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ABSTRACT. Snow slab avalanches primarily release by propagation of shear fractures within thin weak
layers under thicker slabs. The weak layer is typically on the order of 1mm thick and fails in mode II. In
some cases, the weak layer is thicker and there may be a need to consider slope-normal deformation as
part of the energy condition prior to rapid propagation. In this paper, field measurements from shear
fracture initiation and high-speed films are combined to consider the effects of slope-normal
deformation on bending of the slab prior to propagation and its relation to the propagation condition.
Slab bending is modelled using two limiting cases: (1) a uniformly loaded beam supported by a
deforming weak layer, analogous to a Winkler foundation, and (2) a uniformly loaded unsupported
cantilevered beam. The experimental and analytical results suggest that slab bending prior to fracture
initiation is small or negligible. Two previous approaches to modelling slab avalanche initiation
involving slab bending are discussed. Both models proposed strong slab-bending effects prior to
initiation, which conflicts with our results. Our field observations and modelling both show that strong
bending is a dynamic effect following slope-parallel weak-layer fracture initiation.

1. INTRODUCTION
The first mathematical model to describe the mechanics of
dry snow slab-avalanche initiation was by Perla and
LaChapelle (1970) and Perla (1971). They defined two
separate avalanche initiation scenarios depending on weak-
layer thickness. If the weak layer was very thin, they
described the initiation process by shear failure within the
weak layer. For thicker layers, they described the failure
process in terms of collapse of the weak layer, which implied
slope-normal deformation and bending of the slab. For weak
layers of finite thickness, on the order of�10mmormore, the
collapse is often observed during dynamic slope-parallel
fracture propagation in the weak layer even when the slope
angle is zero. The drop associated with dynamic collapse can
be sensed as noise from dynamic compression of the weak-
layer air between the pore spaces. This is called a ‘whumph’
from its phonetic description. Since Perla’s work, descriptions
and modelling in regard to the collapse process (Johnson and
others, 2004; Heierli and others, 2008) have largely been
guided by descriptive field observations after propagation has
begun, rather than by detailed observations about how alpine
snow fails and fractures and measurements of deformation
prior to fracture propagation. These earlier models have all
placed bending within the slab as the primary source of
stored energy in slab avalanche initiation when the weak
layer has finite thickness. At present, the only quantitative
models of bending or collapse in relation to avalanche
initiation are those of Perla (1971) and Heierli and others
(2008). After introducing our field observations and measure-
ments, these two models are discussed and compared.

The stratigraphy appropriate to slab avalanche initiation is
always characterized as a thick, cohesive planar slab on top
of a relatively thin weak layer (Perla, 1971; McClung, 1979,
1981; Schweizer and others, 2003; McClung and Schaerer,
2006). In the present paper, slab deformation energy from
slope-normal deformation is modelled assuming a stronger,
cohesive slab supported on a weak deformable foundation

to simulate the weak layer. The formalism contains the same
assumptions as a Winkler (1867) foundation, which has
found success in soil foundation work and for floating ice
(Bažant and Cedolin, 2003). Other formulations exist for
modelling the deformation for a beam on a deformable
foundation, but the Winkler assumptions are the simplest.
For performance in practical applications, the Winkler
foundation is regarded as being as good as or better than
more complex models (Bažant and Cedolin, 2003).

The Winkler foundation is used for three reasons: (1) It is
the simplest known such foundation. The facts about alpine
snow are not yet known well enough to justify a more
complex model. (2) The field observations reported in this
paper suggest that the deforming snow beams are in weak
contact with the deforming layer, so some type of analysis
with foundation support is needed. We also include the case
of an unsupported beam to illustrate the case of maximum
bending. (3) The main application of the results in this paper
is to work toward an understanding of the conditions of
dry snow slab-avalanche initiation. The fieldwork and
observations reported below suggest that, in the case of
avalanche release, the slab will be supported to some extent
prior to avalanche initiation. Thus, the simpler case of an
unsupported beam will likely not hold for explaining
avalanche initiation.

The results, including field and laboratory measurements,
field observations and modelling, all suggest a reversal of the
concepts in the previous models. Namely, we propose that
the effects of slab bending due to slope-normal deformation
prior to initiation are small. When combined, the laboratory
and field results suggest that the effects of slab bending prior
to dynamic fracture propagation are very small or even
negligible in terms of the propagation condition. The results
justify the assumption (Palmer and Rice, 1973; McClung,
1979, 1981, 2009a, 2011) that, prior to propagation, the
primary source of deformation is within the weak layer, not
the slab. For a surface-hoar weak layer, the most common
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weak layer in the field test data, this assumption has been
confirmed from precision laboratory tests by Reiweger and
Schweizer (2010).

Two goals are sought in this paper. The first is to discuss
the previous models of Perla (1971) and Heierli and others
(2008). The second is to present some simple data and
analysis that may apply to avalanche initiation when
considering the effects of slope-normal deformation.

2. DATA AND OBSERVATIONS FROM FIELD
EXPERIMENTS FROM PREVIOUS WORK
All the field measurements in this paper are derived from
experiments called propagation saw tests which involve
making a saw-cut in a weak layer under a snow slab until
slope-parallel weak-layer propagation is achieved. Sigrist
(2006), Gauthier and Jamieson (2008) and McClung (2009a,
2011) provide detailed descriptions of these field tests. A
brief description is given here. The procedure involves
introducing a cut upslope within a weak layer underneath a
long rectangular block of snow. The cut is made to a critical
length, L, at which the slope-parallel fracture propagates
rapidly within the weak layer. Figure 1 contains a schematic
of the test set-up. The block of snow is 30 cm wide with a
total length, L0, ideally more than twice the depth, D. The
standard length of the block is 1m, with the maximum cut
length (the median of a series of tests for an individual layer)
in all the tests as �65 cm.

The values of L used in this paper are median values
derived from a series of tests, each of 68 slab–weak-layer
combinations comprising 750 tests. Approximately 90% of
the values come from Gauthier (2007) and Gauthier and
Jamieson (2008).

In most tests, both the lower (downslope) and upper
(upslope) ends of the block are cut in the slope-normal
direction so that they represent free surfaces. Gauthier and
Jamieson (2008) showed that there is no statistical difference
between cut lengths made up- or downslope. For the
measurements and observations described in the present
paper, the cut is taken in the upslope direction unless
otherwise stated. Given the standard 1m block length and
maximum cut length (65 cm) in the dataset, it is a good
assumption that any free surface on the upslope end of the
block does not affect the results.

In order to perform the tests, the weak layer must be
sufficiently thick (>5mm) that the snow saw can be moved
through the weak layer without cutting into the slab. This is a
limitation of the tests, in that some weak layers in slab
avalanches are only on the order of 1mm thick (e.g. stellar
crystal layers) and it would not be possible to move the saw
so as not to intersect the slab. Thus, the data used in this
paper do not apply to weak layers less than �5mm.

3. OBSERVATIONS AND DATA IN RELATION TO
SAW TESTS
In addition to the propagation saw test data, we observed
and measured saw tests for developing weak-layer fractures
and slab deformation using high-speed films (300 frames s–1)
before, during and after fracture propagation in the weak
layer in February 2009. The important results are listed
below.

