
/ . Austral. Math. Soc. 21 (Series B) (1980), 402-417

THE STRUCTURE OF RI-INVARIANT TWELVE-TONE ROWS
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Abstract

This paper presents an efficient method for generating the class of all twelve-
tone rows which are transpositions of their own retrograde-inversions. It is
shown here that the members of this class can be obtained from a subclass of
those rows whose first six notes are ascending and whose first note is C. The
number of twelve-tone rows in this subclass is 192, and a complete listing
is given in an appendix to this paper. The theory as developed here can be
applied to tone rows having any even number of notes.

1. Introduction

Since Schoenberg's introduction of twelve-tone row composition in the early part
of the twentieth century, his ideas have been examined and re-examined at great
length in the music literature, and much ink has been spilled in attempts to extract
structure from his highly controversial method. Despite (or, perhaps, because of)
this controversy, the "method" has produced acknowledged masterpieces by
composers Schoenberg, Berg, Webern, Stockhausen, Boulez, Stravinsky and
Babbitt. Many twelve-tone works are available today and several important studies
of the music-analytic properties of the twelve-tone row system have appeared in
recent years. Research on this topic has ranged from a greater understanding of
specific twelve-tone works to the development of a suitable nomenclature with
which to describe succinctly the compositional techniques involved in twelve-tone
row composition. The generation (usually by computer) of all twelve-tone rows
possessing some desirable property is also of importance.

It is the aim of this paper to explore the structure of twelve-tone rows that are
transpositions of their own retrograde-inversions. Following Babbitt [1], we call
such rows Rl-invariant. In this paper we shall determine the exact number of RI-
invariant twelve-tone rows and also find an efficient method for generating them.
Our initial introduction to this subject was through Professor Easley Blackwood,
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[2] Rl-invariant twelve-tone rows 403

who conjectured that the members of the class of all Rl-invariant twelve-tone rows
could be obtained (somehow) from the subclass of rows whose first six notes are
ascending and whose first note is C. This paper demonstrates the validity of
Blackwood's conjecture through the use of a novel method involving selective
partitionings of a circle. This method produces an algorithm which both generates
and counts all Rl-invariant twelve-tone rows without resorting to a computer
search of all 12! twelve-tone rows. The algorithm is extremely efficient and can be
readily extended to the generation of Rl-invariant tone rows possessing a given
even number of notes. The reader may also be interested in the companion
paper [2].

2. Preliminaries

In order that the overall structure of Rl-invariant twelve-tone rows be rendered
visible to the reader, we shall analyze the twelve-tone row system within the more
general framework of m-tone rows, where m is an arbitrary integer (greater than 2).
The elements of such an m-tone row are some permutation of the notes of an m-
tone scale. The advantages of such a generalization are not only mathematical;
with the advent of electronic music produced by a suitably programmed computer
or synthesizer, the composition and study of m-tone (or microtonal) works is now
more feasible than previously.

For notational simplicity and technical ease, we shall substitute the integers 0
through m — 1 for the ordered succession of m ascending notes that constitute the
m-tone scale in question. Such a representation is standard for twelve-tone row
theory (see Perle [3]), and is probably necessary for the theory of microtonal
composition.

Let m > 2 be an integer and let

n = /0 1 2 ... m-l\
\Tt0 7 t , 712 ••• K m - i /

(1)

denote a permutation of Zm = {0,1,2, ,..,m— 1}. Then II is called an m-tone row
(or m-phonic sequence). The set of all m-tone rows is denoted by 2Pm. For example,
the twelve-tone row

f e\ 1 0 i A c c i o a ir\ i i \

(2)

forms the basis for Schoenberg's Violin Concerto, Opus 36.
We now define three operations on II. Let a be the cyclic permutation

(0 1 2 ... m—1), which corresponds to raising each note by one unit. Using the
convention that multiplication is carried out from left to right (that is, functions
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are written to the right of the argument), the transposition of IT by an integer a is
then the m-tone row ITa" (that is, (i)nof = {n^<xa = (7tf+a) mod/w). Thus, the
transposition of n in (2) above by 3 yields the twelve-tone row

