost is linear in the state occupation
numbers for the multi-armed bandit, but is quadratic for the tax problem. The discussion
of the passage to the limit for the tax problem is believed to be largely new; the principal
novelty is our evaluation of the matrix of the quadratic form. These results are confirmed
by a dynamic programming analysis, which also suggests how the optimal policy should
be modified when resources can be freely deployed only within workstations, rather than
system-wide.
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1. Introduction

The title of this paper does not refer to the levy imposed by the state upon its grateful citizens,
but rather to the problem of optimal scheduling in the case when all work stored in a system
continues to incur cost until it is cleared. This is a variant of the classic multi-armed bandit
problem, although it demonstrates a distinctly different structure. However, we begin with a
discussion of the multi-armed bandit problem in order to set the scene and to prepare for the
passage to the undiscounted version, which shows special simplifications in both cases.

In the literature since about 1980, the multi-armed bandit problem has been seen as one
of choosing in which one of a number of ‘projects’ to engage, on the basis of the ‘states’ of
the projects currently available. However, the tax problem is typically concerned with the
scheduling of manufacturing processes, and so we shall speak rather of ‘items’ to be chosen
for processing. For the same reason, we consider the open version of the problem, in which
there is an inflow of new items to the system, balanced (if the system is not overloaded) by
the discharge of completed items. In the multi-armed bandit case, the inflow is balanced by
the effective discharge of items that have reached a state which makes further work on them
unprofitable.

The papers by Klimov (1974), (1978) on time-sharing systems (essentially the tax problem)
are now classic. Klimov considered the undiscounted version of the problem with a general
distribution of processing times, proved optimality of an index policy, and found recursions
for evaluation of the indices. However, this determination of the indices was far from explicit,
and there was no evaluation of performance (i.e. average cost per unit time). Gittins’ equally
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classic solution of the multi-armed bandit problem (see Gittins (1979), (1989)) was given a
dynamic programming treatment by Whittle (1980), (1981) which did evaluate performance,
in that it gave explicit formulae for the value function (the minimal expected discounted future
cost, conditional on current state occupation numbers). Varaiya et al. (1985) linked the tax
and bandit problems and indicated how results could be extended to non-Markov models. Lai
and Ying (1988) considered the determination of the Gittins indices for the tax problem in
the undiscounted limit. However, neither of these last two sets of authors considered actual
performance, once optimality had been established, and the topic seems to have attracted little
attention since. In fact, it raises novel issues reflecting the very different characters of the bandit
and tax problems.

In this paper, we address the evaluation of value functions, which in the undiscounted limit
will mean the determination of minimal average cost and minimal differential cost. We assume
Markov models and use a dynamic programming treatment, which leads to an analysis as
compact and explicit as the subject allows, and suggests conjectures which can then be tested by
other means. The Markov formulation given here forces a restriction to exponentially distributed
processing times and scarcely distinguishes between a preemptive and nonpreemptive operation.
These are limitations which could be removed by the assumption of passage through Markov
substates during a given processing step. However, to follow that path now would obscure the
line of the paper.

The treatment of the next two sections is formal, the aim being to see the argument and the
further advances latent in it. The solutions thus suggested are confirmed by direct analysis in
Sections 4 and 5.

The passage to the undiscounted case has a remarkably simplifying effect, and it is worth-
while to consider the implications of this move before beginning the analysis. Suppose that we
have a ‘closed’ version of the multi-armed bandit problem, in that we consider the allocation
of processing effort over a fixed number N of statistically identical items. Suppose that all
items (states) are communicating. Then the average reward is independent of the policy – it
will be equal to the minimal value of the Gittins index no matter what policy we follow. (The
policy will, however, affect the differential reward, i.e. the difference in expected total reward
if we start from a given state rather than from some standardized initial condition.) If there
are several distinct (non-communicating) classes of item then ultimately we will process only
items for which this minimal (over states) index is maximal.

The analogous tax case would concern the processing ofN given items that must pass through
various stages of manufacture before processing is complete, when the items effectively leave
the system and are henceforth costless. In this case, the average cost is zero, but the total cost
will certainly depend upon the order in which items are processed. This is because an item
incurs a cost, which is in general state dependent, as long as it is present in the system.