1. Strong bending and dynamic collapse are observed only
after a fracture has propagated. Thus, strong bending and
collapse are precipitated by a fracture.

2. Two types of fracture precede dynamic collapse and the
associated strong bending: either a tensile fracture
through the slab from top to bottom or a slope-parallel
fracture through the weak layer. The type of initial
fracture observed depends on the saw thickness used. For
a 1mm thick saw, slab tensile fractures are observed to
occur much less frequently than for a 3mm thick saw.
We believe this effect is due to the larger gap or
disturbance created by the thicker saw to produce more
bending and tensile fracture. The volume fraction filled
by air in the weak layer is typically �80%. The
disturbance caused by the saw is bound to produce
some artificial deformation.

3. As the saw-cut progresses (Fig. 3, further below), the slab
begins to bend slightly, with total slope-normal displace-
ment of �1mm (at the free end) over slope-parallel
distances of saw-cut up to 1m. The weak-layer crystals
remain in contact with the slab and the substratum
during the cut.

4. The slope-normal deformation at the free surface end of
the block is �1mm prior to any propagating fracture or
weak-layer collapse. Slope-normal deformations greater
than �1mm are observed only after dynamic weak-layer

Fig. 1. (a) Schematic for field tests made with a saw-cut of critical
length L within a weak layer of thickness d0 with a total block
length L0. (b) Side-view schematic of the field tests, with D as the
slab depth and slope angle  . The parameter ! is the length of the
fracture process zone. The coordinate system is defined such that x
is measured from the left end of the block ðx ¼ 0Þ to the end of the
cut or slip surface ðx ¼ LÞ in the direction of the dotted line in the
center of the weak layer.
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propagation or tensile fracture through the slab has
caused dynamic collapse (see Section 3.1).

5. The saw tests may be envisioned as a notch cut in the
weak layer but not a sharp crack with infinitesimal
distance between the crack faces. The notch creates a
gap in the weak layer, allowing the slab to sink into the
weak layer and bend slightly as the cut is lengthened.
Two extreme cases may be thought of in relation to
modelling. One of these is to envision the slab as a
simple cantilever beam which may or may not be
supported by the weak layer. The other extreme is to
think of the notch as equivalent to a sharp crack which is
being closed as the crack lengthens and the slab bends.
In reality, the saw tests are somewhere in between these
extreme cases. Our modelling approach considers only
the cantilever beam case since it implies the most
bending. However, we have included comments about
the fracture mechanical case.

3.1. Results from high-speed films (300 frames s–1)
Figure 2 contains an example of the field measurements
illustrated by tracking four particles in the slab. It shows
slope-normal displacement, speed and acceleration of the
particles. The total slope-normal displacement is slightly less
than 1mm prior to slope-parallel propagation. For Figure 2,
D= 0.82m,  = 338, �= 240 kgm–3 and L = 0.39m. For
scale, 1 s represents about 10–20 cm of saw-cut. Thus, the
slope-parallel scale of the cut (20 cm) over 1 s in Figure 2 is
�200 times the slope-normal displacement (0.001m) when
the slope-parallel propagation condition is met. It is of
interest that the scale of slope-normal displacement
(0.001m or less) was found in several films. All the
information we have suggests that the slope-normal dis-
placement, at propagation, is of order 1mm. These values
suggest (but do not prove) that slope-normal displacement
and bending effects are small prior to propagation. Roughly,
if it is considered that the deformation takes place on the arc
of a circle, simple geometry suggests that the radius of
curvature (cut length L = 0.39 m) at propagation is
R � L2=0:001 ¼ 152m. In the following analysis, we con-
sider this calculation in more detail using mechanical
modelling of the bending process.

3.2. Summary of information from the saw tests and
information needed for estimating slab deformation
The saw-test data include measurements of L, D, � and  for
each test, where � and  are mean slab density and slope
angle respectively. The dataset with all four parameters
measured consists of 42 slab–weak-layer combinations
comprising 559 individual tests.

In addition to these measurements, for the slab deform-
ation calculations below, we need estimates of the effective
viscoelastic slab modulus E 0 ¼ 2�=ð1� �Þ, where � is an
effective shear modulus, which is rate- and density-depend-
ent, and the effective Poisson’s ratio, �, is taken as � ¼ 0:1
based on the estimates of Mellor (1975) and Salm (1977) for
the low-density snow used in the tests (�=85–266 kgm–3).

The formulation we use for E 0 is equivalent to the
assumption that the deformation is described by a two-
parameter ð�, �Þ linear compressible stress–strain relation as
with linear elasticity. The value of E 0 is specified as a
material property appropriate for the deformation rate in the
experiments and the slab density, both of which are known.

Since the experimental data contain elastic and viscous
effects, E 0 is defined as the storage modulus in a viscoelastic
sense. Calculations of slab deformation using E 0 should yield
approximate estimates of the elastic (or recoverable)
deformation which is the component responsible for fracture
propagation.

In snow fracture applications, an important aspect resides
in the experimental information that alpine snow is a quasi-
brittle material (Bažant and others, 2003). Experimental data
(Sigrist, 2006; Borstad and McClung, 2009) from tensile
laboratory tests show that alpine snow has a finite-sized
fracture process zone (FPZ) which is typically �5 cm. This
implies that the appropriate choice of rate for the material
response is governed by the ratio of the rate of fracture
advance to the size of the FPZ (Palmer and Rice, 1973; Rice,
1973; Bažant, 2005). For the field tests under snow slabs
(propagation saw tests) (Gauthier, 2007; Gauthier and
Jamieson, 2008; McClung, 2009a, 2011), the appropriate
rate corresponds to a frequency of interest of �1Hz since
the saw-blade width (5 cm) is comparable to the FPZ width
(5–10 cm) and the saw-cut speed is about 10–20 cm s–1.

For a frequency of 1Hz (Camponovo and Schweizer,
2001), a value of E 0 from the storage shear modulus in
viscoelastic tests may be approximated as

E 0 ¼ 2:22� 10�6 105:58þ0:00857ð��215Þ
h i

ðMPaÞ ð1Þ

In general, the saw tests are too slow to consider the slab
deformation as completely elastic (McClung, 2009a, 2011).
Thus, in order to estimate the elastic component necessary
to drive fractures, we take the storage modulus (the elastic
component of the viscoelastic modulus) appropriate for the
test rate and the slab density as in Eqn (1). Since the test
data contain both elastic and viscous (non-recoverable)
deformation, the deformation measurements as in Figure 2
will be overestimates in regard to our calculations below

Fig. 2. Four particle traces within the slab for a propagation saw test
(resolution 0.11mm pixel–1). The particles are located within the
slab near the free end where the saw-cut was begun. Shown are
the slope-normal acceleration, a, the slope-normal speed, v, and
the slope-normal displacement, �y. The slab thickness was 0.82m,
� ¼ 240 kgm–3 and  =338. �y is �1mm when the fracture begins
to propagate within the weak-layer surface hoar. The four particle
traces coincide in the figure since accuracy is not good enough to
distinguish between them.
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from the framework of elasticity since Eqn (1) represents
only the elastic part. For the rate of deformation in the
experiments, it is not possible that all of the 1mm slope-
normal displacement prior to dynamic motion is recoverable
(elastic) deformation.

