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Abstract

Simulation models are used widely in pharmacology, epidemiology and health economics
(HEs). However, there have been no attempts to incorporate models from these disciplines
into a single integrated model. Accordingly, we explored this linkage to evaluate the epidemio-
logical and economic impact of oseltamivir dose optimisation in supporting pandemic influ-
enza planning in the USA. An HE decision analytic model was linked to a pharmacokinetic/
pharmacodynamics (PK/PD) – dynamic transmission model simulating the impact of pan-
demic influenza with low virulence and low transmissibility and, high virulence and high
transmissibility. The cost-utility analysis was from the payer and societal perspectives, com-
paring oseltamivir 75 and 150 mg twice daily (BID) to no treatment over a 1-year time hori-
zon. Model parameters were derived from published studies. Outcomes were measured as cost
per quality-adjusted life year (QALY) gained. Sensitivity analyses were performed to examine
the integrated model’s robustness. Under both pandemic scenarios, compared to no treat-
ment, the use of oseltamivir 75 or 150 mg BID led to a significant reduction of influenza epi-
sodes and influenza-related deaths, translating to substantial savings of QALYs. Overall drug
costs were offset by the reduction of both direct and indirect costs, making these two inter-
ventions cost-saving from both perspectives. The results were sensitive to the proportion of
inpatient presentation at the emergency visit and patients’ quality of life. Integrating PK/
PD–EPI/HE models is achievable. Whilst further refinement of this novel linkage model to
more closely mimic the reality is needed, the current study has generated useful insights to
support influenza pandemic planning.

Introduction

Simulation models are widely used in pharmacology, epidemiology and health economics
(HEs). These models can explicitly link concepts and ideas to data in order to produce out-
comes that are useful to healthcare decision makers [1]. Importantly, there have been no
attempts to incorporate the models from pharmacology, epidemiology and HEs into a single
integrated model.

While still performed infrequently, the importance of epidemiological modelling to inform
economic analyses of prevention and treatment strategies for infectious diseases is well
accepted [2]. Cost-effectiveness analyses (CEAs) are typically conducted using static models
in which the probability of disease exposure is independent of interventions designed to
treat or prevent it. While this is realistic for non-transmissible diseases, it is not suited for com-
municable diseases given interventions in such circumstance can have a significant impact on
disease exposure. For example, vaccines can reduce the susceptible population and antiviral
treatments can reduce viral shedding, thus reducing viral transmission. Accordingly, dynamic
transmission models are needed when there is interdependence between intervention and
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disease exposure [3]. These models allow the indirect or herd
immunity effect to be predicted. Indeed, static and dynamic mod-
els produced dramatically different results [4, 5]. Importantly, a
recent review on economic evaluations of interventions for pan-
demic influenza planning reported most of the studies have
used static models [6].

In pharmacology, population pharmacokinetic/pharmacody-
namic (PK/PD) models are used to identify optimal dosing regi-
mens [7] and were used recently to demonstrate that elevated
doses of oseltamivir may result in reduced viral shedding [8].
This has important implications for the economic evaluation of
influenza pandemic planning as influenza viral transmission is a
function of viral shedding [9]. These indirect effects, which can
be larger than the direct effects [10], are often neglected in cost-
effectiveness analyses. Any economic analysis failing to consider
these indirect effects will have inaccuracies [11].

Globally, the emergence or re-emergence of influenza out-
breaks has been challenging [12–14]. Several economic evaluation
studies have been conducted to facilitate the management of
influenza outbreaks [15, 16]. A recent systematic review reported
that most economic studies used models that were incapable of
incorporating variability of all parameters and did not consider
the viral transmission process [10]. Most importantly, existing
models did not consider the indirect effects which are crucial in
a pandemic mitigation strategy.

The current study explored the feasibility of linking pharma-
cology, epidemiology and HE models within the realm of
anti-influenza treatment for pandemic influenza. We previously
published an overall framework for the linking without a full
description of HE models [17]. To our knowledge, this is the
first CEA to directly integrate data from PK/PD and disease
transmission models into the economic analysis.

