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ABSTRACT

In this paper, we consider the risk–return trade-off for variable annuities in
a Black–Scholes setting. Our analysis is based on a novel explicit allocation
of initial wealth over the payments at various horizons. We investigate the
relationship between the optimal consumption problem and the design of vari-
able annuities by deriving the optimal so-called assumed interest rate for an
investor with constant relative risk aversion preferences. We investigate the
utility loss due to deviations from this. Finally, we show analytically how
habit-formation-type smoothing of financial market shocks over the remain-
ing lifetime leads to smaller year-to-year volatility in pension payouts, but to
increases in the longer-term volatility.
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1. INTRODUCTION

Over the past few decades, defined benefits pension schemes have largely been
converted into defined contributions pension schemes without or with lower
guarantees. Especially the recent financial crisis and increasing life expectancies
affect the sustainability of pension systems that include guarantees. Therefore,
there is a rising1 number of products available in the market that explicitly let
these risks be borne by the individual rather than the employer or insurer. If
the pension payments in the decumulation phase include risk, we refer to these
designs as variable annuities. Fixed annuities are those for which the payments
are not uncertain.
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There is a wide literature on variable annuities including investigating
different embedded guarantees (Mahayni and Schneider, 2012; Chen et al.,
2015), pricing variable annuities (Bauer et al., 2008; Bacinello et al., 2011;
Nirmalendran et al., 2014), hedging variable annuities (Coleman et al., 2006;
Trottier et al., 2018) or combinations of these (Kling et al., 2011; Bernard et al.,
2014).Moreover, optimal demand for different annuity products is also investi-
gated (Horneff et al., 2009; Blake et al., 2014; Peijnenburg et al., 2016). Designs
in which equity exposure is incorporated in the annuity product is shown to
increase welfare by, for example, Koijen et al. (2011).

We investigate variable annuities, where the variability arises due to risky
investment returns. We study the relationship between the so-called assumed
interest rate (AIR) and the (expected) annuity payments. The AIR effectively
determines the decumulation speed of financial wealth over the payout phase: a
larger AIR leads to higher early payments and lower later payments. In case the
AIR equals the expected return on the underlying portfolio, the income during
the payout phase is, in expectation, constant. See Dellinger (2006) and Horneff
et al. (2010) for more details on the usage of the AIR concept in insurance pric-
ing. We provide a novel way to solve the optimal consumption problem and, in
doing so, derive the AIR that optimizes lifetime utility of consumption.We also
analyze the utility loss of investors with constant relative risk aversion (CRRA)
preferences who allocate their wealth suboptimally over their life cycle and/or
have a suboptimal risk exposure. Under the assumption of an optimally cho-
sen risk exposure, we find that a restriction to a (suboptimal) constant expected
pension income does not lead to large utility losses. We also show that pension
payments with a horizon of “only” 10 years are fairly insensitive to the choice of
the AIR. As a result, unlike common practice, communication about the effect
of choosing an AIR is preferably based on results for horizons closer to 20
years. We also investigate how financial shocks can be smoothed and what the
effect is on the variable annuity. In that case, we find that a horizon-dependent
AIR ensures a constant expected pension income.

It is well known that CRRA investors prefer to absorb financial shocks
immediately in their consumption rather than smoothing the effect across
future consumption. This follows as the optimal consumption is a constant
fraction of the wealth level and thus a shock in wealth leads one-to-one to a
shock in consumption. Nonetheless, we investigate the impact of smoothing
in variable annuities and show how a stable expected pension payment can be
attained within this setting. Maurer et al. (2016) and Guillén et al. (2006) inves-
tigate smoothing in collective pension plans with both intergenerational risk
transfers and risk-sharing between pension providers and holders. We abstain
from wealth transfers between retirees and insurers, and focus on the method
to smooth within the retiree’s own available wealth. Bruhn and Steffensen
(2013) show that habit formation preferences can explain the demand for such
collective smoothing designs.

Our approach to smoothing financial market shocks is novel. More pre-
cisely, we consider strategies that lead to smooth consumption paths. The term
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smoothing refers to a preference for smooth consumption paths in habit for-
mation like specifications. Such preferences lead to spreading out financial
shocks and, thus, being less exposed to large upside and downside risk on
short horizons. As mentioned above, we explicitly separate the allocation of
initial (pension) wealth to pension payments at various horizons. We call these
“pension buckets” for the given horizons. Given the allocation of pension
wealth to the individual pension buckets, each investment problem is a stan-
dard final-wealth problem whose properties are well studied that started with
the seminal work of Merton (1969) and Cox and Huang (1989). Smoothing is
then implemented by reducing the stock allocation for the pension bucket in
the final years before the horizon. Up to our knowledge, this paper is new in
its approach toward smoothness. The possibility of smoothing financial mar-
ket returns has been incorporated in many products in order to allow for
preferences that exhibit habit formation. Smoothing financial market returns
essentially means that a decrease of, say, 10% in pension wealth needs not
be translated immediately into a decrease of 10% in pension payments. This
implies that pension payments will decrease, due to this adverse financial mar-
ket development, at a slower pace, but ultimately by more than 10%. We
explicitly model this possibility and show how it influences the risk–return
trade-off for variable pension payments. In order to design the annuity such
that constant nominal expected pension payments are obtained, we show that
smoothing leads to a horizon-dependent AIR.