4. PREVIOUS AVALANCHE RELEASE MODELS
BASED ON SLAB BENDING
In this section, we consider the two previous quantitative
models based on slab bending. The reader is referred to Perla
and LaChapelle (1970), Perla (1971) and Heierli and others
(2008) for more details of these previous models.

4.1. The Perla and LaChapelle (1970) model
The first quantitative analysis of slab bending prior to
avalanche initiation was made by Perla and LaChapelle
(1970) and Perla (1971) for application to thick weak layers.
In the only example they gave, severe slab bending is implied
by strong compressive stresses and bending, which conflicts
with our field measurements (Fig. 2) and analysis. The basal
boundary conditions are given based on compressive stress
perturbations. Their model implies stress singularities within
the slab (finite stress change over zero distance). At the time
of construction of the model, the failure and fracture
properties of alpine snow were unknown, so, of necessity,
the model was kept fairly basic. There is no estimate of
energy due to bending and there is no fracture mechanics
implied by the model. Since the Perla and LaChapelle (1970)
model does not contain quantitative estimates of energy or
deformation, it is not considered further here since the focus
of the present paper is on deformation and energy.

4.2. The Heierli and others (2008) model
The only other quantitative model with slab bending and
energy specified is given by Heierli and others (2008). In this
model, most of the energy input comes from slab bending
and slab shear deformation prior to fracture. In Appendix B,
the energy formulation for the model of Heierli and others
(2008) is given and compared with results from field
measurements of L, D, � and  presented by McClung
(2009a, 2011) and as described in Section 3.

The results in Appendix B show that if the slab modulus is
chosen as in Eqn (1), appropriate for the rate at which the
experiments are conducted, with �=135–262 kgm–3, the
total energy implied varies between 0.13 and 7.7 Jm–2

(column 6 in Table 5), i.e. about 4–110 times the fracture
energy (0.03–0.07 Jm–2) used by Heierli and others (2008).
Later, Heierli (2008) proposed a mixed-mode fracture energy
for use with the model between 0.01 and 0.1 Jm–2, but this
range of values does not change the conclusions in regard to
column 6 of Table 5.

Heierli (2008) gave a modulus as in Eqn (B3), from the
mean of data presented by Scapozza (2004) from static
triaxial creep tests for use with the model. For the strain rates
at which the creep tests were performed (10–4–10–6 s–1;
Scapozza, 2004), the moduli estimated contain a large
component of viscous deformation. Application of this
modulus to the measurements in Table 5 gave fracture
energies of 0.02–1.2 Jm–2 (column 7 in Table 5).These
values still suggest slab deformation energy input (balanced
by fracture energy) which is too high in most cases. The
model performance is highly dependent on input of slab

modulus, which is a factor of four to eight higher than
suggested as appropriate for the rate at which the experi-
ments were conducted (Eqn (1)) for the density range
compared. In order to achieve a balance between fracture
energy and slab energy for the Heierli and others (2008)
model, one is forced to use a very high modulus to reduce
the magnitude of the slab-bending and shear-energy terms.

From the perspective of the propagation saw tests, the
model physics for both the Perla and LaChapelle (1970) and
Heierli and others (2008) models conflicts with our field
measurements, observations and analysis which show strong
bending and collapse is a dynamic effect occurring after
propagation, not before. Our observations from the film
results show that collapse and strong bending is a dynamic
effect that follows either slope-parallel propagation or slab
tensile fracture. Thus, these models seem more appropriate
for the dynamic case than the quasi-static case which is the
focus of the present paper. The film results and associated
field observations of the sequence of events we report are
subject to much less uncertainty than any discussion of the
appropriate modulus for the tests.

5. SLAB BENDING ON A DEFORMABLE WEAK
LAYER PRIOR TO FRACTURE
Here we consider the slab-bending effects due to slope-
normal deformation from three perspectives considering the
slab as a cantilever beam:

1. The maximum implied slope-normal displacement at the
downslope, free-surface end of the slab is calculated. We
compare the estimated values for the field tests with our
measured values (e.g. Fig. 2).

2. The minimum radius of curvature for the beam is
calculated for the field shear test results. We then
compare the minimum bending radii with minimum
radii for three-point beam-bending tensile fracture test
data from laboratory results.

3. The implied maximum and mean slab-bending energy
per unit area (Jm–2) due to slope-normal deformation is
calculated. We compare these values with those for
mode I fracture energy from previous studies (Sigrist,
2006; McClung, 2007).

For each of the three cases, we consider (a) the case of
maximum bending for a free cantilever beam subject to a
uniform load of slope-normal stress due to slab weight over
the entire beam and unsupported at the bottom; and (b) a
uniformly loaded beam supported on an elastic foundation
equivalent to a Winkler foundation. Case (a) is important
since it represents the situation for maximum bending which
is similar to the assumptions in the Perla (1971) and Heierli
and others (2008) models. Case (b) is important since some
support is suggested by field observations during the propa-
gation saw tests, and it is also important for avalanche release
which is the primary application of the work in this paper.

5.1. Snow slab on a Winkler foundation
The field experiments described in Section 2 involve the
passage of a snow saw through a thin weak layer (typically
1 cm to several cm thick) with a thicker cohesive slab on top
(typically 20 cm to 1m thick or more). This layering is
exactly the same as for the stratigraphy prior to slab
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avalanche release (McClung and Schaerer, 2006). Field
measurements using the saw tests show that if the slab is not
cohesive enough, no weak-layer fractures will result. More
accurately, there must be a significant increase in hardness
of the slab compared to the thin weak layer to obtain a
result. As the saw passes, the bottom of the slab remains in
contact with the top of the weak layer. With the slab and
weak layer in contact, the situation may be thought of as a
thicker, cohesive slab on top of a weaker layer which is
deformed by saw passage. We approximate this situation
considering the slab deforming on a foundation which
deforms linearly. The formalism is most well developed by
Hetényi (1946), and his approach is followed here.

Hetényi (1946) and Timoshenko (1956) presented appli-
cations for the theory of beam bending on an elastic
foundation using the assumptions of Winkler (1867). Based
on the speed of the cut (20 cm s–1) from McClung (2009a,
2011), the saw experiments are too slow to be modelled as
purely elastic. However, it is still possible to model the
results exploiting the rate dependence exhibited by alpine
snow using an effective linear viscoelastic modulus (Eqn (1))
appropriate for the speed of the saw-cut as defined in
Section 3.2.

Winkler foundations are routinely applied for soil founda-
tions where the assumptions hold approximately, and for
floating ice where the assumptions hold exactly (Bažant and
Cedolin, 2003). For alpine snow, the assumptions will be an
approximation as with soil applications. Hetényi (1946)
stated that a Winkler foundation is mathematically by far the
simplest formalism one can make regarding the nature of a
linear supporting medium. Any foundation support will
imply less bending than without support. Our use of the
Winkler foundation is only to show the trend (less bending)
when support is in place using the simplest formalism. The
Winkler foundation is not proposed as the most realistic type
of foundation for the application here.