Methods

Linking of pharmacology and epidemiology to HEs models

Previously, a single semi-mechanistic framework assessed quanti-
tatively the impact of oseltamivir pharmacology and treatment
approaches on the burden of influenza infection in a hypothetical
population of 100 000 individuals across a 1-year flu season [17].
This model connected three discrete quantitative modules viz. a
population pharmacokinetic model for oseltamivir; a PK/PD
evaluation of oseltamivir carboxylate (OC, active metabolite) on
viral shedding; and a susceptible-exposed-infected-recovered
(SEIR) epidemiologic model, adapted to incorporate the impact
of antiviral therapy.

Briefly, OC PK variability was incorporated using a published
population PK model [18] for OC incorporating 390 healthy and
infected subjects ranging from 1–78 years across a dose range of
20–1000 mg. The final covariate model from this population PK
analysis included allometric scaling and a relationship between
weight on the OC central volume of distribution and between
weight and creatinine clearance on OC clearance. From this final
covariate model, OC PK parameter profiles in 5000 70-kg adult
patients aged 18–65with normal renal function receiving the stand-
ard 75 mg twice daily (BID) and 150 mg BID oseltamivir for 5 days
was simulated. The area under the concentration-time curve
(AUCs) for each patient were quantified and the fraction of patients
with OCAUCs above a published PK/PD value associated with fas-
ter cessation of viral shedding (14 180 ng.h/ml) [8] was calculated
for each dosing regimen; and denoted as FAUChigh.

PD variability was integrated via incorporating viral shedding
(Tshed) distributions for placebo subjects, and those above and
below the PK/PD target as obtained from literature [8]. These
PK/PD distributions and other SEIR input parameters
(Table 1), allowed the average number of infected cases per 100
000 population to be determined for a range of scenarios relating
to dose, viral transmissibility and treatment uptake (vide infra).
The important innovation in the current work is the extension
of the aforementioned quantitative framework to a decision ana-
lytic model to estimate the cost and outcomes of interventions of
interest (Fig. 1). Both virus transmissibility and impact of anti-
influenza agents alter the number of infected cases entering into
the decision analytic model. As previously described, ß governs
transmissibility, and is a composite of both frequencies of individ-
ual interactions, and the probability that an interaction will result
in a successful influenza infection in a susceptible individual [17].
The impact of antiviral treatment is via reducing the time an
infected subject is infectious; governed by the duration of viral
shedding. As an individual disease model is currently unavailable
(Fig. 1), the severity of illness associated with influenza virulence
is assumed to directly alter the probabilities of complications and
associated costs in the decision analytic model.

Health economics model structure and data inputs

The decision analytic model (Fig. 2) was developed to evaluate the
cost and outcomes of oseltamivir standard (75 mg BID) or high
(150 mg BID) dose or no treatment under pandemic influenza
scenarios. The number of infected patients entering into the
model was simulated from the SEIR model. A cost-utility analysis
was undertaken based on the US population of healthy adults,
aged 18–64 years old from the payer and societal perspective.

Table 1. Parameters used in the SEIR model

Descriptor Unit Value

Population size, N Case 100 000

Latency period, 1/κ Day 1

FAUChigh

150 mg BID, P (AUC >
14 180 ng.h/ml)

0.795 ± 0.095

75 mg BID, P (AUC >
14 180 ng.h/ml)

0.326 ± 0.048

Duration of viral shedding, γ Day−1

No treatment, γ0 6 ± 2.5

Oseltamivir 150 mg BID, γhigh
(AUC > 14 180 ng.h.ml)

1.9 *Exp(normal(0,0.51))

Oseltamivir 75 mg BID, γlow
(AUC 0 to 14 180 ng.h/ml)

3 *Exp(normal(0,0.58))

Transmission rate, ß Day−1

High 0.41

Low 0.21

κ, the delay rate between exposure to influenza and symptom development; FAUChigh, the
mean (SD) fraction of the simulated population receiving oseltamivir with an AUC > 14
180 ng.h/ml, obtained from the pharmacology module; γ0, the duration of viral shedding
under no treatment; γlow, the mean (SD) duration of viral shedding if OC AUC is <14 180 ng.h/
ml; γhigh, the mean (SD) duration of viral shedding if OC AUC is >14 180 ng.h/ml, ß, the rate
of infectivity; AUC, area under the concentration–time curve; BID, twice daily.
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Societal perspective included direct and indirect costs. Total costs,
quality-adjusted life years (QALYs), and incremental cost-
effectiveness ratios (ICERs) were determined over a 1-year time
horizon.