0 1 2 3 4 5 6 7 8 9 10 11

0 1 6 2 7 9 3 4 10 11 5 8

Next let p be the permutation (0 m —1)(1 m — 2)(2 m-3)..., which corresponds
to reversing the order of the elements. The retrograde (or crab) of IT is then the
m-tone row fill. Thus the retrograde of IT in (2) above is

_ / 0 1 2 3 4 5 6 7 8 9 10 11 \
\5 2 8 7 1 0 6 4 11 3 10 9 /

Note that p2 = 1. Finally, let y be the permutation (1 m-1)(2 w-2)(3 m-3)....
Then the negative of II is the w-tone row Ily. The negative of fl in (2) above is,
therefore,

0 1 2 3 4 5 6 7 8 9 10 ll
3 2 9 1 8 6 0 11 5 4 10 7

Note that ay — ya.~l. The inversion of an m-tone row II is then the /w-tone row
). For the IT in (2) above the inversion is

1 2 3 4 5 6 7 8 9 10 11

8 3 7 2 0 6 5 11 10 4 I

It is worth noting that this last definition is not the usual way in which inversion
is defined. Perle [8], p. 3, for example, calls our negative of a tone row IT the
inversion of IT. The retrograde-inversion (or crab-inversion) of IT is the retrograde
of the inversion of II and is the w-tone row pna~2n°y. Thus, the retrograde-
inversion of II in (2) above is

° l 2 3 4 5 6 7 8 9 10 l
1 4 10 11 5 6 0 2 7 3 8 9/

It will be convenient to use the following abbreviated version of an m-toae row
IT in the discussion below. Instead of writing IT in the form (1) above, we shall
henceforth write

n =(no,n1,n2, ...,7tm_i),

the permutational ordering of the notes being understood. Furthermore, for the
remainder of this paper, m will be an even integer (greater than 2), and we shall
sometimes write 2k for m (so that k > 1).

https://doi.org/10.1017/S0334270000002101 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002101


[4] Rl-invariant twelve-tone rows 405

In this notation then, an Rl-invariant 2k-tone row W is defined to be a 2&-tone
row for which

II =pTl<x~ 2i">yaa=pilyab, b=a+2no,

for some aeZ2k. (Necessarily, b = a+2n0 = nk-1+nk.) The generating sequence
for IT is the sequence of integers denoted by

GS(n)=(gllg2,...,gk-l),

or simply GS, where gf ={ni — ni^l) (mod2£), 1 < / < k— 1. The quantity

AXI1) = (nk - nk _ t ) mod 2k

is called the rotation factor of II and is sometimes written X. As an illustration of
these definitions, consider the twelve-tone row

n = ( 3 , 7, 2, 9, 8, 0, 1, 5, 4, 11, 6, 10),

which is also Rl-invariant. Its generating sequence is GS(II) = (4, 7,7,11,4) and
its rotation factor is X(U) = 1.

In order to generate (and count) all such Rl-invariant tone rows, it will first be
necessary to examine in detail the following special type of Rl-invariant tone row.
We call 5' = (J 0 , J i , ^ ; •••>^2ft-i) a canonical Rl-invariant 2k-tone row if:

(i) S is Rl-invariant;
(ii) the first note of 5 is 0; and
(iii) the first k notes of S are ascending.