We list three assumptions to apply Winkler foundation to
our test results: (1) the reaction forces in the weak layer at
every point are proportional to the deflection of the slab at
that point; (2) the weak layer and slab deform only along the
portion directly under the loading (where the saw-cut is
made); and (3) the lower boundary of the slab is in contact
with the upper boundary of the weak layer, but the crack
faces within the weak layer may have very weak contact at
most locations (Fig. 2). Assumptions 1 and 2 are appropriate
for a Winkler foundation. Assumption 3 comes from our
field observations made with high-speed films. Figure 3
shows the suggested geometry for assumption 3.

There is some controversy about the amount of contact
between the crack faces in the saw test experiments. Our
observations and film results indicated weak contact in all
cases, whereas Sigrist (2006) reported cases with crack faces
out of contact. For this reason, our Winkler analysis includes
the unsupported cantilever (faces out of contact) as a limit
and the supported cantilever (weak contact).

For modelling the slow-slab bending prior to any fracture,
the situation is assumed as in Figure 4. The total slab depth
in the slope-normal direction is D (m). It is assumed that the
slope-normal stress on the weak layer due to slab weight is

q ¼ ð�g cos ÞD ðNm�2Þ ð2Þ
where g is the magnitude of gravity acceleration (m s–2).

The modulus of the foundation, k (Nm–3), is taken to
represent the weak-layer stiffness in the slope-normal
direction after the saw passes through the weak layer. It is
presumed to be smaller than the stiffness of the undeformed
weak layer or the slab once weak-layer bonds are cut, which
allows the weak layer to deform and the slab to bend due to
that deformation.

Following the geometry in Figure 3, slow, downward
displacement is presumed to start at x ¼ 0, with total slope-
normal displacement increasing to �y after the saw-cut
progresses for some distance but prior to dynamic collapse.
The modelling is developed for a beam of finite dimensions,
which deforms according to classical beam-bending theory

Fig. 3. Schematic of the fracture saw-cut experiments. The saw-cut is made starting from the free surface (from right to left). The saw width is
comparable to ! (Fig. 1). The weak layer is shaded.

Fig. 4. Schematic of the moment diagram for the bending slab
(thickness D). q is the force per unit area at the slab bottom, k is the
foundation modulus and �y is the slope-normal drop. The moment
diagram is shown for an infinitesimal element.
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developed for the beam supported on a Winkler foundation.
The finite beam with support ðk > 0Þ represents much less
bending than the unsupported beam ðk ¼ 0Þ for the same
total slope-normal drop, �y, at the right end of the beam.
From the finite beam solution, in the limit of no support
without the crack faces touching ðk ! 0Þ, maximum
bending is implied. The solutions with support ðk > 0Þ are
expected to be more appropriate for the case of avalanche
release for which no disturbance, as created by the saw-cut,
is expected.

5.2. Force balance for a beam on a Winkler
foundation
The force balance for a differential beam element on a
Winkler foundation generates the slab moments (see Fig. 4).
An upward shear force, Q (per unit width), is envisioned at
the left end of an infinitesimal element, and downward shear
force, �ðQ þ dQÞ, is placed at the right end.

The force balance then gives the well-known result
(Hetényi, 1946)

Q � ðQ þ dQÞ þ ky dx � q dx ¼ 0 ðN m�1Þ ð3Þ
By definition, from classical beam-bending theory, with M
as the moment and D0 as the flexural rigidity, the following
expression arises (Hetényi, 1946):

d2M
dx2

¼ dQ
dx

¼ �D0
d4y
dx4

ðN m�2Þ ð4Þ

The flexural rigidity is represented as D0 ¼ E 0D3=12 as-
suming the neutral axis of the slab (beam) bending is at half-
height, D/2.

Combination of Eqns (2–4) gives the well-known differ-
ential equation for the slope-normal deformation for a
uniformly loaded (q: constant) slab sitting on a deformable
weak layer (foundation) (Hetényi, 1946):

D0
d4y
dx4

þ ky ¼ q ðN m�2Þ ð5Þ
5.3. Solution for a supported finite beam
First we consider the slab a cantilever beam of finite length
uniformly loaded by the slab weight per unit area, q, all
along its length. For the calculations below, we begin with
the beam supported by a Winkler foundation, and then
derive the extreme case of an unsupported beam from the
formulation to illustrate the case of maximum bending. In
the experiments, the saw-cut made in the weak layer causes
the slab (beam) to bend as the cut is made, with maximum
slope-normal deformation at the free end where the cut is

started. The boundary conditions are taken as fixed (no
slope-normal displacement or rotation) at the left end of the
beam ðx ¼ 0Þ and free at the right end of the beam ðx ¼ LÞ.
Hetényi (1946) gives the solution to Eqn (5) as

y ¼ � q
k

1� 1

cosh2ð�LÞ þ cos2ð�LÞ A� Bf g
" #

ð6Þ

where k ¼ 4D0�
4 and

A ¼ coshð�LÞ sinð�xÞ sinh�ðL�xÞþ cosð�xÞ cosh�ðL�xÞ½ �;
B ¼ cosð�LÞ sinhð�xÞ sin�ðL�xÞ � coshð�xÞ cos�ðL�xÞ½ �:
From Eqn (6), the total downward displacement at x ¼ L is
(Hetényi, 1946)

�y ¼ � q
k

1� 2 cosh ð�LÞ cos ð�LÞ
cosh 2ð�LÞ þ cos 2ð�LÞ

 !
ð7Þ

Equations (6) and (7) give the displacements as negative to
conform to the coordinate system in Figures 2–4. In the
equations below, we have written the solutions in terms of
the absolute values of the displacements so that all
quantities are expressed as positive. Thus, to conform to
the notation and coordinate system used, the replacements
y ! �y;�y ! ��y should be made for the equations
below.

Further below, we consider the special case of foundation
(weak-layer) support for which �L ¼ �=2, which from Eqn
(7) implies �y ¼ q=k or an effective value

�y�L¼�=2 ¼ 0:49
q
E 0

L
D

� �3

L ¼ 0:49�y0 ð8Þ

All of our equations below scale with the length parameter,
�y0 � ðq=E 0ÞðL=DÞ3L, from Eqn (8), so this notation is used
below. When calculated using the test data, the parameter
�y0 (42 slab–weak-layer combinations; 559 tests) has a
median value of 0.2mm and a mean of 0.7mm, with 75% of
the values less than 1mm. The parameter �y0 is approxi-
mately log-normally distributed and the distribution is highly
skewed. The probability density function (pdf) of �y0 is
considered in Appendix A. The analysis in Appendix A
implies that the most meaningful estimate of �y0 is the
median. This is important in the comparison with the
experiments below.