The infected individual entered the HE model either as an out-
patient or inpatient (Fig. 2). Those admitted as inpatient would be
admitted to a general ward or an intensive care unit, may experi-
ence either pneumonia, sepsis and acute respiratory distress syn-
drome (ARDS) [19–21]. We assumed that patients could only
experience one influenza-related complication. The infected
patient either recovered from the infection or died. We assumed
that oseltamivir was prescribed within 48 h of influenza symp-
toms and all patients were 100% adherent to treatment received.

A conservative approach involving oseltamivir acting only by
reducing the duration of viral shedding and not directly on trans-
mission rate was adopted. As such, only drug treatment effects
and not prophylaxis effects were captured in the model. We
assumed that oseltamivir reduces the time of symptom alleviation
by 21 h and conservatively has no effects on complication, hospi-
talisation and mortality rate [22–25]. Data about influenza disease
progression, medical resource utilisation, cost of treatment and
health state utilities were obtained from the literature (Medline
searches) and Healthcare Cost and Utilization Project

Nationwide Inpatient Sample database [26]. Where possible,
data related to the 2009 pandemic H1N1 influenza was used.
Meta-analyses were performed when applicable. All costs were
converted to 2013 US dollars using the Consumer Price Index
[27]. Base-case estimates and ranges for probabilities, costs, util-
ities and length of stay for hospitalisation are shown in Table 2;
detailed descriptions available in Appendix 1.

Simulation scenarios and treatment comparison

We investigated the HE impact of two extreme hypothetical pan-
demic scenarios, namely, influenza virus with low virulence and
low transmissibility and virus with high virulence and high trans-
missibility [51, 52]. The ß values for transmissibility were from
Kamal et al. [17], (see Table 1) whereas virulence was based on
health care utilisation; low virulence was based on pH1N1 experi-
ence [12]; and the high virulence scenario involved doubling the
probability of hospitalisation [53] for the low virulence scenario
within the decision analytic model.

We evaluated three different management strategies: (1) no
treatment, (2) the standard approved oseltamivir dose (75 mg
BID) and (3) high dose (150 mg BID). We also evaluated the
treatment strategies according to varying treatment uptake rates

Fig. 1. Overarching Pharmacology to payer system including ‘modules’. The solid lines indicate that adequate data exists to be able to create semi-mechanistic
links to each of adjacent ‘modules’. The dotted lines and light grey describe where significant unknowns remain and are not mature enough to have been incor-
porated into the current framework. PopPK, population pharmacokinetic; SEIR, susceptible-exposed-infected-recovered; ß, the rate of infectivity; TShed, viral shed-
ding; VK, viral kinetics.
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(25, 50 and 80%), defined as the percentage of infected subjects
treated, across an infected population. Detailed descriptions of
all values are available in Appendix 1. Analyses were performed
using Berkeley Madonna™ version 8.3.18, R version 2.15.3 and
Microsoft Excel 2010 (Redmond, Washington).

Sensitivity analyses

One-way sensitivity analyses were performed to investigate the
effects of altering parameters within the plausible ranges
(Table 2). Additional sensitivity analysis was undertaken to deter-
mine the robustness of estimates when a different approach for
productivity loss estimation was adopted. In the base-case ana-
lyses, we adopted the approach in Meltzer et al. [40]
Alternatively, we calculated productivity loss using the relation-
ship between ‘time to return to normal activity’ and ‘illness dur-
ation’ (Appendix 1). We also varied the probability of developing
ARDS in highly virulent and highly transmissible pandemic influ-
enza case. Probabilistic sensitivity analysis (PSA) was undertaken
to address uncertainty in the assumptions underlying the model
by allowing each input parameter values to vary simultaneously
over their respective feasible ranges within the model; 5000
second-order Monte Carlo simulations were performed in
which the parameter values were drawn from pre-defined distri-
butions. Results from the PSA are presented as scatterplots in
cost-effectiveness plane.