In other words, S has to satisfy the two conditions:

(1*) S = fiSfof;
(2*) 0 = so<s1 <s2< ... < ^ _ , ,

for some aeZ2k. (Necessarily, a =sk^l+sk.) The interval sequence corresponding
to such an 5 is denoted by IS(S), or simply IS, and is the sequence defined by

IS(S)=(GS(S),X(S), GS™(S))=(g1,g2,...,gk-l,X,gk.l,...,g2,g1),

where GS'ey(S) is the reversed generating sequence (gk-t, ...,02»0i)- Thus the
twelve-tone row

S = (0, 1,4, 5,8, 9,2, 3, 6,7, 10, 11),

which forms the basis for Schoenberg's Suite, Opus 29, is a canonical Rl-invariant
twelve-tone row with generating sequence, rotation factor and interval sequence
given by

= (1, 3, 1, 3, 1), X(S) = 5,

75(5) = (1, 3, 1,3, 1, 5, 1,3, 1, 3,1),
respectively.
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3. Canonical diagrams

We next present a convenient (and novel) way of representing canonical Rl-
invariant 2A:-tone rows. Without any loss of generality, we take k = 6, the
arguments of this section extending in a straightforward manner to 2fc-tone rows
with k> 1.

Let S be a canonical Rl-invariant twelve-tone row and let < (=51 1)eZ1 2 be the
final note of this row. The interval sequence IS, by definition, must be of the form

IS(S) = (#, ,g2,g3,g*,9s, X,g5>g*,g3,g2,gx),

where gr, g2, g3, g*, and gs are positive integers whose sum is less than 12. From
the form of this interval sequence, we see that the individual notes of S can be
written as

S — ( • s 0 > ' s l » ' s 2 > • • • > l S l l ) >

where
so=O, Si=gu s2=gl+g2, s3=gl+g2+g3, s^=gt+g2+g3+g^,

s6 = t-s5, s7=t-St, sa=t-s3, s9=t-s2,

and addition and subtraction are understood to be taken modulo 12. Note that
t and X must both be odd integers. That / has to be odd can be seen from the fact
that YA=OSI — 6 (mod 12), and that the special structure of S also gives
Y,l=osi = & (mod 12). Summing now over the first half of the tone row S yields
the relation 2ss + X = t (mod 12); since t is odd, this forces X to be odd.

Now the function f(s) = t—s, which characterizes the last six notes of S,
corresponds to reflection across a diameter of the circle in Fig. 1, one of whose

Fig. 1. Basic diagram. Fig. 2. Diagram for the canonical Rl-invariant
twelve-tone row

5=(0 , 1, 5, 8, 9, 11, 4, 6, 7, 10, 2, 3).
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end-points lies half-way between (t—1)/2 and (t+1)/2. For example, consider the
canonical Rl-invariant twelve-tone row S given by

S = (0, 1,5,8,9, 11,4,6,7, 10,2,3).

This row has generating sequence GS(S) = (1, 4, 3, 1, 2), rotation factor X(S) = 5,
and r = 3. So stis the reflection of j 2 *- i - i = ^ u - i i n the diameter with one end-
point half-way between (t—1)/2 = 1 and {t +1)/2 = 2; see Fig. 2. The dots in this
diagram represents the first six elements of S (in this case, 0, 1, 5, 8, 9 and 11),
while the remaining positions represent the last six. The cross-lines (or line-system)
of the diagram show the correspondence S;*-».su_,. Clearly, a canonical Rl-
invariant twelve-tone row corresponds uniquely to such a diagram.

A B

8

(a)
Fig. 3. Left-handed (a) and right-handed (b) diagrams for the S of Fig. 2.

This diagram now suggests an alternative way of labelling canonical Rl-
invariant twelve-tone rows. First rotate the diagram until the diameter is vertical;
this can be done in two ways, with either end-point A or B at the top as in Fig. 3.
If the first dot (reading from the top) is on the left-hand side of the diameter (as
in Fig. 3(a)), the diagram is said to have a left-handed orientation, while if the first
dot is on the right-hand side of the diameter (as in Fig. 3(b)), the diagram is said
to have a right-handed orientation. The numbers of adjacent dots are then read off
from the diagram (proceeding from top to bottom down through the line-system).
Thus, Fig. 3(a) is a left-handed (3, 1, 2)-diagram (that is, starting from the left side
of the diameter: three dots at positions 1, 0 and 11; one dot at position 5; and
two dots at positions 9 and 8), while Fig. 3(b) is a right-handed (2, 1, 3)-diagram
(that is, starting from the right side of the diameter: two dots at positions 8 and 9;
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one dot at position 5; and three dots at positions 11, 0 and 1). Both diagrams
clearly correspond to the same S given above. We shall write L for a left-handed
diagram and R for a right-handed diagram. Thus, (a) above will be written as
((3, 1, 2), L), and (b) will be written as ((2, 1, 3), R). This notation will be made
more precise in Section 4 below.