If we now consider an open multi-armed bandit problem, in which new items are entering the
system and items which are insufficiently rewarding can effectively be shelved, then average-
optimality of policy does demand that we process only those items whose Gittins index is not
less than some critical value ν, which in fact equals the average reward. The order in which we
process items is immaterial as long as items whose index exceeds ν are present. If there are no
such items, then we must work on an item whose index equals ν, of which an infinite number
will have accumulated.

In the tax case, we do not have the option of shelving an item: all items whose processing is
incomplete incur a cost. The system must then satisfy a traffic stability condition, namely that it
have the resources to complete items at a rate greater than that at which they arrive. Even under
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the mild demand of average-optimality, the order of processing is critical and its optimization
nontrivial, although much eased by the absence of discounting.

2. Generalities on the multi-armed bandit

We assume that items can take states j = 1, 2, . . . , J , plus an additional state 0, corre-
sponding to completion and passage out of the system, in which no further cost is incurred or
action required. Suppose that at a given time there are are nj items in state j in the system
(j �= 0). We shall assume Markov rules which ensure that the J -vector n = {nj } is indeed the
Markov state of the system. Let ej be a J -vector with component one in the j th place and zeros
elsewhere. Then the transition in which an item of state j changes to state k corresponds to a
transition n → n − ej + ek; we shall suppose that this has probability intensity pµjk if p is
the rate of effort in the processing of the item. The arrival of a new item of state j corresponds
to a transition n → n+ ej , which we shall suppose has transition intensity λj .

For notation simplicity, we assume that all items follow the same transition rules. This incurs
no loss of generality: the occurrence of distinct classes of item will correspond to the presence
of non-communicating classes of states under the prescribed transition rates.

First consider a system in which unit processing effort is available, the processing of an item
in state j yields rewards at rate rj per unit time, and the aim is to allocate processing in such a
way as to maximize the expected discounted future reward over an infinite horizon. LetF(n) be
the value function, i.e. the maximal expected value of this discounted future reward, conditional
on the current valuen of the system state. ThenF will obey the dynamic programming equation

max
j
(rj − αF +�jF +�0F) = 0, (1)

where
�jF =

∑
k

µjk(F (n− ej + ek)− F(n)),

�0F =
∑
k

λk(F (n+ ek)− F(n)),
(2)

and α is the continuous-time interest rate.
Let us write (1) as maxj �jF = 0. Then there is interest in considering the more general

equation
max

(
max
j
�jF,M − F

) = 0, (3)

where M is a prescribed positive constant. The implication of (3) is that, in addition to the
option of choosing one of the items for processing, we have the option of drawing a lump
reward M and ceasing operations. This embedding of the problem was the key step in Gittins’
argument. We shall speak of this stopping option as resignation and shall write the solution of
(3) as F(n,M). Suppose that there is an upper bound R on the value of the total discounted
reward, and that the value ofM is such that resignation in a finite time is certain. It was shown
in Whittle (1981) that the solution of (3) can then be written

F(n,M) = R −
∫ R

M

∏
j

(
dφj (m)

dm

)nj
dm. (4)

Here, φj (M) = F(ej ,M), which then obeys the equation

max(�jF (ej ,M),M − F(ej ,M)) = 0. (5)
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Equations (4) and (5) determine the φj in principle, and so determine F(n,M). Furthermore,
the valueMj ofM for which the two options in (5) are equally attractive determines the Gittins
index: if processing continues then it is optimal to process an item present which is of highest
index.

Now consider the case of small α, preparatory to considering the undiscounted case. We
shall choose M = ν/α, so that the terminal reward is equivalent to a fixed income of ν in the
indefinite future. Then φj (M) ≥ M = ν/α, the difference being extra rewards earned before
resignation. We then conjecture that, for small α,

φj

(
ν

α

)
= ν

α
+ ψj (ν)+ o(1). (6)

Here, ψj (ν) is nonnegative and is zero for ν ≥ νj , where νj is the index value of retirement
income corresponding to Mj (in future, we shall use this version of the index). By inserting
(6) into (4), we find that

F

(
n,
ν

α

)
= R − α−1

∫ αR

ν

∏
j

(
1 + α

dψj (σ )

dσ
+ o(α)

)nj
dσ

= R − α−1
∫ αR

ν

∏
j

(
1 + α

∑
j

nj
dψj (σ )

dσ
+ o(α)

)
dσ

= ν

α
+

∑
j

ψj (ν)nj + o(1). (7)

This is the great simplification of the undiscounted case: the value function F is linear in n.
Inserting (7) back into (5), and taking the limit as α → 0, we find the set of relations

max

(
rj − ν +

∑
k

µjk(ψk − ψj )+
∑
k

λkψk,−ψj
)

= 0, (8)

where the argument ν of theψj is understood. Relation (8) determines theψj (ν), and the value
of ν at which state j is on the decision boundary (of resignation or continuation) is the Gittins
index νj . A direct proof of this assertion is immediate.