Results

Low virulence and low transmissibility

Based on a hypothetical cohort of 100 000 individuals, under low
virulence and low transmissibility, standard-dose oseltamivir
(75 mg BID) was cost-saving from both perspectives compared
to no treatment (Table 3). It could save USD30,246,490
(USD81,272,885), USD33,352,767 (USD93,993,932) and
USD30,406,894 (USD92,614,326) for oseltamivir uptakes of

25%, 50% and 80% by averting 706, 412 and 783 deaths, respect-
ively, from payer (societal) perspective. This translates to 361, 430
and 441 QALYs gained for uptakes of 25%, 50% and 80%,
respectively.

High-dose oseltamivir (150 mg BID) when compared to no
treatment was also cost-saving from payer (societal) perspective
(Table 3), leading to cost-saving of USD29,839,058 (USD85,192,106),
USD27,742,305 (USD89,785,170) and USD20,483,671 (USD83,
687,273) for uptakes of 25%, 50% and 80% by preventing 376,
423 and 430 deaths, respectively, leading to the associated
QALY gains of 392, 441 and 449, respectively.

Compared to low-dose, high-dose oseltamivir would avert
−30, −11, −7 deaths at 25%, 50% and 80% uptakes, respectively,
leading to the associated QALY gains of 31, 11, 7, respectively. It
led to overall increased cost of USD407,432, USD5,610,462,
USD9,923,223 from payer perspective for uptakes of 25%, 50%,
80% uptakes, respectively, resulting in USD13,117, USD546,753,
USD1,353,188 per QALY gained. From societal perspective,
using high-dose oseltamivir could save USD3,919,221 at 25%
uptake (cost-saving) but incurred extra cost of USD4,110,702
and USD8,927,052 at 50% and 80% uptakes, leading to
USD377,524 and USD1,217,344 QALY gained, respectively.

High virulence and high transmissibility

Under the scenario of high virulence and high transmissibility,
compared with no treatment, oseltamivir 75 mg BID was
dominant (Table 3). It could avert 168, 617 and 1098 deaths,
translating to 174, 598 and 1063 QALYs gained for the uptakes
of 25%, 50% and 80%, respectively (Table 3). The standard-dose
could save USD11,885,337 (USD27,413,072), USD49,309,677
(USD101,904,191) and USD88,899,525 (USD179,850,525) for
25%, 50% and 80% uptakes from payer (societal) perspective.

When high-dose oseltamivir was compared to no treatment
(Table 3), it was shown to save USD24,304,917 (USD53,631,551),
USD63,252,396 (USD133,577,886) and USD95,501,955 (USD200,
976,888) for uptakes of 25%, 50% and 80%, by preventing 341,

Fig. 2. Decision analytic model. Influenza patients entered the decision analytic model from epidemiology model. They received treatment in outpatient or
inpatient setting. OPD, outpatient; ED, emergency department; AVR, antiviral; GW, general ward; ICU, intensive care unit; ARDS, acute respiratory distress syndrome.
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Table 2. Input parameters, values and data sources used in the health economics model

Parameters
Base-case
value 95% CI SE Distribution Source(s)

Probabilities

Medical care received

Outpatient visit 0.972 NA [28]

Inpatient 0.028 NA [28]

Channels of inpatient admission

Through ED visit 0.778 NA [29]

Through outpatient visit 0.222 NA [29]

Complication associated with influenza

No complications 0.383

Pneumonia 0.403 0.356–0.450 Dirichlet [19–21]

Sepsis 0.089 0.056–0.122 Dirichlet [20, 21]

ARDS 0.125 0.086–0.163 Dirichlet [20, 21]

Type of hospitalisation

No complication

ICU 0

GW 1 NA Assumed

Pneumonia

ICU 0.518 0.045 Beta [19]