Suppose now we consider all such diagrams without labels for coordinates. One
such diagram is given by Fig. 4. As we have already seen, this diagram corresponds
to the canonical Rl-invariant twelve-tone row

S = (0, 1,5,8,9, 11,4,6,7,10,2,3).

10

Fig. 4. Canonical diagram, @, corresponding
to the 5 of Fig. 2.

Fig. 5. Diagram, obtained from 3>, for the
canonical Rl-invariant twelve-tone row
S=(0, 4, 7, 8, 10, 11, 2, 3, 5, 6, 9, 1).

If we now attach coordinate labels to 9) beginning with 0 at any one of the six
positions marked with dots, say *, and continue to label in a clockwise fashion
from 1 through. 11, we arrive at Fig. 5. From this diagram we can read off a second
canonical Rl-invariant twelve-tone row, namely,

5 = (0,4, 7, 8, 10, 11,2,3,5,6,9,1).

Thus 3), which we shall call a canonical diagram, corresponds to more than one
canonical Rl-invariant twelve-tone row. This correspondence between canonical
diagrams and canonical Rl-invariant twelve-tone rows leads to an extremely
efficient method for generating all such canonical Rl-invariant twelve-tone rows,
and also to a method for counting all such rows (without generating them all). An
extension of these arguments leads in turn to the generation and counting of all
Rl-invariant twelve-tone rows. The next section develops these ideas in formal
fashion, followed by examples of the technique.

4. The exact number of canonical Rl-invariant tone rows

In this section we shall first find it useful to introduce the following notation and
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terminology. A composition of the positive integer k is defined to be an ordered
sequence C = (cuc2,--.,cl) of positive integers such that £j=1Cj = fc. Since a
composition of k corresponds uniquely to a choice of a subset of the points
(for example, . | . . | . | . . shows the composition of 6 into (1, 2, 1, 2)), it follows
that the number of compositions of k is 2*~!. An oriented-composition of k is an
ordered pair # = (C, d), where C is a composition of k and d is either L or R.
<£ is said to be a left-handed {right-handed) composition of k if d is L (rf is R). A
composition Cis eue« or odd according as /is even or odd. An oriented-composition
<& = (C, d) is even or odd according as C is even or odd. The mate of a composition
C = (c1( c2,..., c,) is the reverse composition Crev = (c;,..., c2, c j . The mate of an
oriented-composition is an oriented-composition <g" = (Crev, d'), where J ' is d or
the opposite of d according as C is even or odd. A composition C is symmetric
if C = Crev. An oriented-composition <£ = (C, d) is symmetric if C is symmetric.

From these definitions we make the following observations:
(1) The number, ek, of even symmetric (unoriented) compositions of k is zero

if A: is odd, and 2*'2"1 if A: is even:
(2) if <£ and <&' are mates, then they are equal if and only if one (and hence both)

of them is even and symmetric; and
(3) if Ar is odd and # is an oriented-composition of k, then # and <&" are distinct.

(This is a simple corollary of (1) and (2) above.)
We can now relate these notions to the previous section of this paper. Let S be

a canonical Rl-invariant 2&-tone row. To illustrate the main principles we take S
to be the twelve-tone row given above, namely

S = (0, 1, 5, 8, 9, 11, 4, 6, 7, 10, 2, 3).