5.4. Limit case for the unsupported cantilever
For the case of the unsupported beam, in the limit as �! 0,
by multiple application of L’Hospital’s rule, Eqns (6) and (7)
are respectively (Timoshenko, 1940)

ylim�!0 ¼ �ylim�!0
2x2

L2
� 4x3

3L3
þ x4

3L4

� �
ð9Þ

and

�ylim�!0 ¼ 3
2
q
E 0

L
D

� �3

L ¼ 3
2
�y0 ð10Þ

Calculations with Eqns (8) ð�L ¼ �=2Þ and (10) ð� ¼ 0Þ for
42 slab–weak-layer combinations (559 tests) are given in
Table 1. The calculated median values (1mm or less) are
consistent with our measured values from the field tests. For
the calculations, 74% of the slab–weak-layer combinations
gave�y < 1mm for the maximum bending case of Eqn (10).
Since the calculations are meant to represent the elastic
portion only (the elastic storage modulus is used) we suggest
the agreement is good. The median values (0.3mm ð�! 0Þ

Table 1. Calculations of the total downward slope-normal displace-
ment at the downslope (free surface) end of the slab. The
calculations are for 42 slab–weak-layer combinations (559 tests).
The results are for the supported slab ð�L ¼ �=2;�L ¼ �Þ and the
unsupported slab ð�! 0Þ. From Appendix A, the median values are
the most meaningful

Parameter Median Mean

mm mm

�y�L¼� 0.03 0.1
�y�L¼�=2 0.1 0.3
�ylim �!0 0.3 1.0
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and 0.1mm ð�L ¼ �=2Þ) are less than our measured values
of �1mm, which is expected since the tests contain some
viscous deformation not included in the elastic calculations
(Eqns (8) and (10)). With foundation support ð� > 0Þ, as
would be expected for avalanche initiation, the value of
�y�L¼�=2 over the distance L is very small, implying very
little bending. The value �L ¼ �=2 can be regarded as an
intermediate value for support. For the case of �L ¼ �,
�y�L¼� ¼ 0:14�y0, and the median and mean values
(Table 1) yield 0.03 and 0.1mm respectively. Thus, from
the perspective of the saw-test data and the model here,
values for support range from 0 � �L � �, i.e. from extreme
bending ð� ¼ 0Þ to negligible bending ð�L ¼ �Þ. We have no
information about what an accurate value of � might be for
slab contact and foundation support. In our calculations
below, we consider only the cases of extreme bending
(� ¼ 0) and intermediate support (�L ¼ �=2).

5.5. Bending estimated for field experiments:
minimum radius of curvature
The minimum radius of curvature, Rmin , due to slope-
normal deformation along the beam is a measure of the
maximum degree of bending in the slab prior to fracture.

The curvature of the slab (beam) may be expressed
(Bažant and Cedolin, 2003) as

1
R
¼ y 00

ð1þ y 02Þ3=2
¼ y 00 1� 3

2
y 02 þ 15

8
y 04 � :::

� �
ð11Þ

where y 00 ¼ d2y=dx2. For the present case, the overall slope
of the deflection curve, y 0 ¼ dy=dx, is small, so the
approximation

1
R
� y 00 ð12Þ

is used. Typically expected values for the scale of slope-
normal displacement are 1mm, and the horizontal scale
over which this takes place is several tens of cm, so the
mean deflection slope is of order 0.01, which justifies the
approximation in Eqn (12).

For the case of the supported beam, Eqns (5) and (12)
yield the minimum radius at x ¼ 0:

Rmin ð�L¼�=2Þ ¼
�2

24
L2

�y0
ð13Þ

For the unsupported cantilever beam, evaluation gives

Rmin ðlim�!0Þ ¼
1
6

L2

�y0
ð14Þ

Table 2 contains calculated values from Eqns (13) and (14)
from the field experiments (559 tests; 42 slab–weak-layer
combinations). In Table 2, the most meaningful values are
the median due to the highly skewed pdf for �y0. The

difference between the median and mean values shows the
effect of the highly skewed pdf for �y0 (Appendix A).

During winter 2009, we performed three-point beam
laboratory bending fracture experiments on small beams of
alpine snow in a cold laboratory. The minimum radius of
curvature at the instant of tensile fracture (under peak load)
was estimated by assuming the snow beams were simply
supported (Timoshenko, 1940). Table 3 contains estimates
from laboratory tensile three-point bending tests represent-
ing the condition at the point of tensile fracture for snow
beams with two different load spans: 0.20m and 0.25m,
implying span-to-depth ratios 2 : 1 and 2.5 : 1.

Comparing the results (Tables 2 and 3), the median
of Rmin for either the median of supported ð�L ¼ �=2Þ or
unsupported ð� ¼ 0Þ beam exceeds the median values for
the laboratory tensile fracture tests by approximately a factor
of ten and five respectively. Tables 2 and 3 lead to the
conclusion that the laboratory tensile tests (representing the
tensile fracture condition) show more bending than the field
tests. These results agree with our observations of the field
tests since tensile fracture in the field tests is observed only
after the slab is in a dynamic condition following weak-layer
collapse (large slope-normal displacement) due to slope-
parallel propagation or after a cut is made with a thick saw.
There is no denying that slab bending takes place in the
experiments given that slab tensile fractures sometimes
occur prior to slope-parallel propagation in the weak layer
when a thick saw is used. However, extrapolation to the case
of avalanche release cannot be directly made due to the
artificial slope-normal displacement introduced by making
the saw-cut in the tests.

5.6. Mean slab and maximum slab strain bending
work per unit area
Another method to illustrate bending is to calculate the slab
strain energy of bending per unit area. The differential strain
work to bend a segment, ds, of arc length measured along
the neutral axis of a cylindrical beam is (Fung, 1965)

dU ¼ 1
2
D0

ds
R2 ð15Þ

Assuming that deflection of the beam is infinitesimal, with
ds approximated by dx, the total strain energy over a length,
L, per unit width is given by (e.g. Fung, 1965)

U ¼ 1
2

Z L

0
D0

d2y
dx2

 !2

dx ðNÞ ð16Þ

From Eqn (16), the mean work of bending over the distance L

Table 2. Median, mean and range of Rmin (m) calculated from field
experiments using Eqns (13) and (14) for 42 slab–weak-layer
combinations representing 559 field tests with snow density range
85–266 kgm–3

Median Mean Range Description

111 320 16–2748 �L ¼ �=2
45 130 6–1117 �! 0

Table 3. Median, mean and range of Rmin (m) for laboratory beam-
bending tensile fracture tests for two different load spans with snow
density range 149–364 kgm–3

Median Mean Range Description Number of
tests

3 3 1- 8 Span 0.20m 54
Depth 0.10m

10 10 3–17 Span 0.25m 65
Depth 0.10m
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per unit area is given by

W ¼ 1
2
1
L

Z L

0
D0 y 00ð Þ2 dx ðJ m�2Þ ð17Þ

Application of Eqn (17) for the displacement profile of Eqn
(5) gives the following result for the supported beam:

W �L¼�=2 ¼ 0:034ðq�y0Þ ðJ m�2Þ ð18Þ
A similar calculation for the unsupported beam gives

W lim�!0 ¼ 0:3ðq�y0Þ ðJ m�2Þ ð19Þ
From Eqn (16), with use of Eqns (13) and (14), a maximum
estimate of bending strain energy at the left end (tip) of the
supported beam is given by

Wmax ð�L¼�=2Þ ¼ 0:25q�y0 ðJ m�2Þ ð20Þ
and for the unsupported beam the result is:

Wmax ð�!0Þ ¼ 3
2
q�y0 ðJ m�2Þ ð21Þ

Table 4 shows median values calculated from Eqns (18–21).
We expect that the average value ðW Þ applies to a lower
bound and the maximum value ðWmax Þ approximates an
upper bound. For a quasi-brittle material like snow, the
average values over some suitable length scale (e.g. the
fracture process zone) would seem most appropriate, rather
than the point values at the tip (left end of the beam). Thus,
we would expect the maximum values to be too high. The
maximum values are generally in the lower range or below
the mode I fracture energy estimated by Sigrist (2006) and
McClung (2007) which is in the range 0.1–1 Jm–2. Based on
the results (Table 4) it seems possible that bending energy
can contribute to tensile fracture generation at or near the
saw-cut tip. It is beyond the scope of the present paper to
discuss such tensile fracture generation.