The rest of this paper is organized as follows. In Section 2, we investigate
the risk–return trade-off for variable annuities by deriving the AIR that leads
to constant expected pension payments, the optimal AIR for a CRRA investor
and the utility loss between these. In Section 3, we consider how to smooth
financial market shocks. And Section 4 concludes the paper. As numerical
illustration, we provide a running example throughout the paper.

2. VARIABLE ANNUITIES

The financial market that we consider is described by the seminal work of
Merton (1971). This implies that in the standard Black–Scholes/Merton set-
ting there is a risk-free asset with a constant interest rate r, there is a risky asset
with price St at time t that evolves by the diffusion process

dSt = μStdt+ σStdZt (2.1)
= (r+ λσ) Stdt+ σStdZt. (2.2)

Thus, we assume that the stock price St follows a geometric Brownian motion,
where μ stands for the expected return, σ is the stock volatility, λ is the Sharpe
ratio

λ = (μ − r) /σ , (2.3)

and Z is a standard Brownian motion on the probability space (�,F ,P).
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Moreover, we assume the isoelastic (power) function for utility that exhibits
a CRRA and is given by

u(x) =
{

x1−γ

1−γ
if γ > 0, γ �= 1,

ln (x) if γ = 1,
(2.4)

where γ is the relative risk aversion level. The more risk averse the investor is,
the higher γ . We exclude negative risk aversion levels which would imply risk
loving preferences. Since additive constant terms in objective functions do not
affect optimal decisions, a term of minus one is omitted from the numerator
which would be needed to show that the limiting case of γ to one converges to
logarithmic utility.

In general, the investor is endowed with initial wealth W0 which can be
used for consumption and the remainder is invested in the financial market.
The wealth process is given by

dWt = ((r+wt(μ − r))Wt − ct) dt+ σwtWtdZt, (2.5)

where wt is the fraction invested in the risky asset and ct is the withdrawal
(consumption) rate. For the CRRA utility function, the optimal time-varying
risk exposure wt is known to be

w∗ = λ

γ σ
; (2.6)

see, for example Theorem 3.8.8. in Karatzas and Shreve (1998). That is, the
optimal exposure is state- and time-independent. Concerning the optimal con-
sumption choice, we represent the withdrawal via the AIR which determines
the allocation of initial wealth to the (optimal) consumption at various hori-
zons. We formulate this problem using a discrete number of consumption
dates which effectively means that we solve H separate terminal wealth prob-
lems. The novelty in this setup allows us to directly cast optimal consumption
questions into AIRs in variable annuities.

As an example, consider a retiree who enters retirement with total wealth
W0 at time 0 and who needs to finance H annual pension payments at times.
For ease of exposition, we assume H to be given; that is, we consider fixed-
term instead of lifelong variable annuities. Think of H as the remaining life
expectancy at retirement age.2

The pension payments at each horizon h= 0, . . . ,H − 1 have to be financed
from the initial total pension wealthW0. This simple idea is formalized by the
notation in the next definition.

Definition 2.1. LetW0(h) be the amount reserved at time 0 that finances (through
a self-financing strategy) the consumption in year h.
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The budget constraint now implies

W0 =
H−1∑
h=0

W0(h). (2.7)

Stated otherwise, at time 0 we consider an amount of wealth W0(h) that is
available to finance the pension payment at time h. The actual pension pay-
ment will, of course, depend on the investment strategy that is followed and
the financial market returns. We can, conceptually, allow for a different invest-
ment strategy for the wealth allocated to each horizon h= 0, . . . ,H − 1. This
is indeed precisely what happens when financial market returns are smoothed;
see Section 3.

The way total pension wealthW0 is allocated over all pension bucketsW0(h)
determines implicitly the so-called AIR a0(h).

Definition 2.2. The AIR at time 0 for horizon h, a0(h), is defined by

W0(h)
W0(0)

= exp (−ha0(h)) . (2.8)

Jointly with the total wealthW0 available in (2.7), this implies

W0(h)
W0

= W0(h)∑H−1
k=0 W0(k)

= exp (−ha0(h))∑H−1
k=0 exp (−ka0(k))

. (2.9)

Intuitively, this relation determines the fractions of total wealth allocated to
the various horizons h. Note that a0(h) generally does not need to be constant
in h; that is, there can be an AIR term structure or, equivalently, a horizon-
dependent AIR. This will become particularly relevant when discussing the
possibility of smoothing in Section 3.