GW 0.482

Sepsis

ICU 0.511 0.001 Beta [30]

GW 0.489

ARDS

ICU 1 NA [21]

GW 0

Probable outcome from the medical care received

GP

Cure 0.9999

Death 0.0001 0.00007–0.00016 Beta [31]

No complication

In GW

Cure 0.903

Death 0.097 0.063–0.131 Beta [20, 21]

Pneumonia

In GW

Cure 0.493 0.399–0.586 Beta [20, 21]

Death 0.507

In ICU

Cure 0.489

Death 0.511 0.418–0.604 Beta [20, 21]

Sepsis

In GW

(Continued )
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Table 2. (Continued.)

Parameters Base-case
value

95% CI SE Distribution Source(s)

Cure 0.081 0–0.185 Beta [20, 21]

Death 0.919

In ICU

Cure 0.257

Death 0.743 0.575–0.911 Beta [20, 21]

ARDS

In GW

Cure 0.002 0–0.016 Beta [20, 21]

Death 0.998

In ICU

Cure 0.151

Death 0.849 0.520–1 Beta [20, 21]

Costs (USD, year of costing: 2013)

Direct medical care costs

Oseltamivir 132.77a NA [32]

Over the counter medications 16.95 12.70–21.20 Log normal [21]

GP visit 169b NA [28]

ED visit 551 446–656 Log normal [33]

Hospitalisation

GW

No complication 17 260c 1592 Log normal [26]

Pneumonia 18 966c 1500 Log normal [26]

Sepsis 23 771c 466 Log normal [26]

ARDS 45 330 0–93 348 Log normal [34]

ICU

Pneumonia 22 771 36 890d Log normal [35]

Sepsis 44 958 69 698d Log normal [36]

ARDS 128 860 85 738–170 461 Log normal [34]

Direct non-medical care cost

Transportation (per visit) 2.83e NA [37, 38]

Indirect costs (daily productivity loss by age)

Age 18–64 146.04f NA [39]

Productivity loss (days lost) = length of stay plus days of convalescenceg

GP visit 2.0b [28,40]

Hospitalisation

GW

No complication 7.4c [26, 40]

Pneumonia 8.4c [26, 40]

Sepsis 10.5c [26, 40]

ARDS 13.0 [34,40]

ICU

Pneumonia 9.7 [35,40]

(Continued )
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844 and 1288 deaths, respectively, leading to the associated QALY
gains of 330, 818 and 1247, respectively.

Compared to low-dose, our model indicated that high-dose
oseltamivir would save USD12,419,581 (USD26,218,479),
USD13,942,719 (USD31,673,695) and USD6,602,430 (USD21,
126,363) from the payer (societal) perspective for uptakes of 25%,
50% and 80% (Table 3). In addition, 174, 227 and 190 deaths
could be prevented, leading to QALY gains of 174, 227 and 189,
respectively.

Sensitivity analyses

The tornado diagrams (Fig. 3) summarise the results of 1-way
sensitivity analyses. Under low virulence and low transmissibility,
at 80% oseltamivir uptake, the ICER was most sensitive to the prob-
ability of hospitalisation for ED cases and baseline average quality
of life. Under the high virulence and high transmissibility scenario,

the baseline average quality of life and median weekly earnings in
the USA were the two most influential factors. The results were
also very similar to the other uptakes and thus not shown.

Monte Carlo simulations (5000) for different levels of viral
virulence, transmissibility and oseltamivir uptake from the soci-
etal perspective are presented in Fig. 4. In both scenarios, a very
large proportion of the simulated results fell in the south-east
quadrant, suggesting that 75 mg BID vs. no treatment at 25%,
50% and 80% uptakes were highly likely to be cost-saving. The
results of 150 mg BID from a societal perspective were also very
similar (data not provided).

Discussion

This is the first study to link pharmacology, epidemiology and HE
models into a single integrated model. We examined the costs and

Table 2. (Continued.)