The introduction to the calculations of length L has two
important implications. One, as considered here, is to
enable estimates of bending of the slab modelled simply as a
beam given the maximum value of L at the condition of
propagation. The other is to consider the critical length
when the propagation condition within the weak layer is
met (McClung, 2009a, 2011), which is beyond the scope of
the present paper.

Lack of contact over some portion of the crack-tip faces is
crucial for the anti-crack model of Heierli and others (2008).
If a fracture-mechanical-type approach is adopted, it implies
a negative mode I stress intensity factor. In the original paper
on anti-crack formation (Fletcher and Pollard, 1981), the lack
of contact or inner penetration of the faces is by pressure
solution and diffusion processes. There is no suchmechanism

for dry snow. Precision experimental data from laboratory
shear tests (McClung, 2009a) for faceted snow show that, in
displacement-controlled shear experiments, faceted snow is
in a dilatant state, which implies fracture occurs due to slip
surface formation by grains riding up over each other.

Reiweger and Schweizer (2010) performed both load-
and displacement-controlled precision shear fracture tests
on a surface hoar monocrystal layer between two layers of
rounded grains. Their results showed that, at the time of
fracture, �90% of the deformation was in shear within the
surface hoar layer, with small or negligible compressive (or
compactant) slope-normal deformation.

The laboratory shear test results (from both faceted and
surface hoar) are extremely important since they suggest that
the slope-normal (bending) deformation seen in the saw tests
prior to fracture is due to the disturbance created by the saw,
as stated above. Any lack of contact during the saw test
experiments is most likely due to the artificial gap or
disturbance created by the saw-cut, with an unlikely
relevance to natural avalanche release.

More than 80% of the slab–weak-layer combinations used
in this paper are from faceted and surface-hoar weak layers
which are the primary weak layers (called persistent layers)
observed to collapse dynamically in field observations.

6. LIMITATIONS AND DISCUSSION
Our results are developed from a combination of input
estimates from a variety of sources including laboratory
measurements, field measurements, estimates from ava-
lanche fractures and films of field tests. Although desirable,
it would be nearly impossible to measure everything
necessary for input to the bending calculations. It is
extremely important to use a modulus which is appropriate
to the rate and density dependence for the test results and
consistent with the quasi-brittle character of alpine snow.
The modulus was not measured in the experiments, so the
analytical results derived are dependent on Eqn (1) which
represents the elastic (storage) modulus appropriate for the
test rate and density derived from Camponovo and
Schweizer (2001). The modulus (Eqn (1)) takes into account
rate and density, but also varies with snow structure, so this
formulation is subject to some uncertainty.

It is not necessary to do any elastic modelling calcula-
tions to show that bending prior to slope-parallel weak-layer
propagation is small. If one takes the total measured slope-
normal displacement, �y =0.001mm, assuming the radius
of curvature is constant (on a circle), the radius may be
approximated as R � L2=�y. Calculations (68 slab–weak-
layer combinations; 750 tests) gave median 96m, mean
126m and range 5–423m. These should be regarded as
minimum values since the deformation measured, �y, will
certainly not be entirely elastic. The values are consistent
with those in Table 1 calculated from the estimated elastic
portion of the deformation.

Some of the results depend on the assumptions of a
Winkler foundation. It is known that for soils the Winkler
foundation is only approximate, and we expect the same for
alpine snow. For the application here, the snow is assumed
dry snow and the test results are all for dry snow. This may
be an advantage over soil applications, which typically
include the effects of water.

We have not dealt with slope-parallel weak-layer deform-
ation in this paper. The fact that the first fracture to propagate

Table 4. Median values for expected limits: upper (maximum) and
lower (mean) bending energy (J m–2) for 42 slab–weak-layer
combinations representing 559 tests. The values may be compared
with the mode I slab fracture energy of 0.1–1 Jm–2 estimated by
Sigrist (2006) and McClung (2007)

Strain energy parameter Median value

W �L¼�=2 0.003
Wmax ð�L¼�=2Þ 0.025
W �!0 0.03
Wmax ð�!0Þ 0.15
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in most cases in the saw tests is in the slope-parallel
direction suggests the weak-layer deformation component in
that direction is important. In the saw test experiments, the
bonds in the slope-parallel direction are cut by the saw.
Since there is measurable slope-normal deformation along
with the tests, it is likely the weak-layer deformation pattern
is two-dimensional (2-D). It is beyond the scope of the
present paper to model the 2-D deformation pattern. The
work of Reiweger and Schweizer (2010) confirms that, for
surface hoar, the slope-parallel component of deformation is
responsible for the weak-layer fracture without the dis-
turbance and slope-normal component of deformation
created by the saw-cuts in the field tests. Even if the
deformation pattern is regarded as 2-D, this would not
change the sequence of events revealed and slope-normal
deformation in the films which is the primary source of
evidence here. Similar comments apply to any slab rotation
near the tip of the saw-cut. We have no measurements to
estimate the effects of slab rotation, but this would not affect
the film results including the sequence of events.

7. SUMMARY
The problem of slope-normal deformation within weak
layers of finite thickness for dry-snow slab avalanche failures
has been modelled twice before, first by Perla and
LaChapelle (1970) and Perla (1971) and recently by Heierli
and others (2008). Perla’s model contains no fracture
mechanics. It is based on field observations of avalanches
releasing, which reveal dynamic collapse taking place
during rapid fracture propagation, but the assumption is
made that this also occurs prior to propagation.

The latest model (Heierli and others, 2008) rests on
assumptions similar to those of Perla and LaChapelle (1970),
with implicit assumptions of strong slab bending and slab
shear deformation prior to fracture propagation. At present,
there are no reported measurements of weak-layer deform-
ation along with the propagation saw tests prior to propa-
gation. However, Reiweger and Schweizer (2010) reported
data for shear failure of a surface hoar layer between two
layers of similar hardness without a notch or disturbance as
caused by the saw. Their results showed that �90% of the
deformation was shear deformation in the surface hoar layer
and that shear deformation, not slope-normal deformation,
was responsible for the fracture. For surface hoar, they
showed that the deformation is highly anisotropic, being
extremely prone to slope-parallel (shear) deformation and
resistant to slope-normal deformation at the instant fracture
takes place. Their results are consistent with the observations
and analysis in this paper.