We introduce a running example that is used as illustration throughout
this paper with the following parameters: the expected return is μ = 6.00%,
the stock volatility is σ = 20.00% and the risk-free interest rate is r= 2.00%,
which leads to a Sharpe ratio of λ = 0.20. We fix the horizon at H = 20 years.
The initial wealth is assumed to be equal to W0 =e100, 000. Figure 1 shows,
for two different AIRs, the percentage of total wealth W0 that is allocated to
each horizon; that is, we depictW0(h)/W0 as given by (2.9).

Let us, for the sake of illustration and before turning to variable annu-
ities, briefly review fixed annuities. We assume that the wealth W0(h) for each
horizon h is completely invested in a risk-free bank account. Using an AIR
of 2.00%, that is equal to the prevailing risk-free rate r, implies that each sub-
sequent bucket that is allocated to a specific year contains 2.00% less of the
initial wealth than the previous bucket; see the solid bars in Figure 1. Since
each bucket will grow each year at the risk-free rate, we ultimately get a con-
stant stream of pension payments. The initial allocation to the first bucket will
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FIGURE 1: Wealth division for a0(h)= 2.00% and a0(h)= 3.00% for all h ∈ [0, ..., 19].

be largest since it will not earn any interest income, while the second bucket
can contain 2.00% less since the additional income from interest for 1 year is
also 2.00%.

Now consider the blocked bars in Figure 1, which is based on an AIR of
a0(h)= 3.00%. In this case, each subsequent bucket will contain 3.00% fewer
initial wealth than the previous one. As a result, more wealth is allocated to
earlier payments and less to later payments. Stated differently, since the ini-
tial total wealth W0 is given, the higher earlier payments will lead to lower
later payments. This is visible in Figure 1, where the blocked bar compared to
solid bars imply that the first payment is 9.1% higher while the last payment
is 9.8% lower. In terms of pension payments, an entirely risk-free investment
would lead to a r= 2.00% return every year. As a result, pension payments will
decrease by 3.00%− 2.00%= 1.00% every year.

Now, let us consider what happens in case each of the buckets is not
invested risk free but partly in the risky stock St. That is, we invest eachW0(h)
in a continuously re-balanced strategy with a stock exposure w. Standard
calculations then show that wealth Wt(h), for the pension payment at time h,
evolves as

dWt(h)= (r+wλσ)Wt(h)dt+wσWt(h)dZt, (2.10)
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FIGURE 2: Sensitivity AIR.

for 0≤ t≤ h. For an investment mix of w, the expected pension payment of a
variable annuity at horizon h is given by

E0[Wt(h)]=W0(h) exp (t (r+wλσ)) . (2.11)

The quantile at level α is given by

Q(α)
0 (Wt(h)) =W0(h) exp

(
t
(
r+wλσ − 1

2
w2σ 2

)
+ zα

√
twσ

)
, (2.12)

where zα denotes the corresponding quantile of the standard normal distri-
bution. Note that the risk exposure that is constant per bucket can easily be
extended to time-varying risk exposure, though optimality is obtained for a
constant w.

Remark 2.1. Figure 2 shows the sensitivity of the AIR on the expected pension
payment at h= 9 and h= 19. We observe that an increase in the AIR has hardly
any effect on the distribution of the 10th pension payment, but all the more on the
20th payment. The higher the AIR, the larger the expected payments in the near
future and the lower the expected payments in the distant future, with the expected
payments in the middle of the horizon being hardly influenced by the choice
of AIR.

Remark 2.2. Contrary to popular belief, a variable annuity does not provide pro-
tection against interest rate risk upon conversion of initial pension wealth W0 into
an annuity. Conversion risk is also known as annuity risk, that is, the risk that if

https://doi.org/10.1017/asb.2019.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.27


138 A.G. BALTER AND B.J.M. WERKER

financial market conditions are unfavorable at retirement, annuities are relatively
expensive. Both for fixed and variable annuities, the level of the interest rates at
the moment of conversion plays an important role. Although we do not explicitly
consider a market with interest rate risk, we can assess the conversion risk effect
by studying the implications of changes in the risk-free rate r.

In general W0(h)= W0 exp (−ha0(h|w))∑H−1
k=1 exp (−ka0(k|w)) holds, which we obtain by slightly rewrit-

ing (2.9). For the fixed annuity, the pension payments are known to be
equal to Wh(h)=W0(h) exp (rh), while for the variable annuity, E0[Wh(h)]=
W0(h) exp ((r+wλσ )h). And thus a change in the risk-free rate from r to r′ and
in the AIR from a to a′ leads to an equal shock in all payments of

Wh(h)|r
Wh(h)|r′ = E0[Wh(h)]|r

E0[Wh(h)]|r′ = exp ((r− r′ + a′ − a)h)

∑H−1
k=1 exp (− ka′)∑H−1
k=1 exp (− ka)

. (2.13)

The only3 viable way of dealing with conversion risk is to use appropriate life-
cycle investment strategies (in terms of bond duration) during the accumulation
phase (Koijen et al., 2011). Products such as guaranteed annuity options (Kling
et al., 2014) guarantee the policyholder at the start of the deferred annuity a
minimum conversion factor or a minimum pension income both circumventing the
risk of expensive lifelong annuities at the retirement age. However, the rate is
fixed at an earlier date at which market conditions can also be unfortunate.