Each element of the generating sequence GS(S) = (gl,g2, ••-,gk-l) is a positive
integer and 0 < Yj=iai = s*-i <2/c; that is, GS(S) is a composition of j f c _ t . In
this example, GS(S) = (1, 4, 3, 1,2) is a composition of 11. Now denote by
GS(S) the extended generating sequence for S, defined by

GS(S)=(GS(S),2k-sk-l)=(gug2,...,gk-l,2k-sk-l).

Thus, GS(S) is designed to be a composition of 2k. For example,

G5(S)=(1,4, 3, 1,2,1)

is a composition of 12.
Next, denote by {^(S), ^'(S)} the mate-pair of oriented-compositions of k

corresponding to S, where correspondence is denned using a canonical diagram.
Note that ^(S) and ^'(S) may not be distinct. For the above example,

<f(S) = ((3, 1,2), L) and T(S) =((2, 1, 3), R).
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Let 9)i<€) denote the canonical diagram corresponding to the mate-pair

Then, if & is odd, it follows that #(S) and ^\S) are distinct, and there are k
different canonical Rl-invariant 2^-tone rows having the same canonical diagram
^(#) . On the other hand, if k is even, then the number of different canonical
Rl-invariant 2A:-tone rows having the same canonical diagram SX^) is k/2 if
#(S) = ^'{S), and is k otherwise. Thus, in our example, there are six different
canonical Rl-invariant twelve-tone rows having the same canonical diagram
derived from S above. Furthermore, since the number of oriented-compositions of
k is 2* (of which 2ek are even and symmetric), it follows that the number of mate-
pairs {<$(S),<g'(S)} is 2ek+%2k-2ek) = 2k-1+ek, and for 2ek of these, <6 is even
and symmetric. Collecting together these remarks, we can state the following result.

THEOREM 1. There are k2k~1 canonical Rl-invariant 2k-tone rows.

This follows from the computation that the number, bk, of such rows is

bk = (kl2)(2ek)+k(2k-1+ek-2ek) = k2k~K

Thus, for twelve-tone rows, b6 = 192. Furthermore, the generating function of

5. The case k = 2

There are 2 2 " 1 —2 compositions of A; = 2. They are: Cx =(2) and C2 =(1 , 1).
Each composition is its own mate (that is, is symmetric). The 22 = 4 oriented-
compositions of 2 are:

<€x = ((2), L), <€1 = ((2), R), * 3 = ((1, 1), L) and VA = ((1, 1), R).

Fig. 6. Canonical diagrams for four-tone rows.
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Both <g1 and <€2
 a r e °dd and form a mate-pair, while <#3 and # 4 are even, and

are each their own mates. Each of the four oriented-compositions is symmetric.
The canonical Rl-invariant four-tone rows are obtained from the canonical
diagrams in Fig. 6. The canonical Rl-invariant four-tone rows are, therefore:
from Fig. 6(a) (0, 1, 2, 3) and (0, 3, 2, 1); from Fig. 6(b) (0, 2, 3, 1); and from
Fig. 6(c) (0, 2, 1, 3). Note that the two four-tone rows (0, 1, 3, 2) and (0, 3, 1, 2)
are not canonical Rl-invariant. The row (0, 1, 2, 3) has the generating sequence
GS = (1) and extended generating sequence GS — {\, 3), which is a composition
of 4. In this case, e2 = 22I2~1 = 1. There are (2)(22-1) = 4 canonical Rl-invariant
four-tone rows; that is, b2 = 4, which is the coefficient of x2 in x/(l — 2x)2.