The Heierli and others (2008) model is based on concepts
of fracture mechanics developed by A.A. Griffith in the
1920s with an infinitesimal fracture process zone (FPZ). An
infinitesimal FPZ for alpine snow is refuted by the tests of
Sigrist (2006) and Borstad and McClung (2009). Bažant and
Planas (1998) showed that a quasi-brittle material such as
snow cannot be adequately described with only one fracture
parameter such as a fracture energy as modelled by Heierli
and others (2008).

Heierli and others (2008) assume that alpine snow is a
linear elastic solid, and verification of the model is claimed
on the basis of the propagation saw tests modelled assuming
the slab is linear elastic. However, the deformation rate in
the experiments is much too low for the slab to be

considered elastic. It is of interest that if the recommended
modulus (Eqn (B3)) is used in the bending calculations in this
paper, the median value is �y0 ¼ 0:03mm (42 slab–weak-
layer combinations; 559 tests). Thus, the radii in Table 2
increase by a factor of 6.35, the energies in Table 4 decrease
by a factor of 6.35 and bending effects are largely negligible.
In Appendix B, it is shown from field measurements that
even with a high-rate (100Hz) elastic modulus, the slab
energy in the model of Heierli and others (2008) exceeds the
recommended values of fracture energy in some cases. In
Appendix B it is shown that if account is taken of the rate
dependence of slab deformation appropriate for the saw
tests (Eqn (1)), the energy for slab bending and shear
deformation in Heierli and others (2008) is one to two orders
of magnitude higher than required to balance the assumed
fracture energy of alpine snow in some cases. The result
suggests that the model predicts shorter critical lengths than
shown in field measurements in some cases.

The emphasis in this paper is to consider stress and
deformation conditions prior to fracture propagation for
weak layers of finite thickness. The most compelling
evidence comes from the high-speed films combined with
particle tracking of the deformation process prior to and after
fracture propagation in the saw test experiments and the
sequence of events prior to slope-parallel weak-layer
fracture propagation. These experiments show that slope
deformation prior to fracture propagation is minor (O(1mm))
over long cut distances on the order of 0.5m or more. The
films also show that severe bending and weak-layer collapse
is a dynamic effect that follows fracture propagation. The
scale of the vertical deformation over the distances observed
(>0.5m) provides enough evidence that slab-bending energy
is very small or negligible. Thus, the principal argument
about the amount of slab bending and deformation does not
lie in specification of the proper choice of modulus for use
with the propagation saw tests. Instead, it is based on the
slope-normal deformation measured prior to slope-parallel
propagation and, most importantly, the sequence of events
seen in the high-speed films.

The modelling in this paper is based on the assumption of
the slab deforming on a weak foundation (the weak layer).
With its simple assumptions, the Winkler foundation is
popular for the earth materials (soils and floating ice). The
Winkler approximation here is the first application for alpine
snow. However, the main results in this paper do not depend
on the assumptions of the Winkler foundation. The approach
here has been to use field data to analyze the problem from
the perspective of the limits of maximum bending (no
support). The physical principle used is important because
it implies that with support ð� > 0Þ, as expected for ava-
lanche initiation and our experiments, bending effects will be
less. The same physical principle will hold for more general-
ized foundation models such as Wieghardt’s foundation as
discussed by Bažant and Cedolin (2003). Thus, simple
extrapolation to the case of snow slab avalanche initiation
from the no-support limit using this principle will hold for
more complex foundation assumptions as well. The physical
principle implies less bending for the case of avalanche initi-
ation or for the saw test than for the case of the unsupported
cantilever, regardless of foundation assumptions.

Our high-speed films also show some important results
concerning the dynamic case, after propagation begins in
the weak layer. They show dynamic collapse, which closes
the crack faces and implies inner penetration of the crack
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faces, with no crack opening, as shown by Van Herwijnen
and Heierli (2009). In the saw tests, the saw produces a
disturbance behind the crack tip, which sometimes causes
bending and tensile fracture of the slab before dynamic
propagation. However, observations of avalanche dimen-
sions cast doubt on whether the same concept applies to
avalanche release. In the case of avalanches, slope-parallel
slab dimensions prior to the appearance of slab tensile
fracture upslope are on average about 50D (McClung,
2009b), which is much larger than in the saw test
experiments ð� 2DÞ. Even though dynamic weak-layer
collapse undoubtedly takes place in some cases for ava-
lanche release, the physical processes prior to propagation
may be considerably different from those in the saw tests.
Namely, there may be no disturbance similar to that created
artificially in the saw tests. Bažant and others (2003)
proposed that strain and stress concentrations within the
weak zone are related to mode II fracture initiation.
However, no disturbance (with crack faces out of contact)
is needed for that mechanism.
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Bažant ZP, Zi G and McClung D (2003) Size effect law and fracture
mechanics of the triggering of dry snow slab avalanches.
J. Geophys. Res., 108(B2), 2119 (doi: 10.1029/2002JB001884)

Borstad CP and McClung DM (2009) Size effect in dry snow slab
tensile fracture. In Proceedings of the 12th International
Conference on Fracture, 12–17 July 2009, Ottawa, Ontario,
Canada. National Research Council, Canada, Ottawa

Camponovo C and Schweizer J (2001) Rheological measurements
of the viscoelastic properties of snow. Ann. Glaciol., 32, 44–50
(doi: 10.3189/172756401781819148)

Fletcher RC and Pollard DD (1981) Anticrack model for pressure
solution surfaces. Geology, 9(9), 419–424 (doi: 10.1130/0091-
7613(1981)9<419:AMFPSS>2.0.CO;2)

Fung YC (1965) Foundations of solid mechanics. Prentice Hall,
Engelwood Cliffs, NJ

Gauthier D (2007) A practical field test for propagation and arrest in
weak snowpack layers in relation to slab avalanche release.
(PhD thesis, University of Calgary)

Gauthier D and Jamieson JB (2008) Evaluation of a prototype field
test for fracture and failure propagation in weak snow pack
layers. Cold Reg. Sci. Technol., 51(2–3), 87–97 (doi: 10.1016/
j.coldregions.2007.04.005)

Heierli J (2008) Anticrack model for slab avalanche release. (PhD
thesis, University of Karlsruhe)

Heierli J, Gumbsch P and Zaiser M (2008) Anticrack nucleation as
triggering mechanism for snow slab avalanches. Science,
321(5886), 240–243 (doi: 10.1126/science.1153948)
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APPENDIX A: PROBABILITY DENSITY FUNCTION
FOR THE SCALING PARAMETER �y0
All the equations in our bending analysis scale with the
parameter �y0 � ðq=E 0ÞðL=DÞ3L. We fit the 42 calculated
values (559 tests) of �y0 to numerous pdfs and we found the
most suitable pdf is log-normal, with scale parameter 1.61
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and location parameter –1.41. Three goodness-of-fit par-
ameters were determined: (1) the Kolmogorov–Smirnov
statistic is 0.10, with p-value 0.78 (critical value for
� ¼ 0:2 is 0.16); (2) the Anderson–Darling statistic is 0.39
(critical value for � ¼ 0:2 is 1.37); and (3) the chi-squared
statistic with 4 degrees of freedom is 2.72, with p-value 0.60
(critical value for � ¼ 0:2 is 5.99).