2.1. Constant expectation AIR

One may be interested to choose the AIR a0(h) in such a way that the expected
pension payments are constant with respect to h, that is such that E0[Wh(h)]=
W0(0) (recall that the first pension payment W0(0) is without investment
risk).

Proposition 2.1. The AIR ā0(h|w) that leads to constant expected payments for
variable annuities equals

ā0(h|w)= r+wλσ . (2.14)

Proof. From (2.11), we find that E0[Wh(h)]=W0(0) implies

W0(h)
W0(0)

= exp (−h (r+wλσ)) , (2.15)

or (2.14), using (2.8). �
This constant AIR leads to nominally constant expected pension payments.

In case our financial market would exhibit interest rate risk (that is, a horizon-
dependent risk-free term structure) and/or stock market predictability, we
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FIGURE 3: Variable annuity with w= 35% and ā0(h|w)= 3.4%.

would need horizon-dependent AIRs to obtain expected constant pension pay-
ments. We will see that, even in the present financial market, also smoothing
financial market returns leads to a horizon-dependent AIR if annuity payments
are required to be constant in expectation.

Figure 3 shows, in solid black, the expected yearly pension payment with
a stock exposure w= 35% and the 5% and 95% quantiles. If the AIR equals
the expected return as in (2.14), then a constant stream of expected pension
payments is obtained. The median is (slightly) below the expected pension pay-
ments since the log-normal distribution is skewed. The difference between the
variable and the fixed annuity is caused by the risk included in the variable
annuity. As a result, the variable annuity leads to higher expected payments,
but there is the risk that the realized payments are actually lower than the
fixed annuity. The dash-dotted line is the fixed annuity in whichW0(h) is fully
invested in the risk-free asset.

2.2. Optimal AIR

For given preferences, we derive the optimal AIR that maximizes the expected
utility from all the pension payments subject to the budget constraint of the
total available pension wealth. The optimal withdrawal is determined by the
optimal allocation strategy a∗

0(h|w). The retiree has to determine how much of
his wealth he allocates to each horizon for a given investment strategy w. Thus,
a retiree who maximizes the expected utility subject to the budget constraint
solves the following optimization problem:

https://doi.org/10.1017/asb.2019.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.27


140 A.G. BALTER AND B.J.M. WERKER

Problem 2.1.

max
{W0(h)}

E0

[
H−1∑
h=0

exp (−βh) u (Wh(h))

]
(2.16)

s.t. W0 =
H−1∑
h=0

W0(h), (2.17)

where β is the subjective discount rate that reflects time preferences, that is,
impatience.

Proposition 2.2. The optimal AIR that solves Problem 2.1 with utility function
(2.4) is

a∗
0(h|w)=

{
r+ 1

γ
(β − r) −

(
1
γ

− 1
)
wσ

(
λ − 1

2γwσ
)

if γ > 0, γ �= 1,

β if γ = 1.
(2.18)

Proof. Using Itô’s lemma and (2.10), we find

dWt(h)1−γ =
(
r+wλσ − 1

2
γw2σ 2

)
(1− γ )Wt(h)1−γdt+wσ (1− γ )Wt(h)1−γdZt.

(2.19)
This leads to the optimization problem

max
{W0(h)}

H−1∑
h=0

exp (−βh)
W0(h)1−γ

1− γ
exp

((
r+wλσ − 1

2
γw2σ 2

)
(1− γ )h

)
(2.20)

s.t.W0 =
H−1∑
h=0

W0(h). (2.21)

The Lagrangian is

L(W0(h)) =
H−1∑
h=0

exp (−βh)
W0(h)1−γ

1− γ
exp

((
r+wλσ − 1

2
γw2σ 2

)
(1− γ )h

)

− κ

(
H−1∑
h=0

W0(h)−W0

)
.

For ease of notation, let f (h)= exp
(−βh+ (

r+wλσ − 1
2γw

2σ 2
)
(1− γ )h

)
.