Theorem 1. Assume, for notational convenience, that the states j are numbered in order of
decreasing index νj , and suppose that, under operation of the index policy (which is known
to be optimal), all items in states j < h and some items in state h are chosen for processing.
Then, under optimal operation, the average reward is νh and the differential reward ψ(n) =
F(n)− F(0) has the form

ψ(n) =
∑
j

ψj (νh)nj .

Proof. Suppose that, under the index rule, the average cost is γ and the differential cost
takes the linear form

ψ(n) =
∑
j

fjnj , (9)

for some coefficients fj . Since nj will in the course of time become infinite for j ≥ h, we
must have fj = 0 in this range. The dynamic programming equation for operation of the index
policy in the undiscounted case is

γ = rj +�jψ +�0ψ, (10)
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where j (a function of n) is the state of the item of maximal index which is present in the
system. If we assume the linear form (9), then (10) becomes,

γ = rj +
∑
k

µjk(fk − fj )+
∑
k

λkfk, j ≤ h,

with fj = 0 for the remaining values of j . However, in this system we recognise (8) with the
identifications γ = νh and fj = ψj (νh).

The occurrence of an effective cutoff at state h is something that also manifests itself in the
discounted case. For the situation of (3), ultimate resignation must be certain if the solution (4)
is to be valid. Choose the smallest value of M for which this is so. This critical value will be
the index Mh of some state, which we shall again denote by h. Then all items of index greater
than Mh will be processed, no item of lesser index will be, and items of that index (of which
an infinite reserve will have accumulated) will be used on those occasions (recurrent, by the
definition of h) when no items of higher index are present. The value function F(n,Mh) can
be separated into Mh and F −Mh. The first term represents the future return from the system
on those recurrent occasions when ‘emptiness’ (of the set of items with index greater thanMh)
has been reached. The second represents the differential reward gained during passage from
state n to the state of emptiness.

3. Generalities on the tax problem

For the tax case, the problem is one of minimizing cost. Denote the value function of
the problem by G(n), a minimal expected discounted future cost conditional on the current
system state n. If each item of state j in the system incurs a cost of cj per unit time and
costs are additive, then the total cost incurred per unit time is c�n = ∑

j cjnj . The dynamic
programming equation analogous to (1) is then

min
j
(c�n− αG+�jG+�0G) = 0, (11)

where j is again restricted to values for which nj > 0. This can be transformed into the form
of (1) if we define F(n) = (c�n/α)−G(n); then (11) becomes (1) with

rj = α−1
(∑

k

µjk(cj − ck)−
∑
k

λkck

)
. (12)

Effectively, the cost rate cj incurred during occupation of the state j has been replaced by a
present lump charge of cj /α on entry to state j and the same present reward upon leaving it.
This amounts to a cost of (cj /α)(1 − e−ατ ) incurred on arrival in state j , where τ is the length
of sojourn in that state.

With this, we seem to have reduced the tax problem to the multi-armed bandit problem, but
this is very far from the case; the occurrence of the factor α−1 in (12) has a profound effect.
Nevertheless, the determination of the Gittins index is now immediate. We have to suppose a
resignation reward (in the reward version of the problem associated with (1)) of ν/α2 rather
than ν/α, because of the factor α−1 in (12). For the quantity φj (ν/α2) in the problem, we now
assume the following form analogous to (6), where the θj are ν-dependent coefficients:

φj

(
ν

α2

)
= ν

α2 + ψj (ν)

α
+ θj (ν)+ o(1). (13)
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The analogue of the index-determining system (8) is then

max

(∑
k

µjk(�k −�j)+
∑
k

λk�k − ν,−ψj
)

= 0, (14)

where�j(ν) = ψj (ν)− cj . Note that the matrix of the system (14) is nonsingular when ν = 0
and, hence, that �j(0) = 0, or ψj (0) = cj .