6. The case k = 6

The oriented-compositions of k = 6 which need to be considered are the
following:

#i=((6)

#2 =((5,

#3 =((5,
#4 =((4,
# s = ((4,
#6 =((4,

#7=(0,
#8=(0,
#9 =((3,

#10 =((3,
#11 =((3,

#12 = (0 ,

R)
1), R)
1), L)
2),R)
2),L)
1, 1), R)
4, 1), R)
1, 4), R)
3),R)
3),L)
2, 1), R)
1, 2), R)

# 1 3

# 1 4

# 1 5

# 1 6

# 1 7

# 1 8

# 1 9

# 2 0

# 2 1

# 2 2

# 2 3

# 2 4

= ((2,3,1),
= ((2,1,3),
= ((1,3,2),
= ((1,2,3),
= ((3, 1, 1,
= ((3, 1, 1,
= ((1,3,1,
= ((1,3,1,
= ((2,2,2),
= ((2,2,1,
= ((2,2,1,
= ((2,1,2,

R)
R)
R)
R)

l), R)
D,L)
l), R)
1), L)
R)

l), R)
1), L)
l), R)

# 2 5 =( (2 , 1,2, 1),
#26 =((2,1,

#27 =((2, 1, 1

#28 = (d ,2 , :

#29 = ( d , 2 , :

#30 =((2, 1, 1
#31 =((1,2,

#32 = ( ( i , i , :

#33 = ( ( 1 , 1 ,
#34 = ( ( 1 , 1 ,
#35 = ( ( 1 , 1,

#36 = ( ( 1 , 1 ,

1,2),
,2) ,

2,1),
1,1),
, 1 ,

1,1,
1,1,
1,2,

Ul,
, 1 ,

1

D
R)
L)

R)
L)

i), R)
D,R)
1), R)
1), R)
2),R)
l, 1), R)
1, 1), L)

A complete list of all 192 canonical Rl-invariant twelve-tone rows is given in the
Appendix of this paper, tabulated by generating sequence and rotation number.

7. The generation of Rl-invariant tone rows

In this section we present two results; the first shows how to generate Rl-
invariant tone rows from a given canonical Rl-invariant tone row, while the
second gives the exact number of such Rl-invariant tone rows. Both results are
proved using the correspondence previously set up with the canonical diagrams.
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THEOREM 2.IfY\ is an Rl-invariant 2k-tone row, then there exists a canonical Rl-
invariant Ik-tone row S, an integer aeZ2k, and a permutation a: Zk -* Zk, such that

where pa is the permutation

0 1 2 ... k-l k k+l

2k-2 2k-l
2k-l-al 2k-l-<

_
\ a 2 ... ov_; 2k— 1—

In such a case, S is said to generate II. Moreover, if S and S' both generate II, then
S also generates S', and S and S" have the same canonical diagram.

Note that the mapping a\-*pc induces a group of transformations on Zlk

naturally isomorphic to the group of all permutations on Zk. This observation
gives the formulas Pa%a2= paiPa2 and pa.l=(pa)~

1. The essential relationship
between n and S as given in Theorem 2 can also be written element-wise in the
following way:

Before we proceed to prove this result, let us see how it works with an example.
From the table in the Appendix to this paper, we first choose a generating sequence,
say GS = (2, 1,4, 1, 1) with rotation factor X = 7. This now identifies the
canonical Rl-invariant twelve-tone row

S = (0, 2, 3, 7,8, 9, 4, 5, 6, 10, 11, 1).

Next, we decide on a suitable permutation of Z6, say,

^ 0 1 2 3 4 5 ^
\5 2 0 1 4 3

The Rl-invariant twelve-tone row II can now be obtained from S and a as follows
(we take a = 7):

o = 4 ; nl =sai + a = s 2 + 7 = 10;
n2=sai+a—s0+7 = 7; n3 =sa3+a = Sj +7 = 9;

7r5 =sff5 + a = s 3 + 7 = 2 ;
l; nn =s 1 1 _ ( 7 4 +a = s 7 + 7 = 0 ;

5; ntl =s u _ f f 0 +a = s 6 + 7 = 11,
so that the row is

n = (4, 10, 7, 9, 3, 2, 1, 0, 6, 8, 5, 11).
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[12] Rl-invariant twelve-tone row 413

Clearly, different values of the integer a, different permutations a, or both, will
always result in different Rl-invariant twelve-tone rows.