Then the first-order condition with respect toW0(h) becomes

∂L(W0(h))
∂W0(h)

= W0(h)−γ f (h)− κ = 0, (2.22)

W ∗
0 (h) = κ

− 1
γ f (h)

1
γ . (2.23)

https://doi.org/10.1017/asb.2019.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.27


THE EFFECT OF THE AIR AND SMOOTHING ON VARIABLE ANNUITIES 141

The Lagrangian multiplier can be solved by plugging the optimal wealth
allocation in the budget constraint, implying

(κ∗)− 1
γ = W0∑H−1

h=0 f (h)
1
γ

. (2.24)

Combining (2.23) and (2.24) gives

W ∗
0 (h) = f (h)

1
γ

W0∑H−1
h=0 f (h)

1
γ

. (2.25)

By the definition of the AIR in Equation (2.9), the optimal AIR equals

a∗
0(h|w)= −1

h
ln (f (h))

1
γ . (2.26)

�
Note that both ā0(h|w) and a∗

0(h|w) are independent of h. Thus because the
problem is time consistent, it is never optimal to transfer money from year to
year; that is, re-optimization leaves the strategies unchanged.

The optimal AIR given the optimal risk exposure leads to the following
corollary.

Corollary 2.1. The optimal AIR for the optimal Merton stock exposure is

a∗
0(h|w∗)=

{
r+ 1

γ
(β − r) − 1

2γ

(
1
γ

− 1
)

λ2 if γ > 0, γ �= 1,

β if γ = 1,
(2.27)

and the AIR that leads to constant expectations is

ā0(h|w∗)=
{
r+ λ2

γ
if γ > 0, γ �= 1,

r+ λ2 if γ = 1.
(2.28)

Proof. Plugging the optimal exposure w∗ from (2.6) into (2.27) and (2.14)
gives a∗

0(h|w∗) and ā0(h|w∗), respectively. �

Remark 2.3. Both the optimal risk exposure and the optimal AIR can be solved
for other utility functions as well. Karatzas and Shreve (1998)’s Theorem 3.7.3
shows the general representation of the optimal consumption. For the required
technical assumptions, we refer to their Chapter 3. Both the optimal risk expo-
sure and the AIR are implied by the optimal consumption that is obtained via
the martingale method. We have, essentially, used the Hamilton–Jacobi–Bellman
method in the proof of Proposition 2.2 for the special case of CRRA utility and a
geometric Brownian motion for the stock price process.
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A main difference between a∗ and ā in Corollary 2.1 is that the optimal
one includes the individualistic risk aversion level and subjective discount rate
which are part of one’s individual preferences. If the subjective discount rate is
higher than the risk-free rate, then the cost of waiting is higher than the reward
of waiting. Therefore, a higher utility is obtained by immediate consumption
which coincides with allocating less to future payments, that is, a higher AIR
and vice versa. For logarithmic utility, the income effect and substitution effect
cancel out the risk-free rate term of the optimal AIR. Moreover, it can be seen
that for large risk aversion the optimal exposure converges to zero and thus the
variable annuity with either AIR boils down to a fixed annuity.

By comparing the two AIRs, we can determine for which values the indi-
vidual prefers increasing, decreasing or constant expected pension payments.
By definition if a∗

0(h|w∗)= ā0(h|w∗), then the expected pension payments are
constant, while for a∗

0(h|w∗)< ā0(h|w∗), less is allocated to early buckets imply-
ing an increase in expectation throughout the lifetime and vice versa. Thus,
the optimal expected pension payments for the CRRA investor are either
decreasing, constant or increasing for the following parameter values:

1+ γ

2γ
λ2

⎧⎪⎨
⎪⎩

> β − r increasing,
= β − r constant,
< β − r decreasing.

(2.29)

Proof. a∗
0(h|w∗)< ā0(h|w∗)⇔ r+ 1

γ
(β − r) − 1

2γ

(
1
γ

− 1
)

λ2 < r+ λ2

γ
. �

If β = r, then a∗
0(h|w∗)< ā0(h|w∗) for any γ > 0 and thus the expected pen-

sion payments are increasing through time. The more impatient, that is the
higher β, the more likely the expectation is constant or decreasing.

Munk (2017) derives the optimal consumption in the Merton model as
given by (2.5) and finds that instantaneous consumption is expected to increase
with age, decrease with age or to be age-independent depending on which case
of (2.29) holds. Realistic parameters appear to imply that the consumption
increases, on average, over life.

Figure 4 depicts4 several AIRs; the dashed line shows ā0(h|w∗) which gener-
ates constant expected payments for different risk aversion levels of γ , and the
solid line shows a∗

0(h|w∗) for β = 2% and the dotted line for β = 7% which both
determine the preferred wealth allocation for a CRRA investor.

If we fixed the risk aversion level to γ = 2.9, the optimal risk exposure coin-
cides with the exogenously chosen strategy of the running example which was
w= 35%. Since the optimal AIR based on β = 2% is lower than the AIR that
determines constant expectations, the implied expected pension stream will be
increasing through time, while the expected payments of the CRRA investor
with a subjective discount factor of 7% will be decreasing every year. Figure 3
shows the expected pension payments for the ā0(h|w∗) and Figures 5 and 6 show
this for the two optimal AIRs a∗

0(h|w∗) for γ = 2.9.
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FIGURE 4: AIRs a∗
0(h|w∗) with β = 2% or β = 7% and ā0(h|w∗).