Parameters Base-case
value

95% CI SE Distribution Source(s)

Sepsis 14.4 [36,40]

ARDS 17.0 [34,40]

Length of stay (days)

GP visit 1.0 NA [28]

Hospitalisation

GW

No complication 6.4 0.4 [26]

Pneumonia 7.4 0.5 [26]

Sepsis 9.5 0.2 [26]

ARDS 12.0 15.0d [34]

ICU

Pneumonia 8.7 9.9d [35]

Sepsis 13.4 16.0d [36]

ARDS 16.0 22.0d [34]

Utilities

Baseline average quality of life 0.96 0.92–1.00 Beta [41, 42]

Quality of life during illness with influenza 0.81 0.70–0.90 Beta [41, 43]

Pneumonia 0.63 0.06d Beta [44]

Sepsis in hospital ward 0.59 0.02d Beta [45–48]

Sepsis in ICU 0.10 0.08–0.15 Beta [43–45]

ARDS in hospital ward 0.59 0.02d Beta [45, 49]

ARDS intubated in ICU 0.10 0.08–0.15 Beta [45, 49]

Recovery from severe influenza, for patients who received
inpatient ICU care

0.90h 0.85–0.95 Beta [41]

CI, confidence interval; SE, standard error; ED, emergency department; GP, general practitioner; GW, general ward; ICU, intensive care unit; ARDS, acute respiratory distress syndrome; USD,
United States Dollar; AWP, average wholesale price.
aOseltamivir is available as 75 mg/capsule and in a pack of 10 capsules in the USA. The AWP for one pack of oseltamivir is USD 132.77.
bWeighted probability or cost estimate was calculated using probability or cost reported for two age groups, i.e. 18–49 and 50–64 years, assuming the age-distribution of the influenza adults
is similar to that of the U.S. population in 2012 [50].
cWeighted cost or length of stay estimate was calculated using cost or length of stay reported for two age groups, i.e. 18–44 and 45–64 years.
dReported as standard deviation.
eCalculated by multiplying 5 miles round trip and the standard business mileage rate 2013 for the use of a car.
fCalculated using the age- and sex-stratified median weekly earnings in the U.S. Bureau of Labor Statistics for the age group 18–64 years, taking account of the unemployment rate of 7.3%.
gCalculated using the length of stay reported and adding one additional day for convalescence [40].
hKhazeni et al. [41] adjusted for possible on-going disability following recovery from severe (all patients who received inpatient ICU care) influenza, which assumed an estimated quality of life
of 0.9 for the remainder of those patients’ lifetimes. In our HE model, we assumed the value of 0.90 for the rest of the year for those patients.
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Table 3. Base-case analyses: high-dose vs. no treatment, and standard dose vs. no treatment

Payer perspective Societal perspective

Comparators
Δ Costsa

(payer)
Δ Costsa

(societal)
Δ

Death Δ LYs
Δ

QALYs
Cost per LY
gained

Cost per QALY
gained

Cost per LY
gained

Cost per QALY
gained

Low virulence and low transmissibility

75 mg vs. no treatment

25% uptake −30 246 490 −81 272 885 −706 335 361 Cost-saving Cost-saving Cost-saving Cost-saving

50% uptake −33 352 767 −93 996 756 −412 399 430 Cost-saving Cost-saving Cost-saving Cost-saving

80% uptake −30 406 894 −92 614 326 −783 410 441 Cost-saving Cost-saving Cost-saving Cost-saving

150 mg vs. no treatment

25% uptake −29 839 058 −85 192 106 −376 364 392 Cost-saving Cost-saving Cost-saving Cost-saving

50% uptake −27 742 305 −89 785 170 −423 409 441 Cost-saving Cost-saving Cost-saving Cost-saving

80% uptake −20 483 671 −83 687 273 −430 416 449 Cost-saving Cost-saving Cost-saving Cost-saving

150 vs. 75 mg

25% uptake 407 432 −3 919 221 −30 29 31 14 018 13 117 Cost-saving Cost-saving

50% uptake 5 610 462 4 110 702 −11 10 11 546 753 515 260 400 598 377 524

80% uptake 9 923 223 8 927 052 −7 7 7 1 423 516 1 353 188 1 280 612 1 217 344

High virulence and high transmissibility

75 mg vs. no treatment

25% uptake −11 885 337 −27 413 072 −168 162 174 Cost-saving Cost-saving Cost-saving Cost-saving