To prove Theorem 2, let

where S is the (unique) permutation of Zk for which the first k elements of
S = p£ l la""0 are in increasing order, and where a = S~ ' . Since

ya*" -'+ *k)<xc+"° -<"*-•+ «*> (since J?2 = 1)
= pIITac+'t0~('ric-'+'II') (since $ commutes with pz and n is

Rl-invariant)
= pzTl0L~no

= S,

where c = nk^l+nk — 2n0, then S is a canonical Rl-invariant 2fc-tone row, and

Suppose now that 5 and 5 ' both generate II; that is, that there exist per-
mutations a, a' and integers a, a' e Z2k such that

Then,

= pd Sa.\ (6 = (a'Y xa,a = a-a')

so that S also generates 5 ' . Let 2 (respectively Si') be the canonical diagram forS
(respectively S'). Since the first k elements of the tone row 5" are merely the first
k elements of S rearranged and transposed by a, then 3> and ®' can differ only
in their line-systems. But the line-system for ®' is given by the correspondences

so © and 3)' have the same line-systems and hence 3) = 3)'. This completes the
proof of the theorem.

THEOREM 3. There are klkk\ Rl-invariant Ik-tone rows.

To prove this theorem, note that, from Theorem 2, each Rl-invariant 2A>tone
row arises from exactly one canonical diagram. Conversely, let 3) be a canonical
diagram and let {'<?,#'} be the corresponding mate-pair of oriented compositions.
If'S? # <&", then we may select any of the Ik points as the origin and choose the k
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dots on the circle in any order (the remaining positional order being thus deter-
mined). In this manner, (2k)(k\) distinct Rl-invariant 2A>tone rows are generated
from 2i. On the other hand, if # = (€', then by selecting any of the k points on
one fixed side of the axis of symmetry as the origin and choosing the k dots on the
circle in any order, one of (k) (k!) distinct Rl-invariant 2fc-tone rows is generated
from 3>. Thus, the total number, rk, of Rl-invariant 2&-tone rows is given by

rk=(2k-1-ek)(2k)(k\)+(2ek)(k)(k\)=k2kk\,

which completes the proof.
Thus, for example, r6 = 276,480. Furthermore, the exponential generating

function for {rk} is 2x/(l -2*)2 .

8. The case k = 2 (continued)

The Rl-invariant four-tone rows are obtained from the canonical diagrams in
Section 5 above. The first pair {((2), L), ((2), R)} generates the (2) (2) (2!) = 8
Rl-invariant four-tone rows (using the method of Theorem 3):

(0, 3, 2, 1), (3, 0, 1, 2), (2, 3, 0, 1), (3, 2, 1, 0),
(1, 2, 3, 0), (2, 1, 0, 3), (0, 1, 2, 3), (1, 0, 3, 2).

The second pair {((1, 1), L), ((1, 1), L)} generates the (1)(2)(2!) = 4 Rl-invariant
four-tone rows:

(0, 2, 3, 1), (2, 0, 1, 3), (1, 3, 0, 2), (3, 1, 2, 0).

The third pair {((1, 1), R), ((1, 1), R)} generates the (1)(2)(2!)=4 Rl-invariant
four-tone rows:

(0,2,1,3), (2,0,3,1), (1,3,2,0), (3,1,0,2).

There are (2)(22)(2!) = 16 Rl-invariant four-tone rows, which is also the co-
efficient of x2/2\ in the expansion of 2x/(l -2.v)2. Note that the four-tone rows:

(0, 1, 3, 2), (0, 3, 1, 2), (1, 0, 2, 3), (1, 2, 0, 3),
(2, 1, 0, 3), (2, 3, 1, 0), (3, 0, 2, 1), (3, 2, 0, 1),

are not Rl-invariant.
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Appendix

A COMPLETE LIST OF GENERATING SEQUENCES FOR CANONICAL RI-INVARIANT

TWELVE-TONE ROWS, TABULATED BY ROTATION FACTOR X.