FIGURE 5: Expected annuity payments for γ = 2.9, where a∗
0(h|w∗) with β = 2%.

2.3. Utility loss

We define the total utility that the CRRA investor obtains by U which is a
function of the AIR and total initial wealth and given by
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FIGURE 6: Expected annuity payments for γ = 2.9, where a∗
0(h|w∗) with β = 7%.

U(a0(h|w),W0) = E0

[H−1∑
h=0

exp (−βh) u (Wh(h))

∣∣∣∣W0(h)=W0(0) exp (− ha0(h|w)),

W0 =
H−1∑
h=0

W0(h)
]
. (2.30)

A total wealth ofW0 and an AIR of a0(h|w) give the investor the same utility as
a total – lower – wealth of αW0 and the optimal AIR of a∗

0(h|w). We call α the
wealth loading, which is the reduction on the total wealth the investor accepts
when his wealth is distributed by the optimal AIR rather than a suboptimal
one. Thus the wealth loading is implied by

U(a0(h|w),W0)=U(a∗(h|w), αW0). (2.31)

If α = 1, the investor is indifferent between the two AIRs. So the utility loss
is zero. Therefore, we define the certainty equivalent utility loss as 
 = 1− α,
which represents the percentage of wealth reduction due to suboptimality. By
definition 0≤ 
 ≤ 1, and the higher 
, the more the investor looses due to the
suboptimal AIR.

Comparing the CRRA certainty equivalents gives a closed-form expression
for the utility loss. The definition of a certainty equivalent isCE(a0(h|w),W0)=
u−1 (U(a0(h|w),W0)). Indifference between utilities is one-to-one related to
indifference between certainty equivalents for inverse utility functions that are
monotone transformations only. Therefore, (2.31) can also be stated by

CE(a0(h|w),W0)=CE(a∗(h|w), αW0). (2.32)
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FIGURE 7: Certainty equivalent utility loss 

(
ā0(h|w), a∗

0(h|w)
)
for w= 35%.

For CRRA, the certainty equivalent is given by

CE(a0(h|w),W0) = W0∑H−1
k=0 exp (−ka0(k|w))

( H−1∑
h=0

exp
(
h
(

− β −
(
a0(h|w)

−
(
r+wλσ − 1

2
γw2σ 2

))
(1− γ )

))) 1
1−γ

. (2.33)

When comparing two general AIRs a0,1(h|w1) with wealth W0 and a0,2(h|w2)
with wealth αW0 with each other, the certainty equivalent utility loss for a
CRRA investor is given by



(
a0,1(h|w1), a0,2(h|w2)

) = 1− α
(
a0,1(h|w1), a0,2(h|w2)

)
= 1− CE(a0,1(h|w1),W0)

CE(a0,2(h|w2),W0)
, (2.34)

and the utility loss for logarithmic utility is obtained by the limit of
limγ→1

CE(a0,1(h|w1),W0)
CE(a0,2(h|w2),W0)

. Thus, 

(
a0,1(h|w1), a0,2(h|w2)

)
represents the percentage of

wealth that the investor with a0,2(h|w2) requires less – to be indifferent in terms
of utility – when the AIR is a0,1(h|w1) with 100% total wealth.

Several losses of suboptimality can be analyzed since optimality is obtained
for two parameters, the AIR and the exposure. In general, the following
losses occur, U(a∗

0(h|w∗))≥U(a∗
0(h|w)),U(a∗

0(h|w∗))≥U(ā0(h|w∗)),U(a∗
0(h|w∗))≥

U(ā0(h|w)),U(a∗
0(h|w))≥U(ā0(h|w)) and U(ā0(h|w∗))≥U(ā0(h|w)).

Figures 7 and 8 show the utility losses by comparing the optimal AIR
a∗
0(h|w) with the AIR that implies constant expectations ā0(h|w) for r=
2%, λ = 0.20, σ = 20%, β = 3% and an exposure of w= 35% and w= 100%,
respectively. For example, an investor with a risk aversion of about γ = 6.2
and a risk exposure of w= 100% receives equal utility from W0 =e100, 000
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FIGURE 8: Certainty equivalent utility loss 

(
ā0(h|w), a∗

0(h|w)
)
for w= 100%.

FIGURE 9: Certainty equivalent utility loss 

(
ā0(h|w∗), a∗

0(h|w∗)
)
.

and a constant pension in expectation or fromW0 =e50, 000 and the optimal
AIR while if w= 35%, the utility loss impliesW0 =e98, 200.