For what is probably the simplest example of interest, consider the case in which items
proceed through two consecutive stages of processing before completion. Items arrive at rate λ
into state 2; when processed at unit effort they then move at rate µ2 to state 1. From that state
they move at rateµ1 to the completion state 0 if processed at unit effort. The index-determining
relations (14) then become

max(µ2(�1 −�2)+ λ�2 − ν,−ψ2) = 0,

max(−µ1�1 + λ�2 − ν,−ψ1) = 0.

Suppose that ν is so small that the first option (of continuation) holds in both equations. We
then find that

ψj = cj − κTj , j = 1, 2, (15)

where κ = ν − λ�2 and Tj is the expected time required for completion from state j , that
is, T1 = µ−1

1 and T2 = µ−1
1 + µ−1

2 . As we increase ν, a break point will occur when one
of the ψ-values first becomes negative. We see from (15) that this will occur in state 2 or
state 1 (meaning that items of state 1 or state 2 will have the higher index and, so, priority),
according to whether the cost ratio c1/c2 is, respectively, greater than or less than the critical
value T1/T2 = µ2/(µ1 + µ2).

Since this is less than one, there is a prejudice in favour of processing first those items which
are nearer completion.

Suppose for definiteness that it is ψ2 which first becomes zero. We can solve for�2 and the
critical value ν2 of ν, and find that

ν2 = (1 − λT2)
c2

T2
. (16)

This expression only makes sense if λT2 < 1, which is a stability condition, namely that the
inflow rate of work must not exceed the capacity of the system. In this we see a difference
from the case of the multi-armed bandit, in which we had the option of discarding unprofitable
items. Now all items must be processed to completion, which sets a lower bound on system
capacity.

For ν > ν2 we have ψ2 = 0 and, so, κ = ν − λc2. We then find that the critical value of ν
which makes ψ1 zero is

ν1 = µ1c1 − λc2. (17)

The presence of the factor α−1 in (12) indicates that this is a cost (or reward) which is
maintained at a constant value in the indefinite future. The resignation reward which balances
a future of such costs must then meet a constant stream of such permanent obligations, i.e.
meet an obligation which increases linearly in time. Hence, the resignation reward takes the
form ν/α2. This potential embarrassment is in the end negated by the fact that, if the system
processes all items (as it must do, and will do if it has adequate capacity), then idle periods will
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recur and the resignment option will never be exercised. That is, we set ν = 0 in the end, in
that if G(n,M) is the tax analogue of F(n,M), we ultimately set M = 0.

We would now like to evaluate the performance of the index rule, which means evaluation of
the value function G and of the average cost rate which this implies in the undiscounted limit.
We return again to (7), which now becomes

F

(
n,

ν

α2

)
= R − α−2

∫ α2R

ν

∏
j

(
1 + α

dψj (σ )

dσ
+ α2 dθj (σ )

dσ
+ o(α2)

)nj
dσ.

Expansion of this expression in powers of α up to the zeroth-order term leads, if we recall that
ψj (0) = cj , to the expression

G(n, 0) =
(
c�n
α

)
− F(n, 0) = −

∑
j

(
θj (0)+ Qjj

2

)
nj + 1

2
n�Qn+ o(1), (18)

where

Q =
∫ ∞

0

dψ(ν)

dν

dψ(ν)�

dν
dν =

[∫ ∞

0

dψj (ν)

dν

dψk(ν)

dν
dν

]
. (19)

Here, ψ(ν) is the column vector with elements ψj (ν). The argument makes it plausible that
the essential term in the differential cost for the undiscounted tax problem is a quadratic form
in n, with matrix given by (19). This indicates the essential difference between the multi-armed
bandit and tax problems. The value of θj (0) can be calculated from the determining equation
for φj (ν/α2), but we prefer to leave this until Section 5, when the calculation can be combined
with the determination of the minimal average cost rate γ . This cost rate does not appear in
the present calculation, because G(n, 0) evaluates costs up to first emptiness, rather than over
an infinite horizon.

The only point in our calculations which cannot immediately be made rigorous is the
supposition of a valid expansion (13). In the next two sections, we shall give direct derivations
which support these results and give evaluations where they are still lacking. These confirm
the evaluation (19) for the quadratic component of cost.