A typical entry in the table is 11213(4), for which X = 7. The first five numbers
represent the generating sequence, GS{S) = (1, 1, 2, 1, 3), of some canonical RI-
invariant twelve-tone row S. The generating sequence together with the accom-
panying rotation factor X will yield the interval sequence

75(5) = (1, 1,2, 1,3,7, 3, 1,2, 1, 1),

and the corresponding canonical RJ-invariant twelve-tone row

S = (0, 1, 2, 4, 5, 8, 3, 6, 7, 9, 10, 11).

The extended generating sequence is given by all six numbers of the tabulated
entry, namely GS(S) =(1, 1, 2, 1, 3, 4).

1

2

3

4

5

X=\
11111(7)

21111(6)
11116(2)

13111(5)
11151(3)

X=l
71111(1)

62111(1)

61111(2)

51311(1)
31115(1)

X=5
17111(1)

16211(1)

26111(1)

15131(1)

15111(3)

X=l
11711(1)

11621(1)

12611(1)

11513(1)

31511(1)

X=9
11171(1)

11162(1)

11261(1)

11131(5)
13151(1)

A - = l l

11117(1)

11112(6)
11126(1)

11315(1)
51113(1)
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6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

X=l

51112(2)

11125(2)

22111(5)

11411(4)

14113(2)

41121(3)

11314(2)

31211(4)

11241(3)

12311(4)

22211(4)
21142(2)

11224(2)
42112(2)

13131(3)

12233(3)
31312(2)

32121(3)
12133(2)

21321(3)
13213(2)

22221(3)

X=3

52111(2)

52211(1)
21115(2)

41141(1)

34112(1)

43121(1)

41311(2)
31124(1)

31141(2)
41231(1)

42221(1)

42211(2)
21124(2)

24112(2)

31313(1)

31223(1)

33212(1)

32132(1)

21313(2)

33121(2)

31231(2)

22132(2)
32222(1)

X=5

25111(2)

25211(1)

15221(1)

14114(1)

14211(3)

12114(3)
14312(1)

24131(1)

14123(1)
23114(1)

22114(2)
14222(1)

24221(1)

24211(2)

13131(3)

23131(2)

13221(3)

12123(3)
23312(1)

12312(3)
23123(1)

X=l

22511(1)

12521(1)

11522(1)

11411(4)

11321(4)
21411(3)

11213(4)
13411(2)

31421(1)

12413(1)

12422(1)

22421(1)

11222(4)
22411(2)

31313(1)

22313(1)

21213(3)
13321(2)

13213(2)
21321(3)

31322(1)

13222(2)
22213(2)

X=9

11122(5)
12251(1)

11252(1)

41141(1)

32141(1)
41132(1)

21341(1)

21131(4)
13142(1)

11431(2)

11422(2)

21122(4)
12242(1)

22241(1)

13131(3)

13122(3)

21332(1)

32132(1)

22131(3)

12331(2)

31231(2)

X = l l

11225(1)

21112(5)

11152(2)

14114(1)

13214(1)

12134(4)

42113(1)

21143(1)

13112(4)

11412(3)

22112(4)
11242(2)

12224(1)
41122(2)

31313(1)

13132(2)
32213(1)

21233(1)
31212(3)

23123(1)
12312(3)

21322(2)
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28

29

30

31

32

X=l

21232(2)

32212(2)

12223(2)

23122(2)

22222(2)

X=3
32221(2)

21223(2)

23212(2)

22222(2)

X=S

22123(2)
23222(1)

23221(2)

12222(3)
22312(2)

22222(2)

X=l

22322(1)

21222(3)
22321(2)

22222(2)

X=9

12322(2)

22122(3)

22232(1)

22231(2)
31222(2)

22222(2)

A-=l l

22212(3)

12232(2)

32122(2)

22223(1)

22222(2)
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