50% uptake −49 309 677 −101 904 191 −617 598 629 Cost-saving Cost-saving Cost-saving Cost-saving

80% uptake −88 899 525 −179 850 525 −1098 1063 1112 Cost-saving Cost-saving Cost-saving Cost-saving

150 mg vs. no treatment

25% uptake −24 304 917 −53 631 551 −341 331 349 Cost-saving Cost-saving Cost-saving Cost-saving

50% uptake −63 252 396 −133 577 886 −844 818 856 Cost-saving Cost-saving Cost-saving Cost-saving

80% uptake −95 501 955 −200 976 888 −1288 1247 1302 Cost-saving Cost-saving Cost-saving Cost-saving

150 vs. 75 mg

25% uptake −12 419 581 −26 218 479 −174 168 174 Cost-saving Cost-saving Cost-saving Cost-saving

50% uptake −13 942 719 −31 673 695 −227 220 227 Cost-saving Cost-saving Cost-saving Cost-saving

80% uptake −6 602 430 −21 126 363 −190 184 189 Cost-saving Cost-saving Cost-saving Cost-saving

aAll costs are expressed in 2013 USD.
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outcomes of different levels of oseltamivir dosing for pandemic
influenza planning using the information from the PK/PD
model to ultimately inform an HE model by way of an SEIR
model. While we applied this novel linked model within the con-
text of pandemic influenza, its usefulness is not limited to this

arena. Our approach can also be useful for policy-oriented deci-
sion making surrounding the use of other antimicrobials agents.

Indeed, our results show that using standard- or high-dose
oseltamivir will afford a significant reduction in deaths due to
three major influenza-related complications over a 1-year time

Fig. 3. Tornado diagram (150 mg vs. no treatment with 80% uptake of oseltamivir): One-way sensitivity analysis under (1a) low virulence and low transmissibility
and (1b) high virulence and high transmissibility. (a) Low virulence and low transmissibility. #+/−: The higher value of the parameter leads to lower ICER. $−/+: The
higher value of the parameter leads to higher ICER. (b) High virulence and high transmissibility. #+/−: The higher value of the parameter leads to lower ICER.

Fig. 4. Scatter plots (incremental cost vs. incremental QALY) of 75 mg vs. no treatment under societal perspective. (a) Low virulence and low transmissibility.
(b) High virulence and high transmissibility.
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horizon, thus leading to substantial savings in both life years and
QALYs under various degrees of virus virulence and transmissi-
bility. The extra cost for oseltamivir was offset by reductions in
the number of disease episodes and influenza-related deaths,
resulting in substantial savings.

Several economic evaluations on influenza pandemic pre-
paredness strategies have been published, including studies evalu-
ating vaccine, pharmaceutical and non-pharmaceutical (e.g. social
distancing) interventions with the majority focusing on anti-
influenza drugs [10]. Pharmaceutical interventions combined
with non-pharmaceutical interventions have been found to be
relatively cost-effective in comparison to vaccines and/or anti-
virals alone. However, pharmaceutical interventions vary from
cost-saving to being not cost-effective [10]. The wide range of
cost-effectiveness results is due to several factors such as different
dosages and durations for prophylaxis as well as the comparator.
Our results showing cost-savings of oseltamivir under all scen-
arios and dosages were possibly due to the absence of consider-
ation of concomitant treatments and the social contact structure
among various subpopulations.