4. The undiscounted tax problem in deterministic form

We can imagine that effort is divided, so that an amount pj of effort is devoted to some
unit of state j , with

∑
j pj ≤ 1 if, as we suppose, the total rate of effort available has been

normalized to one. In this case, �j will be replaced in (11) by
∑
j pj�j and minimization

with respect to j will be replaced by a minimization over the distribution p (concentrated on
those j which are currently present). Now consider a deterministic version of the problem in
which n, instead of being a vector of integers following the Markov transitions thus specified,
is a continuous variable obeying the equivalent deterministic equations

ṅj =
∑
k

(pkµkj − pjµjk)+ λj , (20)

where a dot denotes a time derivative. We can regard this version as the limit case, as δ ↓ 0,
of the stochastic model in which work comes in quanta of size δ, the transition rates λ and µ
are changed to λ/δ and µ/δ, and n is now taken as δ times the numbers of quanta. The index

https://doi.org/10.1239/jap/1127322025 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322025


Tax problems in the undiscounted case 761

policy will remain optimal and the index values unchanged under this scaling, and the same
will then be true of the limiting deterministic version.

Suppose that we write (20) in matrix form as ṅ = −Lp + λ, so that the inflow λ could be
exactly balanced if we chose p = L−1λ. The related inequality

1L−1λ < 1, (21)

where 1 is a row J -vector of ones, is a classic necessary and sufficient condition for stability
of the system. That is, the unit rate of effort available to the system is sufficient that n can be
reduced to zero from any starting value.

The value function for this deterministic case is, in a sense, directly determinable. Consider,
for concreteness, the two-state example of the previous section, and suppose that n1 and n2 are
initially both positive. Under the assumptions of that example, we should initially allocate all
attention to items of state 1, so that

ṅ1 = −µ1 and ṅ2 = λ. (22)

Once n1 has been reduced to zero, we hold it at that value and use the effort remaining to reduce
n2, so that

ṅ1 = p2µ2 − p1µ1 = 0 and ṅ2 = λ− p2µ2 = λ− T −1
2 . (23)

Here, we have given p1 = 1 − p2 the value required to hold n1 at zero. There is then effort
remaining to reduce n2 if λT2 < 1, which is in fact just the stability condition (21) for this case.
It follows from (22) and (23) that n is a piecewise linear function of t , and we readily verify
the total cost (the integrated value over time of c1n1 + c2n2) to be

G(n) = 1
2n

�Qn, (24)

where

Q11 = c1T1 + λc2T
2
1

1 − λT2
, Q12 = c2T1

1 − λT2
, Q22 = c2T2

1 − λT2
.

These evaluations agree with (19), as can be verified from the evaluations of ψ1 and ψ2
(which are ψ1 = ψ2 = 0 for ν > ν1, ψ1 = c1 − νT1 and ψ2 = 0 for ν2 < ν1, and

ψ1 = ψ2 = cj − νTj

1 − λT2

for ν < ν2), where the break values νj are given by (16) and (17). The average cost rate γ is
zero if the system obeys the stability condition, because n can be brought to zero and then held
there.

It is not necessary to explicitly consider effort-sharing in the stochastic case, because (to
take the above example) once n1 has been reduced to zero, we can take time off to knock it
back to zero every time a new item of state 1 appears. In this way, we achieve an effective
effort-sharing over time. If we consider the δ-scaled version of the process considered above,
then this alternation of effort becomes ever more rapid as δ decreases, until in the deterministic
limit we have an explicit effort-sharing.

We can now state and prove the result which has been suggested.

Theorem 2. Suppose that the deterministic system specified by (20) satisfies the stability
condition (21). Then the minimal cost (achieved by the index policy) of such stabilization
is given by (24), with Q as given by (19).
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Proof. In the deterministic case, differentials will replace differences in the definitions (2)
of the operators �j , so that now

�j =
∑
k

µjk(Dk −Dj), �0 =
∑
k

λkDk,

whereDj is the differential operator ∂/∂nj . With this understanding, the dynamic programming
equation for the value function G(n) is

min
j
�jG(n) := min

j
(c�n+ (�j +�0)G(n)) = 0, (25)

where the choice of j is again restricted to values for which nj > 0. It is true that actual
operation will demand effort-sharing, but (25) will single out the states which have immediate
priority. We know that the index policy is optimal; assume again that the states have been
numbered in order of nonincreasing index. Suppose that j is indeed the state of highest index
for which nj > 0. We then wish to show that�j(n�Qn/2) = 0. This amounts to the condition

ci +
∑
k

µjk(Qki −Qji)+
∑
k

λkQki = 0, i ≥ j. (26)

The reason for the restriction on the set of i-values is that ni = 0 for i < j , and so there is
neither a need nor a basis for such a condition in this range. Let us denote ψ ′

j (ν), the derivative
ofψj (ν)with respect to ν, by fj and

∑
k µjk(fk−fj )+

∑
k λkfk byLjf . Then (26) amounts

to

ci +
∫ ∞

0
(Ljf )fi dν = 0, i ≥ j. (27)

However, Lj� = ν, meaning that Ljf = 1 for ν < νj , and ψi = 0, meaning that fi = 0 for
ν > νi . The left-hand side of (27) thus equals

ci +
∫ νi

0
fi dν = ci + ψi(νi)− ψi(0) = ci + 0 − ci = 0.