The sample statistics showed that the pdf for �y0 is highly
skewed. The ratio of the skewness to standard error of the
skewness is 6.80, and the ratio of the kurtosis to the standard
error of the kurtosis is 9.1. The median of �y0 is 0.20mm
and the mean is 0.69mm, with a range from 0.001 to
5.07mm. Due to the highly skewed pdf, the most mean-
ingful estimate of �y0 is the median value. Use of the
median value for �y0 in Eqns (7) and (9) gives
�y�L¼�=2 ¼ 0:1mm (supported beam) and �ylim�!0 ¼ 0:3
mm (unsupported cantilever). These are very reasonable
values since the total measured values of �y � 1 mm
include both elastic and viscous deformation, so they should
exceed the values of Eqns (7) and (9) estimated for the elastic
component alone.

Similar comments apply to q�y0 for the energy calcula-
tions. The ratio of skewness to its standard error is 7.7, and
the ratio of kurtosis to its standard error is 11.3. Thus, the
median is the most meaningful value.

APPENDIX B: ENERGYANALYSIS OF AN ALTERNATE
SLAB DEFORMATION MODEL: HEIERLI AND
OTHERS (2008)
Heierli and others (2008) published a model to explain
fracture initiation for snow slabs by proposing that slab
bending and slab shearing prior to fracture constitute the
major energy inputs when there is slope-normal deform-
ation. In this appendix, comparison of the energy implied by
the model is given for nine cases of field-measured median
initiation lengths, L, derived from 115 separate tests for
different slope angles. Measured quantities include L, D, �
and  , and estimated quantities include Young’s modulus, E,
for the slab and fracture energy (Jm–2), denoted here as Gf

and described by Heierli and others (2008) as mixed mode.
The model contains two other constants, one of which is a
Dundur’s elastic mismatch parameter and the other a

correction factor assuming a rectangular Timoshenko beam
relating � and E . Both of these are assumed to equal 1 in the
comparison below as suggested by Heierli and others (2008)
if � ¼ 0:2.

Let � ¼ ��gD cos ; 	 ¼ �gD sin (Heierli and others,
2008), then the fracture energy is given by

Gf ¼ T0 þ T1 þ T2 þ T3 ðJ m�2Þ ðB1Þ
where

T0 ¼ ð�2 þ 	2Þ
E

ð1:57LÞ
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E
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D

� �
þ 1:5

L
D

� �2

þ 1:5
L
D

� �3
" #

T2 ¼ 	2L
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For T3 in Eqn (B2), the plus sign refers to cases where the
saw-cut is made upslope and the minus sign to cases for
which it is made downslope.

Heierli and others (2008) prescribed Gf as 0.03 Jm
–2 for

decomposing and fragmented forms in the weak layer and
0.07 Jm–2 for weak-layer facets. Inspection of Eqns (B1) and
(B2) shows that from the field measurements everything on
the right-hand side except E may be determined (measured
or calculated). Table 5 gives the field measurements along
with Gf (column 6) calculated from Eqn (B1) with
E ¼ 2�ð1þ �Þ, � ¼ 0:2 and � appropriate for the rate at
which the experiments were conducted as from Eqn (1).

Using the maximum value for fracture energy assumed by
Heierli and others (2008) (0.07 Jm–2), the values in Table 5
suggest that the calculated slab energy values exceed their
estimates by a factor of 2–160. However, the last three cases
in Table 5 were analyzed by Heierli and others (2008) and
they assumed a lower value for these (0.03 Jm–2), so a range
of 4–160 is more appropriate, for which the calculations
exceed the fracture energy estimates used.

Heierli (2008) specified an elastic modulus, E, appropri-
ate for the model from the work of Scapozza (2004). This
work is based on triaxial static creep tests with strain rates in
the range 10–4–10–6 s–1. It is not possible that such rates

Table 5. Field measurements and calculated fracture energy, Gf, from Eqns (B1) and (B2). The values of Gf are those with modulus
appropriate for the rate of the experiments, GfðEqn ð1ÞÞ, and GfðEqnðB3ÞÞ, calculated with the modulus from eqn (B3) of Heierli (2008).
Cases 1–4 represent surface-hoar weak-layer forms, cases 5 and 6 are for faceted forms and cases 7–9 represent decomposing and
fragmented forms. The cuts on slopes were made in the upslope direction except for case 6. The values of L are the median for each set of
tests

Case Number of tests � L D  Gf(Eqn (1)) Gf(Eqn (B3))

kgm–3 m m 8 Jm–2 Jm–2

1 10 177 0.43 0.37 0 3.2 0.47
2 10 185 0.61 0.30 32 7.7 1.2
3 10 146 0.19 0.34 6.5 0.70 0.09
4 10 138 0.39 0.36 38 3.9 0.50
5 17 262 0.40 0.98 0 2.8 0.64
6 14 233 0.38 1.30 23 4.3 0.87
7 23 135 0.13 0.14 0 0.13 0.02
8 17 168 0.19 0.11 30 0.28 0.04
9 4 168 0.22 0.10 38 0.38 0.06
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would produce mostly elastic deformation in alpine snow.
Camponovo and Schweizer (2001) showed that at a rate of
1 s–1 there is still viscous deformation. The Young’s modulus
recommended by Heierli (2008) is

E ¼ 0:2 exp ð�=67Þ ðMPaÞ ðB3Þ
Using Eqn (B3), the values of Gf (column 7) in Table 5 range
from 0.02 to 1.2 Jm–2, with a mean of 0.4 Jm–2, in spite of
the fact that Heierli (2008) states that Gf should range from
0.01 to 0.1 Jm–2, with a mean of 0.04 Jm–2. Use of this
proposed modulus is equivalent to boosting the value of E by
a factor of �7 over that appropriate for the rate at which the
tests were performed. For the last three cases, the results
(column 7) show that Gf would have to be increased by a
factor of 3.5 in order to match the measured values of L
using the model, even though the experiments were all done
on the same day with the same weak layer.

Gauthier and Jamieson (2008) measured L ¼ 0:40m
(median of 17 tests; case 5) and a weak layer of faceted
forms. Using Eqn (1) for the shear modulus and
Gf ¼ 0:07 J m�2 for faceted forms implies L ¼ 0:015 m
compared to the measured value of L ¼ 0:40m. Using a
high-rate elastic modulus (100Hz) from Sigrist (2006, p. 76,
eqn 4.8) implies L ¼ 0:15 m. In order to achieve the
measured value (L ¼ 0:40 m) with the assumed fracture
energy, model input of E�100MPa is necessary, which is not
believable for the measured slab density.

For a similar set of measurements, on the same faceted
weak layer, with saw-cuts made in the downslope direction,
Gauthier and Jamieson (2008) measured L ¼ 0:38m (me-
dian of 14 tests; case 6). Even with the high-rate elastic
modulus (100Hz), the model prediction is L < 0:001m in
this case. The value of L is on the order of one grain in size,
which would imply snow could not build up on slopes.
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