Despite the implementation of the World Health Organization’s
(WHO’s) pandemic preparedness plan and response guide during
the 2009 pandemic H1N1, experience and evidence suggest that the
global community is ill-prepared to respond to a severe influenza
pandemic or to any similarly global, life-threatening public-health
emergency [54]. The possibility of the avian H5N1 becoming pan-
demic has raised concern and has been anticipated by the public
health authorities [55]. This strain is a significant threat given its
high fatality rate in humans, the large reservoir of poultry in
South-East Asia and that H5N1 influenza may be genetically modi-
fied to become more transmissible [51, 56, 57]. Importantly, the
global community should be prepared for the next pandemic by
having a full understanding of the consequences of influenza pan-
demics and their related interventions. In the current study, by
using the 2009 pandemic data in the linked models, we explored
the cost-effectiveness of oseltamivir as a pandemic mitigation strat-
egy in two hypothetical pandemic scenarios with different severity,
inspired by the 2009 pandemic H1N1 and H5N1. Our study did
not consider the reported case fatality ratio (CFR) of H5N1 by
the WHO due to inconclusive findings on the real CFR estimate
by different sources [58, 59]. Furthermore, the CFR may decrease
as more information becomes available or as the epidemic pro-
gresses. Several recent studies from the Cochrane collaboration
[60] and Muthuri et al. [61] have called into question the efficacy
of oseltamivir. Therefore, we conservatively estimated the drug
effect of oseltamivir based solely on viral shedding in our pharma-
cology component of the integrated model. Subsequently, in the
HEs model, assumptions were made that oseltamivir shortened
the duration of influenza symptoms by 21–22 h, but had no effect
on the progression to secondary complications, hospitalisation or
mortality [22–24]. These assumptions may underestimate the
true effects of oseltamivir during an influenza pandemic.

Our work has several limitations. First, we did not take into
consideration other interventions such as the use of masks, school
closure and influenza vaccine. The concurrent use of other inter-
ventions may reduce the impact of oseltamivir. Second, we
assumed that all infected cases seek medical care, which might
not be true in reality. Third, our model was confined to only a
healthy population between 18 and 65 years of age. However,
the model could easily be extended to include other patient popu-
lations. Finally, it is noteworthy that patients’ viral shedding dur-
ation for 75 or 150 mg BID was based upon detailed shedding

data from a human inoculation study, where adults receive oselta-
mivir at 28-h post-inoculation. In reality, the impact on viral
shedding will decrease, as patients initiate treatment later in
their disease course. Therefore, even though many assumptions
above may underestimate the true effects of oseltamivir during
an influenza pandemic, delayed initiation of treatment would
result in smaller clinical and HE benefits.

Despite these limitations, our study has many, important
strengths. First, because we used a dynamic transmission model,
we were able to incorporate important indirect effects of oseltami-
vir treatment. Second, we undertook substantial effort through
comprehensive literature review and meta-analysis to synthesise
the best available evidence in generating input parameters. We,
therefore, feel that our model inputs are of highest quality.
Third, not only is our integration of pharmacology into an epi-
demiological model of influenza transmission novel, it also allows
for a more realistic drug effect variability than previous efforts
which have relied simply on blunt assumptions as to the efficacy
of antivirals in reducing the infectiveness of the virus [62].
Because of the increased realism of the drug effect, the transmis-
sion dynamics in our model more closely mirror those that would
occur in the real-world. Therefore, the results from our economic
analysis will be more reflective of real-life, thus, improving the
usability of this economic model for decision makers. Finally,
including pharmacology, epidemiology and HEs into one inte-
grated model may facilitate earlier meaningful dialogue between
the key stakeholders, such as sponsors, regulators and payers.
This concept provides a crucial element for so-called adaptive
licensing approaches of drug development such as staggered
approval, managed entry and progressive authorisation [63].

Conclusions

This is the first study demonstrating the feasibility of linking of
PK/PD–EPI/HE models. Our linked model, which explored the
use of oseltamivir in pandemic influenza as an example, allows
for direct integration of antiviral effectiveness on viral shedding
to the disease transmission model. This, in turn, leads to better
understanding of the effects of the different doses of oseltamivir
on mortality, morbidity and economic outcomes that make up
the outputs of our economic model. Simulations that better reflect
reality lead to more informed policy making, which, in turn, can
save healthcare costs as well as patient lives. However, efforts are
needed to further refine the model to better represent the reality.
It enables us to better inform multiple stakeholders even at the
early phase of drug development.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268818000158.
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