Expression (24) thus satisfies the dynamic programming equation (25). This solution is unique,
so (24) is indeed verified as the minimal cost.

There are then at least three ways of determining Q: from (19), by following through the
deterministic solution (as in the example we worked through), or by appeal to (26). Formula
(19) certainly has the advantage of explicitness and elegance and, in fact, provided the most
economical calculation in all the cases tested.

5. The undiscounted tax problem in stochastic form

We return to the Markov formulation considered in Sections 1–3. The dynamic programming
equation for the average cost γ and the differential cost g(n) = G(n)−G(0) takes the form

γ = min
j
(c�n+�jg(n)+�0g(n)), (28)

where the � operators now revert to their original discrete-variable definitions (2). The
differential cost g(n) can be evaluated as follows:

g(n) = lim
α↓0
(G(n, 0)−G(0, 0)) = −

∑
j

(
θj (0)+ Qjj

2

)
nj + 1

2
n�Qn,
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whereG(n, 0) is defined according to (18). The coefficients θj (0) have not yet been determined;
the following theorem gives us a direct way of doing so.

Theorem 3. Suppose that the parameters λ and µ satisfy the stability condition (21). Then
(28) has the solution

g(n) = s�n+ 1

2
n�Qn, γ =

∑
k

λk

(
Qkk

2
+ sk

)
, (29)

where Q is again the matrix defined by (19) and s is the solution of the equation system

∑
k

µjk(sk − sj )+ 1

2

∑
k

µjk(Qjj − 2Qjk +Qkk) = 0, 1 ≤ j ≤ J. (30)

Proof. Again, the index rule is optimal. If we try solution (29) in (28), we find that it holds
as far as the terms linear in n are concerned, by the calculations of Theorem 2. The second
relation of (29) then follows by equating the constant terms in the case n = 0. Relation (30)
follows similarly from the cases in which j is the state of maximum index represented in n.

Equations (30) should be supplemented by s0 = 0, so that if passage into the terminal state
0 is certain (as it must be for finiteness of costs), then the matrix (µjk) is substochastic and the
equation system nonsingular. The system has an immediate solution in those cases in which
there is only one route from any given entry state to the terminal state. For the two-state example
considered above, we find that

γ = λ(Q11 +Q22 −Q12) = λc1

µ1
+ λc2(λµ

−2
1 + µ−1

2 )

1 − λT2
.

The referee, to whom the author is grateful, observed that relations (29) imply the identity

γ =
∑
k

λkg(ek). (31)

This is indeed so, and we can see the validity of (31) on general grounds. Since g(0) = 0 under
our normalization, we can interpret g(n) as the differential cost of passage from state n to state
0. We then have the relationship

γ = 0 + ∑
k(λk/λ)(g(ek)+ γ τk)

1/λ+ ∑
k(λk/λ)τk

, (32)

expressing γ as the average cost over a recurrence cycle to emptiness. Here λ = ∑
k λk and

τk is the expected time needed to pass from n = ek to n = 0, i.e. the expected length of the
busy period if we start with a single item that is in state k. The system will stay empty for an
expected time 1/λ, incurring zero cost, and then move to state n = ek with probability λk/λ, so
incurring a further expected cost of g(ek)+ γ τk over an expected time of τk , before returning
to the empty state. Relation (32) immediately implies (31).

6. Final observations

The well-known fact that the multi-armed bandit problem and the tax problem differ fun-
damentally in the undiscounted limit has been confirmed very clearly. The multi-armed bandit
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can shed the insufficiently profitable part of its load, has a differential reward linear in n, and a
maximal average reward which is quantized to take one of the index values νs . The system of
the tax problem must accept all load and so has a lower bound on capacity, has a differential
cost quadratic in n, and has a minimal average cost which could take any value.