Figure 9 shows the utility loss 
 for the optimal risk exposure w∗ for dif-
ferent levels of risk aversion γ , that is, by comparing a∗

0(h|w∗) with ā0(h|w∗).
The optimal risk exposure, the constant Merton fraction, for each different
level of risk aversion is shown in Figure 10. For very high levels of risk aver-
sion, the optimal Merton strategy converges to no risk exposure and thus both
AIRs converge to the risk-free rate implying no loss because of suboptimal-
ity. While for fixed risk exposure, a higher risk aversion implies a higher utility
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FIGURE 10: Wealth exposure w∗.

FIGURE 11: Certainty equivalent utility loss 

(
ā0(h|w), a∗

0(h|w)
)
for logarithmic utility.

loss. Moreover, when γ → 1, the utility loss does not converge zero but to the
loading of logarithmic preferences as depicted in Figure 11, which is shown for
different risk exposures.

Thus for optimal risk exposure, the utility loss due to the allocation that
leads to constant expected payments is small compared to the optimal AIR.
Therefore, abstracting from individual measurements of the risk aversion level
and subjective discount rate can be justified based on its minor impact on
utility.
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3. SMOOTHING FINANCIAL RETURNS

If agents have habit-formation preferences, they may want to reduce year-
to-year volatility in the pension payments. Utility functions of this type
capture individuals who receive utility from consumption relative to a habit.
It rationalizes the demand for smooth consumption as shown by Abel (1990),
Constantinides (1990), Fuhrer (2000), Carroll (2000), Crawford (2010) and
Davidoff et al. (2005).

The traditional view to achieve smooth consumption, that is lower year-
to-year volatility, is to “smooth” financial market returns. That is, in case
portfolio returns are −20%, instead of reducing the pension payment imme-
diately by 20%, it is only reduced by a fraction, say, 20%/5= 4%. This implies
that pension payments later in the retirement phase need to be cut by more
than 20% to fulfill the budget constraint. Smoothing thus leads to a smaller
year-to-year volatility, but the long-term volatility is larger. We derive the con-
ceptual implications of smoothing in the framework of the discrete pension
buckets and show the change in the design via the AIR that generates constant
expectations.

The reduced year-to-year volatility can be achieved as follows. Recall that
the initial pension payment at time 0 is given by W0(0). In order to have lim-
ited risk in the pension payment W1(1), we do not invest it according to a
stock exposure w, as in Section 2, but with a stock exposure w0(1)=w/N,
where N denotes the smoothing period, say, N = 5 years. Subsequently, the
pension wealth W0(2) for the pension payment W2(2) is invested with expo-
sure w0(2)= 2w/N the first year and w1(2)=w/N the second year. Different
smoothing mechanisms can be chosen as long as the exposure is decreased.
All results, that is, formulas, below hold for general wj−1(h), which is the stock
exposure from year j− 1 to j for the pension wealth that generates the payment
in year h. For illustration, we provide figures based on the exposures

wj−1(h)=wmin
{
1,

1+ h− j
N

}
, j= 1, . . . , h, (3.1)

for given smoothing periodN and long-term stock exposurew. Figure 12 shows
these stock exposure wj−1(h) as a function of j for h= 17.

The horizon-dependent stock exposure wj−1(h) induces a life-cycle-type
investment strategy. That is, with smoothing, the investment mix is no longer
constant over time. Note that the classical reasoning behind a life-cycle argu-
ment does not hold for the retirement phase. The idea is that human capital
– future wealth from income that is still to be earned – decreases with age.
As such, the fraction of savings that is allocated to investments is higher for
younger workers because the absolute value of savings is relatively low. In the
retirement phase, the future income does not decrease since the income at old
age continues until death. However, smoothing causes a horizon-dependent
investment strategy, as illustrated above. This decreasing risk exposure per
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FIGURE 12: Smoothing stock exposure.

bucket is the favored design that is in line with the finding of Blake et al. (2014),
who show that it is optimal to gradually exchange equity for fixed annuities in
the decumulation phase for Epstein–Zin preferences. Note here that the deter-
ministic risk exposure per bucket implies a path-dependent risk exposure in
terms of the total pension wealth and thus a stochastic smoothing mechanism.

We can now calculate the distribution of the pension payment at time h.
Again, this distribution is log-normal, but now with parameters

h∑
j=1

(
r+wj−1(h)λσ − 1

2
w2
j−1(h)σ

2

)
(3.2)

and

h∑
j=1

w2
j−1(h)σ

2. (3.3)

The expected nominal pension payments, and their quantiles, can be calculated
as before.

A variable annuity as specified by Equation (2.27) in Corollary 2.1 reflects
the optimal design for a CRRA investor. Thus both smoothing and embed-
ding guarantees in the design will not be preferred. Utility functions with a
reference level could drive demand for smoothing or mixed annuities, where
the latter combines the fixed and variable annuity according to constant pro-
portion portfolio insurance (CPPI) to guarantee a minimum pension payment.
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In practice, smoothing mechanisms are often implemented for individual prod-
ucts as well as among generations. The collective product with smoothing and
intergenerational risk transfers, that we do not consider here, is often based on
a solidarity argument. Moreover, to protect retirees from poverty due to impa-
tience it is for instance by Dutch national law5 imposed that the AIR can never
be chosen such that it leads to decreasing expectations. From a communicative
perspective, constant expectations are usual too. Thus for the remainder of the
paper, we illustrate the impact of smoothing within in the “bucket” setting for
an AIR that leads to constant expectations.