The analysis of this paper could be generalized to allow nonexponential service times (by
allowing passage through Markov substates during a given processing operation) and all the
variants of preemptive and nonpreemptive service. However, what is most important is to see
the essential structure; an extension that would be of greater practical interest would be to
represent the effects of fixed processing capacity by setting constraints on the distribution of
effort over the system. Our analysis in fact gives an indication of how the optimal scheduling
should be modified in such a case.

Let us write the dynamic programming equation (28) in the form

γ = min
j
�jg(n). (33)

This is the equation appropriate to the case in which there is a single operator choosing a single
action, with a free choice of actions (i.e. a free choice of which item to process). However, now
consider the more realistic case in which processing is divided between workstations, indexed
by h. Then each workstation can handle only items that are ready for its particular process,
which for station h corresponds to items (states) j lying in a set Ph, say. We shall suppose, for
simplicity, that the workstations cannot substitute for each other, so that the sets Ph are disjoint
and their union covers all processes.

The processing effort available must also be divided: we shall suppose that workstation h
disposes of a proportion qh of the total unit processing effort available. We further suppose that
the workstations have been balanced, in that qh equals the proportion of effort spent on items
in Ph under a free optimization. On the other hand, every workstation now has a decision to
make, namely which of the available items in its work class to process next. Relation (33) must
then be modified to

γ =
∑
h

qh min
j∈Ph

�jg(n). (34)

We might expect that each workstation should concentrate its effort on one of the items of
highest index in its buffer (queue). However, to take this view is to ignore the effect of the
choice on the progress of items of higher index.

Consider the effect of the operator �j on the differential cost g(n) for the freely optimized
policy. We find that

�jg(n) =
∑
i

ρij ni, (35)

where ρij is the expression on the left-hand side of (26). We know this to be zero for i ≥ j .
By the argument used in proving this fact, we find that ρij = ∫ νi

νj
(Ljf − 1)fi dν, i < j,

where Ljf and fi are the quantities defined immediately before (27). This expression for ρij
is positive, since both factors in the integrand are negative in the interval indicated. We thus
see that at workstation h, the item to be processed should be one whose state j minimizes the
linear criterion function

�jg(n) =
∑
i<j

ρij ni, (36)

subject to there being such an item (nj > 0, j ∈ Ph) that is also ready for h-processing.
Therefore, our concern is with the numbers of items present in the system that are of index
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higher than that now to be processed. Criterion (36) does reflect interference, in that it is
concerned with actual numbers rather than just the simple presence or absence of an item of
designated index. Its linear form makes its implementation relatively easy. The coefficient ρij
is an asymmetric interference measure – a measure of the degree to which the choice of j in
Ph affects the progress of those items whose state i gives them a higher priority.

Criterion (36) defines the policy that should be adopted if we have to operate under the work-
station constraints for an instant before reverting to the optimal operation of the unconstrained
case. It is plausible that this represents at least the direction in which the policy should develop
if we have to operate under the workstation constraints indefinitely, but this is a matter yet to
be investigated.

A paper that is relevant in the present context is that by Ansell et al. (2003). These authors
considered what we might term a one-stage system, in which jobs of varying natures entering
the system are routed to one of a number of workstations, at which their processing is completed.
These workstations differ in their competence to process a given job, but there is a degree of
mutual substitutability. The question is then one of choosing a workstation for a job rather than
of a workstation choosing a job from its buffer. The authors sought a dynamic routeing rule that
minimizes average cost, taking into account job priorities, the appropriateness of workstations
for a given job, and also their current degree of congestion. The problems considered in this
paper and that of Ansell et al. (2003) are respectively approached from opposite directions, in
a sense, but there are parallels to be drawn between the results.

In this paper, we have determined the optimal policy in the ideal situation, when effort can
be switched instantaneously to any part of the system. We then sought to adapt this policy
‘downwards’ to the case in which each workstation has a restricted role and effort can only be
switched within workstations. InAnsell et al. (2003), the authors adapted ‘upwards’, in that they
took the optimal state-independent policy (that which splits the job stream in fixed proportions)
and then induced a dynamic response to the current congestion state by introducing a stage
of policy improvement. This analysis led to the determination of an analogue of g(n) and to
an ‘allocation’ index similar to (35), in that it is linear in the queue sizes at the stations. The
models and approaches of the two papers are too different for there to be complete agreement:
Ansell et al.’s (2003) analogue of the matrix (ρij ) is symmetric and the allocation index contains
a term independent of n. Nevertheless, a similar pattern emerges from the two analyses.
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