3.1. Constant expectations with smoothing

The present setting allows for an exact derivation of the AIR that leads to
pension payments that have a constant expectation. The AIR ã0(h|w) leads to
a pension payment that is constant in expected nominal terms and is given by
the next proposition.

Proposition 3.1. The AIR ã0(h|w) that leads to constant expected payments in
nominal terms when financial shocks are smoothed according to (3.1) equals

ã0(h|w)= r+ λσ
1
h

h∑
j=1

wj−1(h). (3.4)

Proof. With smoothing, the expected nominal pension payment at time h
is given by

E0[Wh(h)]=W0(h) exp

⎛
⎝ h∑

j=1

(
r+wj−1(h)λσ

)⎞⎠ . (3.5)

In order to have a constant expected nominal pension payment, we must
choose the AIR ã0(h|w) such that this expectation equalsW0(0) for all h. Recall,
see (2.8),

W0(h)
W0(0)

= exp (−ha0(h)) . (3.6)

Thus, together with E0[Wh(h)]=W0(0), it follows that ã0(h|w) is implied by

the a0(h) that solves exp (−ha0(h)) exp
(∑h

j=1

(
r+wj−1(h)λσ

))= 1 for a given
exposure w. �

The dash-dotted gray line in Figure 13 shows the expected pension pay-
ment and the dashed gray lines show the 5% and 95% quantiles with smoothing
period N = 5 years for a stock exposure w= 35% and the AIR equal to ã0(h|w)
of Proposition 3.1. The black dotted and black solid lines are obtained without
smoothing, similar to Figure 3.
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FIGURE 13: Smoothing with w= 35%,N = 5.

FIGURE 14: Smoothing with w= 46.5%,N = 5.

Because the total risk exposure is lower due to smoothing, the expected
payments are lower than without smoothing. Therefore, a comparison of risk
for the same level of expectations is accomplished by a stock exposure of w=
46.5% with smoothing and w= 35%without smoothing, as shown in Figure 14.
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FIGURE 15: Smoothing structure.

The dotted line in Figure 15 shows the AIR ã0(h|w) as a function of the
horizon such that the expected pension payments are constant when smoothing
is applied, which is equal to the curve from Bovenberg et al. (2012). If the AIRs
are set equal to the risk-free rate, as given by the dash-dotted line, the fixed
annuity is obtained. The expected return with a stock exposure of w= 46.5% is
the solid line.

4. CONCLUSION

This paper provides analytical expressions for the risk–return trade-off of
variable annuities, with a special focus on the explicit allocation of initial
wealth across the “pension buckets” reserved for future payments. The latter
is completely determined by the AIR and relates to the consumption portfolio
problem. This conceptual division provides useful insights by analyzing differ-
ent AIRs. We derive the AIR that leads to constant expected pension payments
as well as the optimal AIR for an investor with CRRA preferences. The utility
loss between these two is small when the risk exposure is optimal, that is for the
Merton fraction. We also consider the situation where financial market returns
may be smoothed over the remaining retirement period. In order to obtain,
in a contract with smoothing, a constant expected nominal pension, the AIR
has to be horizon dependent. Other insights that we obtain from investigating
the effect of the AIR on the variable annuity is that the allocation’s sensitiv-
ity on the payments toward the end of life is large while early or intermediate
expected payments are hardly affected by the AIR. Moreover, we show that

https://doi.org/10.1017/asb.2019.27 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.27


THE EFFECT OF THE AIR AND SMOOTHING ON VARIABLE ANNUITIES 153

variable annuities do not solve conversion risk since we find that shocks in the
risk-free rate have the same effect for variable and fixed annuities.

NOTES

1. For instance, variable annuities entered the Dutch market since the Improved Defined
Contribution Scheme Act of 2016 and the Australian market has introduced Comprehensive
Income Products for Retirement (CIRPs).

2. Mortality could be incorporated by multiplying each “bucket”W0(h) reserved for the pen-
sion payment in year h by the survival probability from 0 to h. For the impact of longevity risk,
see Balter et al. (2019).

3. There is only a small effect thatmay lead to some protection. Under the empirically hard to
defend assumption that lower interest rates r imply increased prices-of-risk λ, some protection is
provided. But even if this assumption is true, such protection only pertains to the risky investment
in the variable annuity.

4. For the parameter assumptions of the running example, that is, μ = 6%, r= 2%, σ = 20%
and λ = 0.2.

5. Source: http://www.toezicht.dnb.nl/2/50-235784.jsp
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